CN107878724B - Ship with electric drive and emergency stop switch - Google Patents

Ship with electric drive and emergency stop switch Download PDF

Info

Publication number
CN107878724B
CN107878724B CN201711184857.3A CN201711184857A CN107878724B CN 107878724 B CN107878724 B CN 107878724B CN 201711184857 A CN201711184857 A CN 201711184857A CN 107878724 B CN107878724 B CN 107878724B
Authority
CN
China
Prior art keywords
emergency stop
stop switch
electrical
electrodes
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711184857.3A
Other languages
Chinese (zh)
Other versions
CN107878724A (en
Inventor
J·比巴克
P·克里格
M·哈特迈尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torqeedo GmbH
Original Assignee
Torqeedo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torqeedo GmbH filed Critical Torqeedo GmbH
Publication of CN107878724A publication Critical patent/CN107878724A/en
Application granted granted Critical
Publication of CN107878724B publication Critical patent/CN107878724B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/22Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing
    • B63H23/24Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/007Trolling propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/08Means enabling movement of the position of the propulsion element, e.g. for trim, tilt or steering; Control of trim or tilt
    • B63H20/12Means enabling steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/36Covers or casing arranged to protect plant or unit from marine environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H36/0006Permanent magnet actuating reed switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/001Functional circuits, e.g. logic, sequencing, interlocking circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H2001/0005Redundant contact pairs in one switch for safety reasons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H36/0006Permanent magnet actuating reed switches
    • H01H36/006Permanent magnet actuating reed switches comprising a plurality of reed switches, e.g. selectors or joystick-operated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Protection Of Static Devices (AREA)
  • Thermally Actuated Switches (AREA)
  • Safety Devices In Control Systems (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The invention relates to a ship having an electric drive and an electric storage with at least one storage element and a positive and a negative electrode. The electrode is in current conducting connection with the memory element. An isolation device for isolating the current conducting connection is provided between at least one of the electrodes and the storage element, and is operatively connected to an emergency stop switch which is directly activatable by a user of the vessel.

Description

Ship with electric drive and emergency stop switch
The application is a divisional application, the original application date is 11.11.2013, the application number is 201380058904.3, and the invention name is 'ship with electric drive and emergency stop switch'.
Technical Field
The invention relates to a ship having an electric drive and an electric storage having at least one storage element and a positive and a negative electrode, wherein the electrodes are in current-conducting connection with the storage element, and wherein an isolating device for isolating the current-conducting connection is provided between at least one of the electrodes and the storage element. The invention also relates to a method for isolating an electrical consumer from an electrical storage, wherein the electrical storage has at least one storage element and a positive and a negative electrode, and wherein the electrodes are connected in an electrically conductive manner to the storage element and the electrical consumer is connected to the electrodes.
Background
In the event of a hazard or to avoid a hazard, it is sometimes necessary to quickly and reliably disconnect electrical components and electrical consumers found on board the ship. This is the case in particular if the electrical component is connected to a high voltage source. This is particularly suitable for on-board electrical consumers.
Disclosure of Invention
The problem addressed by the invention is therefore to quickly and reliably isolate electrical consumers found on board a ship from the power supply.
This problem is solved by a ship with an electric drive and an electric storage, wherein the electric storage has at least one storage element and a positive and a negative electrode, wherein the electrodes are in current-conducting connection with the storage element, and wherein an isolating device for isolating the current-conducting connection is provided between at least one of the electrodes and the storage element, and the ship is characterized in that: an emergency stop switch is provided which is directly activatable by a user of the vessel and which is operatively connected to the isolation device.
The method according to the invention of the type mentioned at the outset differs in that the current-conducting connection between the storage element and at least one of the electrodes is interrupted by means of an emergency stop switch. By activating the emergency stop switch, the user of the ship directly isolates the current conduction between the electrode and the storage element. In this way, all electrical consumers connected to the electrodes are quickly and reliably disconnected. This is particularly important for onboard electrical consumers, as certain dangerous conditions prevail due to the humid environment and the more humid conditions.
According to the invention, the emergency stop switch acts directly on the electrical storage and switches the stored electrodes out of the supply. Thus, all electrical components connected to the electrical storage are disconnected from the power source. In an embodiment, the isolator is electrically activated. When the emergency stop switch is activated, the electrical supply of the isolating means is interrupted, with the result that the isolating means isolates the electrode of the electrical storage from the storage element or storage elements.
The invention is particularly advantageous if the electrical storage is implemented as a high voltage source. The term "high voltage source" especially intends a voltage source having a terminal voltage of more than 60 volts, more than 100 volts or more than 200 volts.
Preferably, the emergency stop switch is arranged in or on the ship so that it can be activated immediately by the user in case of a danger. In the case of outboard drive, it is particularly advantageous to provide an emergency stop switch on the outboard driven housing or on the outboard driven tiller. If the user uses the tiller to control the outboard drive, the user is always in the vicinity of the emergency stop switch and can thus activate the emergency stop switch very quickly (if necessary). Alternatively, the emergency stop switch may also be housed in the remote controller, or provided with the remote controller.
Repeated activation of the emergency stop switch may be necessary during the life of the electric drive. In the case of repeated activation, the emergency stop switch and the isolating device must therefore also function properly.
Switching an electrical isolation device under load represents an increased load and the isolation device must be properly configured. When repeated disconnection under load is required, the installation size and cost of the isolation device increase.
For this reason, it is advantageous if first the load is reduced and then the isolation device is opened. It is therefore advantageous to provide one or more of the electrical consumers with an isolating device for isolating the current-conducting connection between the respective consumer and at least one of the electrodes. The isolating means for isolating a current conducting connection between the respective consumer and at least one of the electrodes is operatively connected to an emergency stop switch.
Thus, the isolating means for interrupting the current conducting connection between the storage element and at least one of the electrodes and the isolating element or elements for isolating the current conducting connection between the respective consumer and at least one of the electrodes are activated in a staggered manner over time in order to first reduce the load before the isolating means switches the electrode or electrodes into isolation from the supply.
This may occur, for example, by the emergency stop controller time-staggered activation of the signal receiver. That is, when the emergency stop switch is activated, a time offset signal is transmitted to the isolation element and the isolation device, with the result that the isolation element and the isolation device are switched at different times.
In another embodiment, the isolation device and the isolation element receive the signal from the emergency stop switch substantially simultaneously. The isolation element and the isolation device have or are connected to control units, each having an internal delay and rearranging the switching commands into a desired order.
It is assumed that the electrical consumers connected to the electrodes of the electrical storage have an electronic control which can directly influence the electronic control of the consumers and switch off the consumers when activation of the emergency stop switch occurs.
The use of the time delay described above can reduce the reliability of the emergency stop switch circuit when the emergency stop switch is activated. For safety reasons it is therefore advantageous to additionally bring the emergency stop switch into operative connection with the electrical power supply of the electrical consumer and/or of the control unit of the isolating device and/or of the isolating element, provided that said control unit and power supply are provided. After the emergency stop switch has been activated, not only the isolating means for interrupting the current-conducting connection between the storage element and at least one of the electrodes and optionally the isolating element for interrupting the electrical connection between the consumer and the electrode, but also the control unit of the consumer, the isolating element and/or the isolating means are switched to be isolated from the supply.
In a variant of the above-described embodiment, after the emergency stop switch has been activated, the isolating element and the isolating device are first switched and the respective electrical connections are isolated before the control unit of the consumer, the isolating element and/or the isolating device are isolated from their power supply.
The interruption of the voltage source of the control unit is slightly delayed in time, i.e. the activation of the isolation element and/or the isolation device, compared to the controlled disconnection. The time delay is advantageously ensured by using a further storage element for supplying the supply voltage, wherein the further storage element has a defined energy content (energy content). For example, the further storage element may be formed by a capacitor or a battery having a defined energy content. Once this energy is consumed, the control unit is also isolated from the voltage source, with the result that the consumer is safely disconnected.
Due to the above described interleaved switching of the voltage sources of the control units of the isolation element, the isolation device and/or the consumer, the isolation element and/or the isolation device, the need for electrical storage, the consumer and the isolation element and the isolation device is minimized. The delay between switching the isolation element, opening the isolation device and disconnecting the supply voltage of the isolation device or consumer may be, for example, less than 100 ms.
For example, the time delay of the interruption of the electrical supply of the control unit of the consumer or the supply of the control unit of the isolating device is completed by means of a control store (for example a capacitor or a battery) having a defined energy content.
The emergency stop switch is preferably implemented as a solenoid switch having an electromagnetic operating principle. This applies in particular to ships with outboard drive. Outboard drives are typically implemented with a watertight housing. By using a solenoid switch, a cable bushing from an emergency stop switch mounted on the outside of the outboard drive housing to the inside of the housing is avoided. The housing is waterproof and is not adversely affected by the emergency stop switch.
For example, a control unit is provided on the outboard drive housing, which reacts to magnetic fields that are affected or disturbed by the activation of the emergency stop switch. The control unit is then operatively connected to the isolation device and optionally to further isolation elements or other control units.
For this purpose, the emergency stop switch is provided with a permanent magnet, for example. When the emergency stop switch is activated, the permanent magnet is set in a position of the outboard drive housing provided for this purpose. The sensor unit within the housing (particularly within the watertight housing) then detects that the emergency stop switch has been activated. For example, the sensor unit may comprise a component made of a soft magnetic material, which is attracted by the permanent magnet when the emergency stop switch is activated and the permanent magnet is set. Conversely, it is also possible that the permanent magnet is located inside a watertight housing and that the soft magnetic component is an element of an emergency stop switch.
In another variant, the magnetic field is generated by activating an emergency stop switch, the magnetic field acting on the control unit. The change in the magnetic field or the formation of the magnetic field, which is interpreted as a signal for an emergency disconnection and is fed to the isolating device and/or the isolating element, is determined by the control unit, and the isolating device and/or the isolating element then interrupts the current-conducting connection between the stored storage element and the electrode and/or between the consumer and the electrode.
In another embodiment of the invention, the magnetic circuit is affected when the emergency stop switch is activated. For example, during normal operation, the magnetic circuit within the outboard drive housing is maintained. When the emergency stop switch is activated, the magnet is brought into the vicinity of the magnetic circuit from the outside, and the change in the magnetic circuit caused by the change in the position of the magnet can be detected by a magnetic field sensor, a hall element, or a reed contact.
The reliability of the detection of a particular state of the magnetic circuit for the emergency stop function can be increased by using a plurality of magnetic field sensors, hall elements or reed contacts. In this case, activation of all magnetic field sensors or all reed contacts is necessary in order to connect the electrodes in a current-conducting manner to the memory element. Conversely, this means that deactivating (deactivating) one sensor or one contact is sufficient to interrupt the current-conducting connection between the storage element and the electrode and switch to the emergency stop state.
The signals of the sensors are connected by logic such that the stored isolation means only produce a current conducting connection between the storage element and the electrode, i.e. the deactivation of the emergency stop switch, if all sensors detect the correct state. As soon as one of the sensors detects the activation of the emergency stop switch, the isolating device is activated and the current-conducting connection is interrupted.
In the case of outboard drive, the tiller is used to control the direction and speed of the propulsion force and to relay a specific set point value to the control unit of the motor. The control unit then forwards a corresponding control signal to the electric drive or electric motor to rotate it, for example, more slowly or more quickly.
With outboard drive of the electric motor, tiller and control unit, there is a risk that water or moisture enters the control unit via the connection between tiller and control unit and damages sensitive electronics. Preferably, in the case of such outboard drive, the tiller and the control unit are magnetically coupled with respect to the transmitted signal.
For example, the tiller is equipped with a magnet that can change its position. For example, this change in position may be effected by a magnet integrated into the twist grip. The control unit for controlling the motor is operatively connected to a sensor for detecting the magnetic field of the magnet and thus for determining the position of the magnet. The control unit interprets the position of the magnet as a specific set point value for controlling the motor and transmits a corresponding signal to the electric motor. In addition, the magnet is used to activate the emergency stop function. If the magnet is moved from its position, its position can be detected by a sensor, transmitted to a control unit and interpreted as a signal to introduce an emergency stop, i.e. to interrupt the current conducting connection between the storage element and at least one of the electrodes.
Drawings
The invention and further advantageous configurations of the invention are schematically illustrated in the drawings, in which:
figure 1 schematically shows a circuit according to the invention,
figures 2 to 4 show an alternative embodiment of the invention,
fig. 5 and 6 show a variant of the invention, in which the emergency stop function is activated magnetically,
fig. 7 shows a variant in which the emergency stop function can be activated via an outboard-driven tiller.
Detailed Description
Fig. 1 schematically shows a lithium-ion battery 1 according to the invention with an emergency stop circuit. For example, the lithium ion battery 1 is used on a ship as an electric storage of a power source for an electric motor (not shown) for driving the ship and as a high voltage battery.
The lithium-ion battery 1 has a plurality of battery cells 2 or in general storage elements 2, which are connected to one another in series and/or in parallel. The battery unit 2 is connected to two battery poles 3, to which battery poles 3 an electrical consumer or consumers (e.g. an electric drive of a ship) can be connected.
A switch 4 is provided between the battery 2 and the battery pole 3, by means of which switch a current-conducting connection between the battery 2 and the battery pole 3 can be produced or interrupted. The switch 4 is activated via a relay 5. The relay 5 is supplied with a current from a low-voltage battery 6 having a terminal voltage of, for example, 12 v. The emergency stop switch 7 is connected in a circuit including the battery 6 and the relay 5.
When the relay 5 is supplied with current from the battery 6, the switch 4 remains closed, and the battery electrode 3 is connected to the battery 2. If the emergency stop switch 7 is activated by the user of the boat in an emergency situation, the circuit containing the battery 6 and the relay 5 is interrupted and the relay 5 is isolated from the battery 6. This causes the switch 4 to open automatically and switch the battery electrode 2 out of the supply. Thus, all the consumers connected to the battery electrodes 3 are also disconnected.
Fig. 2 shows another embodiment of the present invention. Like parts are provided with the same reference numerals throughout the figures.
The battery electrode 3 can then be isolated from the battery cell 2 by means of the switch 4. The switch 4 is activated via a relay 5. The central emergency stop control unit 22 with the time delay member Ts and the time delay member Tv is now provided in the circuit comprising the low voltage battery 6, the emergency stop switch 7 and the relay 5. When the emergency stop switch 7 is activated, the time delay member Ts has a short delay (compared to the interruption of the power supply of the relay 11) of, for example, 100ms to interrupt the flow of current or the power supply of the relay 5. For example, the time delay members Ts and Tv are implemented as capacitors.
The electric drive 8 is connected to the battery electrode 3. The electric drive 8 includes an electric motor M and a motor controller 9. The motor controller 9 is supplied by the voltage battery 6. The electric motor M is supplied with electric power from the lithium ion battery 1 and can be interrupted by means of a switch 10 in the connection line between the battery poles 3 and the electric motor M. The switch 10 is connected via a relay 11.
The relay 11 is connected in series with the low-voltage battery 6, the emergency stop switch 7, and the time delay member Tv. When the emergency stop switch 7 is activated, the time delay member Tv interrupts the flow of current of the relay 11 or the power supply with an adjustable time delay.
When the emergency stop switch 7 is open, the relay 5 and the relay 11 are isolated from the voltage battery 6 with a time delay that can be adjusted via the time delay member Ts and the time delay member Tv. Preferably, the time delays of the time delay member Ts and the time delay member Tv are adjustable such that after the emergency stop switch 7 is opened, first the relay 11 is isolated from the low voltage battery 6 as a voltage source and the switch 10 is opened. The relay 5 is then switched to be isolated from the supply, with the result that the switch 4 is also open and the battery electrode 3 of the battery unit 2 is electrically isolated.
In the embodiment according to fig. 2, in the case of an electric motor M, each consumer is first isolated from the battery pole 3 before the battery pole 3 is isolated from the battery cell 2. In this way, the load of the switch 4 for isolating the battery electrode 3 from the battery cell 2 is reduced.
Fig. 3 shows another embodiment of the present invention. In contrast to the embodiment according to fig. 2, in this case no central emergency stop control unit is provided, but separate control units 23, 9 for the lithium-ion battery 1 and the electric motor M are provided. The control unit 23 for the lithium ion battery 1 is provided with a time delay member Ts; the motor controller 9 has a time delay means Tv. Once the emergency stop switch 7 has been activated, the flow of current to the time delay member Ts and the time delay member Tv is interrupted simultaneously. However, the control unit 23 and the motor controller 9 are still connected to the low voltage battery 6.
Activation of the emergency stop switch 7 activates the time delay member Ts and the time delay member Tv, which then acts on the control unit 23 or the motor controller 9 with a regulated or provided time constant. A brief delay is thus formed externally between the closing of the electric motor M and the opening of the switch 4 by means of the time delay member Ts and the time delay member Tv in the control unit 23 or in the motor controller 9. The time constant of the time delay member Tv is smaller than the time constant of the time delay member Ts, with the result that the electric motor M is first switched off via the motor controller 9, and then the switch 4 is opened via the relay 5 and isolates the battery electrode 3 from the battery 2.
Fig. 4 shows a variation of the embodiment of fig. 3, which incorporates an additional security feature. In this case, a capacitor 24 is provided as an energy buffer in the power supply for the control unit 23 and for the motor controller 9. As in the case of the embodiment according to fig. 3, when the emergency stop switch 7 is activated, the time delay member Ts and the time delay member Tv are isolated from the low-voltage battery 6 and the electric motor M is turned off with a corresponding time delay, and the switch 4 is opened with a corresponding time delay in order to isolate the battery electrode 3 from the battery cell 2.
In contrast to fig. 3, the control unit 23 and the motor controller 9 are also isolated from the low voltage battery 6 when the emergency stop switch 7 is activated. However, the control unit 23 and the motor controller 9 are still connected to the capacitor 24. The capacitor 24 ensures the power supply of the motor controller 9 and the control unit 23 until the electric motor M is switched off and the switch 4 is opened. After the capacitor 24 is discharged, the control unit 23 and the motor controller 9 are also isolated from the battery.
Thus, it is ensured in the embodiment according to fig. 4 that even in the unlikely case that the control unit 23 and the motor controller 9 cannot operate normally when the emergency stop switch 7 is activated, once the capacitor 24 has been discharged, the control unit 23 and the motor controller 9 are isolated from the supply and, correspondingly, the electric motor M is switched off and the battery pole 3 is isolated from the battery unit 2.
Fig. 5 shows another variant of the invention, which can be used, for example, in the case of an electric outboard drive of a ship. In this example, a control unit 13 is provided in the outboard drive housing 12, the control unit 13 reacting to a magnetic field that is affected or disturbed by the activation of the emergency stop switch. When the emergency stop switch is activated, the magnet 14 is brought into the vicinity of the control unit 13. The magnetic field 15 of the magnet 14 interferes with the control unit 13 and the signal to the latter to interrupt the electrical connection between the battery 2 and the battery pole 3, the switch 4 should be opened via the emergency stop controller 16. Of course, this embodiment may be combined with any of the exemplary embodiments according to fig. 1-4.
It is also possible to introduce the magnetic field by activating the emergency stop switch. These changes or formations of the magnetic field are determined by the control unit, interpreted as an emergency opening signal and transmitted to the switch 4, which switch 4 then interrupts the current-conducting connection between the battery unit 2 and the battery pole 3.
Fig. 6 shows a variant of the embodiment in fig. 5. In this case, two sensors 17a, 17b are provided which can detect the presence of the magnetic field 15 of the magnet 14. The two sensors 17a, 17b are logically connected to each other so that the emergency stop control 16 is deactivated only in case none of the sensors 17a, 17b shows a (register) magnetic field. In this case, the switch 4 remains closed and the battery electrode 3 is connected to the battery cell 2. As soon as one or both of the sensors 17a, 17b detects the magnetic field 15, the emergency stop control is activated and the battery pole 3 is switched out of isolation from the supply.
In the case of outboard drive, the tiller is used to control the direction and speed of the propulsion force. For this purpose, a specific setpoint speed or a specific propulsion is predetermined, for example, by means of an accelerator throttle on the tiller. The set point value is transmitted via a control signal to a control unit and to an electric drive or motor in order to rotate the electric drive or motor more or less slowly.
With outboard drive of the electric motor, tiller and control unit, there is a risk that water or moisture enters the control unit via the connection between tiller and control unit and damages sensitive electronics. Preferably, in the case of such outboard drive, the tiller and the control unit are magnetically coupled with respect to a signal transmitted therebetween.
An embodiment of this type is shown in fig. 7. The control unit 9 is arranged in a housing 12 and is embodied waterproof. The signal transmission between the tiller 18 and the control unit 19 takes place electromagnetically, as a result of which cable bushings from the tiller 18 to the control unit 19 in the housing 12 are avoided. Thereby, the waterproofness of the housing 12 is ensured and, therefore, is not negatively affected by the connection connecting the tiller 18 and the control unit 19. For this purpose, the tiller and the control unit are equipped with, for example, a magnet 20 and a corresponding receiver 21 ensuring signal transmission.
The magnet 20 has a dual function: the magnet 20 turns together with the twist grip 18 of the tiller and transmits its position to the control unit 19 via the sensor 21. Thereby transmitting the set point speed and propulsion to the control unit 19 via the twist grip 18. In addition, by moving the magnet 20, the emergency stop function is activated. In this case, the emergency stop switch is embodied such that, when it is activated, the magnet 20 is moved away from its position with respect to the sensor 21. The control unit 19 interrupts the disappearance or absence of the magnetic field 15 in case of an emergency stop and introduces suitable steps, in particular isolating the battery electrodes from the battery cells.

Claims (15)

1. A vessel, comprising:
an electric drive (M) providing propulsion power to the vessel;
a power supply supplying power to the electric drive (M);
a user-activatable emergency stop switch comprising a magnet (14) and a magnetic field detection sensor (17a, 17b), the emergency stop switch being activated when the sensor (17a, 17b) detects a change in magnetic field caused by the magnet (14); and
a stop mechanism operatively connected to the emergency stop switch and configured for stopping operation of the electric drive (M) when the emergency stop switch is activated.
2. The vessel according to claim 1, wherein: the power supply comprises an electrical storage (1), the electrical storage (1) being implemented as a high voltage source having a terminal voltage of more than 60 volts, more than 100 volts or more than 200 volts.
3. Vessel according to any of the preceding claims, wherein: the boat is provided with outboard drive, and is characterized in that: the emergency stop switch (7) is provided on the outboard drive housing or on the outboard drive tiller.
4. A ship as claimed in claim 1 or 2, characterized in that: one or more electrical consumers (8) connected to the electrodes (3) of the power supply, and characterized in that: providing one or more of the electrical consumers (8) with an isolating element (10) for isolating a current-conducting connection between the respective electrical consumer (8) and at least one of the electrodes (3), wherein the one or more isolating elements (10) for isolating a current-conducting connection between the respective electrical consumer (8) and at least one of the electrodes (3) are operatively connected to the emergency stop switch (7).
5. The vessel according to claim 4, wherein: the isolation element (10) is provided with a time delay unit.
6. A ship as claimed in claim 1 or 2, characterized in that: an electrical consumer (8) is connected to the electrodes (3) of the power supply, wherein the electrical consumer (8) has its own control unit (9), and characterized in that: the control unit (9) of the electrical consumer (8) is operatively connected to the emergency stop switch (7).
7. A ship as claimed in claim 1 or 2, characterized in that: -an electrical consumer (8) is connected to the electrodes (3) of the power supply, wherein the electrical consumer (8) has its own control unit (9), which control unit (9) is connected to a voltage source (6), and characterized in that: the voltage source (6) of the control unit (9) is operatively connected to the emergency stop switch (7).
8. A ship as claimed in claim 1 or 2, characterized in that: the emergency stop switch (7) is implemented as a solenoid switch.
9. A ship as claimed in claim 1 or 2, characterized in that: a plurality of sensors (17a, 17b) are provided to detect activation of the emergency stop switch (7).
10. A method for isolating an electrical consumer (8) from an electrical power source, wherein the electrical power source has a positive electrode and a negative electrode (3), the electrical consumer (8) being connected to the electrodes (3), characterized in that:
a user-activatable emergency stop switch comprising a magnet (14) and a magnetic field detection sensor (17a, 17b) detects the magnetic field induced by the magnet (14), wherein
-the emergency stop switch is activated when the sensor (17a, 17b) detects a change in the magnetic field caused by the magnet (14); and
a stop mechanism operatively connected to the emergency stop switch stops operation of the electric drive upon activation of the emergency stop switch.
11. The method of claim 10, wherein: -providing an isolating means (4) to isolate a current conducting connection between at least one of said electrodes (3) and a storage element (2) of said power supply, characterized in that: -electrically activating the isolating means (4), and characterized in that: -interrupting the electrically activated supply voltage for the isolating means (4) by means of the emergency stop switch (7).
12. The method according to claim 10 or 11, characterized in that: one or more electrical consumers (8) connected to the electrodes (3) of the power supply, and characterized in that: -interrupting the electrical connection between at least one of the electrical consumers (8) and at least one of the electrodes (3) when the emergency stop switch (7) is activated.
13. The method of claim 10, wherein: firstly interrupting an electrical connection between at least one of the electrical consumers (8) and at least one of the electrodes (3), and then interrupting a current-conducting connection between a storage element (2) of the power supply and at least one of the electrodes (3).
14. The method of claim 11, wherein: -the electrical consumers (8) and/or the isolation devices (4) are connected to a control unit (9, 23), wherein the control unit (9, 23) is connected to a voltage source (6), and characterized in that: when the emergency stop switch (7) is activated, the current-conducting connection between the storage element (2) and at least one of the electrodes (3) and optionally the electrical connection between at least one of the electrical consumers (8) and at least one of the electrodes (3) is first interrupted, and the control unit (9, 23) is then isolated from the voltage source (6).
15. The method according to claim 10 or 11, characterized in that: the emergency stop switch (7) having a magnet (20) whose position can be changed and a sensor for detecting the magnetic field of the magnet (20), and is characterized in that: -providing a motor controller (19), the motor controller (19) relating a specific position of the magnet (20) to a specific set point value for controlling the motor, and the motor controller (19) interrupting the current conducting connection between the storage element (2) of the power supply and at least one of the electrodes (3) when the magnet (20) is moved away from its position.
CN201711184857.3A 2012-11-12 2013-11-11 Ship with electric drive and emergency stop switch Active CN107878724B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012021996.2 2012-11-12
DE102012021996 2012-11-12
CN201380058904.3A CN105228896B (en) 2012-11-12 2013-11-11 Ship with driven by power and emergency stop switch

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201380058904.3A Division CN105228896B (en) 2012-11-12 2013-11-11 Ship with driven by power and emergency stop switch

Publications (2)

Publication Number Publication Date
CN107878724A CN107878724A (en) 2018-04-06
CN107878724B true CN107878724B (en) 2020-08-07

Family

ID=49679470

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201380058903.9A Active CN105189284B (en) 2012-11-12 2013-11-11 With electrically driven (operated) ship
CN201711184857.3A Active CN107878724B (en) 2012-11-12 2013-11-11 Ship with electric drive and emergency stop switch
CN201380058902.4A Active CN105102318B (en) 2012-11-12 2013-11-11 Boat with electric drive
CN201380058904.3A Active CN105228896B (en) 2012-11-12 2013-11-11 Ship with driven by power and emergency stop switch

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201380058903.9A Active CN105189284B (en) 2012-11-12 2013-11-11 With electrically driven (operated) ship

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201380058902.4A Active CN105102318B (en) 2012-11-12 2013-11-11 Boat with electric drive
CN201380058904.3A Active CN105228896B (en) 2012-11-12 2013-11-11 Ship with driven by power and emergency stop switch

Country Status (6)

Country Link
US (5) US9815541B2 (en)
EP (3) EP2920060B1 (en)
CN (4) CN105189284B (en)
DK (3) DK2920060T3 (en)
HK (3) HK1217933A1 (en)
WO (3) WO2014072072A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2730493A1 (en) 2012-11-12 2014-05-14 Torqeedo GmbH Boat with high voltage system
EP2730492A1 (en) 2012-11-12 2014-05-14 Torqeedo GmbH Electrical storage with water sensor
CN105189284B (en) 2012-11-12 2018-12-18 托奇多有限责任公司 With electrically driven (operated) ship
DE102017101145A1 (en) * 2017-01-20 2018-07-26 Torqeedo Gmbh Device for providing electrical energy for an electrical consumer and / or for charging a battery in a boat
DE202018100148U1 (en) * 2018-01-11 2019-04-12 WeightWorks GmbH Energy storage device, motor vehicle or monitoring system with such an energy storage device and use of such energy storage device
US11148776B2 (en) * 2018-11-16 2021-10-19 Brp Us Inc. Tiller system for a marine outboard engine
CN110009814B (en) * 2019-01-28 2021-06-04 国电南瑞科技股份有限公司 Operation method, device and system of mobile power supply device
JP2022049255A (en) * 2020-09-16 2022-03-29 ヤマハ発動機株式会社 Ship propulsion system, outboard engine, and ship
US20240101240A1 (en) * 2021-01-29 2024-03-28 Panasonic Intellectual Property Management Co., Ltd. Ship propulsion device

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2096295A5 (en) * 1970-06-26 1972-02-11 Varta Ag
US3835625A (en) * 1973-07-20 1974-09-17 C Williams Pollution-reducing floating exhaust
US3989002A (en) * 1975-11-20 1976-11-02 Philip C. Peterson Motor powered watercraft for riding in standing position
JPS5587699A (en) 1978-12-25 1980-07-02 Mitsubishi Heavy Ind Ltd Propulsion system for propeller ship
US4223540A (en) * 1979-03-02 1980-09-23 Air Products And Chemicals, Inc. Dewar and removable refrigerator for maintaining liquefied gas inventory
CA1150767A (en) 1979-06-07 1983-07-26 Hironosuke Ikeda Safety valve means for battery
JP3672269B2 (en) * 1995-11-24 2005-07-20 株式会社モリック Control device for electric outboard motor
DE19720677C1 (en) * 1997-05-16 1998-10-22 Spectrospin Ag NMR measuring device with cooled measuring head
DE19855900B4 (en) * 1998-12-03 2004-04-08 Siemens Ag Process for reducing losses in the commutation process
JP4370027B2 (en) * 1999-10-08 2009-11-25 パナソニック株式会社 Assembled battery
DE10040231A1 (en) * 2000-08-17 2002-02-28 Siemens Ag Short circuit protection system for ships
DE10104892A1 (en) * 2001-02-01 2002-08-14 Siemens Ag Ship Electric System
DE102004045897A1 (en) * 2004-09-22 2006-03-30 Howaldtswerke-Deutsche Werft Gmbh Battery system of a submarine
JP2006182264A (en) * 2004-12-28 2006-07-13 Toyota Motor Corp Exhaust device for hybrid vehicle
EP1749608B1 (en) * 2005-08-01 2010-10-06 Agie Charmilles SA Method and generator for electrical discharge machining
EP1987769B1 (en) * 2006-02-23 2019-04-10 University Corporation, Kanazawa Institute of Technology Superconducting magnetism measuring device
JP2008021524A (en) * 2006-07-12 2008-01-31 Tokai Rika Co Ltd Non-contact switch
EP2152569A4 (en) * 2007-04-30 2011-06-22 Revolt Boats Llc Improved electrically powered watercraft
CN201049727Y (en) * 2007-05-11 2008-04-23 韩海军 Surfboat
WO2009025060A1 (en) * 2007-08-23 2009-02-26 Kito Corporation Operation controller for electric equipment
KR100974759B1 (en) * 2007-10-26 2010-08-06 현대자동차주식회사 Sequence control method of fuel cell-super capacitor hybrid electric vehicle
FI120811B (en) * 2008-01-09 2010-03-15 Waertsilae Finland Oy Electric power supply equipment for ship use
DE102008013188A1 (en) 2008-03-07 2009-09-17 Johnson Controls Hybrid And Recycling Gmbh Electrochemical accumulator and vehicle with an electrochemical accumulator
US8085161B2 (en) * 2008-03-19 2011-12-27 Rodolfo Garcia Safety warning system and method
DE102008022077A1 (en) * 2008-05-05 2009-11-12 Siemens Aktiengesellschaft Circuit for feeding a drive machine with several winding systems
DE102008002665A1 (en) * 2008-06-26 2009-12-31 Robert Bosch Gmbh Battery pack and hand tool with a battery pack
JP5340676B2 (en) 2008-08-29 2013-11-13 三洋電機株式会社 Battery system
CA2643878A1 (en) * 2008-11-14 2010-05-14 Pierre Caouette An electronic method of controlling propulsion & regeneration for electric, hybrid-electric and diesel-electric marine crafts
JP5367382B2 (en) * 2009-01-07 2013-12-11 ヤマハ発動機株式会社 Ship power system
CN101920780A (en) 2009-06-16 2010-12-22 孙枫 Power supply system and method of shipping work
DE202009015027U1 (en) * 2009-11-04 2010-02-18 Fischer Panda Gmbh Device for controlling a vehicle
US8339139B2 (en) * 2010-01-29 2012-12-25 Infineon Technologies Ag System and method for testing a circuit
JP5477118B2 (en) * 2010-03-31 2014-04-23 スズキ株式会社 Electric outboard motor
DE102010023019A1 (en) 2010-06-08 2011-12-08 Siemens Aktiengesellschaft Wave generator system
EP2503666A3 (en) 2011-02-01 2013-04-17 Siemens Aktiengesellschaft Power supply system for an electrical drive of a marine vessel
DE102011015981A1 (en) * 2011-04-04 2013-05-16 Mann + Hummel Gmbh Ventilation device of a housing and method for producing such
US9030052B2 (en) * 2011-05-17 2015-05-12 Samsung Electronics Co., Ltd. Apparatus and method for using near field communication and wireless power transmission
CN102514698B (en) 2012-01-10 2014-07-23 苏州星诺游艇有限公司 Yacht and power supply system thereof
EP2730493A1 (en) 2012-11-12 2014-05-14 Torqeedo GmbH Boat with high voltage system
EP2730492A1 (en) 2012-11-12 2014-05-14 Torqeedo GmbH Electrical storage with water sensor
CN105189284B (en) 2012-11-12 2018-12-18 托奇多有限责任公司 With electrically driven (operated) ship
US20150336468A1 (en) * 2012-12-25 2015-11-26 Toyota Jidosha Kabushiki Kaisha Power supply system for vehicle, vehicle comprising the same, and method for controlling power supply system for vehicle

Also Published As

Publication number Publication date
CN105102318A (en) 2015-11-25
CN105102318B (en) 2017-05-03
WO2014072074A1 (en) 2014-05-15
US20180001987A1 (en) 2018-01-04
CN105228896B (en) 2018-01-05
US20180065723A1 (en) 2018-03-08
DK2920062T3 (en) 2018-09-03
EP2920061A1 (en) 2015-09-23
EP2920060A1 (en) 2015-09-23
US9815541B2 (en) 2017-11-14
CN107878724A (en) 2018-04-06
CN105189284B (en) 2018-12-18
US10392095B2 (en) 2019-08-27
US20150298785A1 (en) 2015-10-22
EP2920060B1 (en) 2018-08-29
EP2920061B1 (en) 2018-08-22
DK2920061T3 (en) 2018-10-22
CN105228896A (en) 2016-01-06
US10661877B2 (en) 2020-05-26
CN105189284A (en) 2015-12-23
EP2920062B1 (en) 2018-07-25
US20150307177A1 (en) 2015-10-29
WO2014072073A1 (en) 2014-05-15
US9789946B2 (en) 2017-10-17
HK1218102A1 (en) 2017-02-03
US20150266558A1 (en) 2015-09-24
DK2920060T3 (en) 2018-10-22
WO2014072072A1 (en) 2014-05-15
HK1217933A1 (en) 2017-01-27
EP2920062A1 (en) 2015-09-23
US10556659B2 (en) 2020-02-11
HK1218101A1 (en) 2017-02-03

Similar Documents

Publication Publication Date Title
CN107878724B (en) Ship with electric drive and emergency stop switch
KR101457986B1 (en) Battery pack overcharge protection circuit
EP3575139A1 (en) Switch control circuit and battery pack including the same
US20170144554A1 (en) Methods of operating contactors in high voltage circuits of vehicles
CN103015832B (en) A kind of door and window safe opening system
US7915754B2 (en) Isolating switch system
CN110582431B (en) Current supply unit for a utility vehicle and method for operating a current supply unit for a utility vehicle
US20140252997A1 (en) Secure method of cutting off the power supply of an electric motor and corresponding device
US8934208B2 (en) Trip circuit supervision relay for low and medium voltage applications
US20130294001A1 (en) Electromagnetic switching apparatus
EP3038226B1 (en) System and method for supplying electric power
US7359166B2 (en) Method and control system for controlling electric motors
EP3384511B1 (en) A disconnector device and arrangement for disconnecting a contactor
CN110870034B (en) Electrical system for controlling a functional component and system for driving a wheel of a motor vehicle
CN220383043U (en) Orderly action device and solid-state starter and solid-state breaker comprising same
US11488795B2 (en) Switching element, switching device and method for the operation of the switching device
WO2023242989A1 (en) Shut-off control device
AU2012202631B2 (en) Contactor, in Particular for Disconnecting Batteries in Electrical Wiring Systems on Board Vehicles
CN109473311B (en) High-voltage relay and high-voltage relay protection method
JP2001086637A (en) Method and apparatus for securing power for car
KR101662909B1 (en) Apparatus for preventing of stopping motor
CN2242513Y (en) Circuit switching device of on-off-position separation type
JP6012813B2 (en) Electromagnetic operation device for switchgear
CN114141560A (en) Solid-state circuit breaker and control method thereof
EP1821400A1 (en) A system for providing three-phase current to an electric motor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant