CN107878453A - A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier - Google Patents
A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier Download PDFInfo
- Publication number
- CN107878453A CN107878453A CN201711081210.8A CN201711081210A CN107878453A CN 107878453 A CN107878453 A CN 107878453A CN 201711081210 A CN201711081210 A CN 201711081210A CN 107878453 A CN107878453 A CN 107878453A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- mtd
- mtr
- automobile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005457 optimization Methods 0.000 claims abstract description 9
- 238000013461 design Methods 0.000 claims description 17
- 230000033001 locomotion Effects 0.000 claims description 16
- 230000035772 mutation Effects 0.000 claims description 13
- 230000001133 acceleration Effects 0.000 claims description 9
- 239000005364 simax Substances 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000002474 experimental method Methods 0.000 claims description 5
- 238000012938 design process Methods 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000002513 implantation Methods 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- XXXSILNSXNPGKG-ZHACJKMWSA-N Crotoxyphos Chemical compound COP(=O)(OC)O\C(C)=C\C(=O)OC(C)C1=CC=CC=C1 XXXSILNSXNPGKG-ZHACJKMWSA-N 0.000 description 3
- 208000012661 Dyskinesia Diseases 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 description 1
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 description 1
- 238000000848 angular dependent Auger electron spectroscopy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0953—Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/12—Lateral speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/18—Braking system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/20—Steering systems
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
The present invention relates to a kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier, it is characterized in that, this method is to utilize path Dynamic Programming and real-Time Tracking Control module, according to the obstacle information, coordinate of ground point, motoring condition information gathered in real time, real-time optimization draws the front wheel angle and four wheel slips of automobile, and then controls automobile to realize collision avoidance;Wherein, obstacle information includes the discrete point coordinates that the barrier appearance profile obtained is measured by radar sensor, and motoring condition information includes measuring the automobile longitudinal speed obtained and side velocity by vehicle speed sensor and measures the yaw velocity obtained by gyroscope;During collision avoidance is controlled, pass through electric power steering(Electric Power Steering, EPS)Torque compensation module determines that torque compensation controls gain, steering wheel is mutated into Torque Control in the ideal range, realizes man-machine harmonious automobile emergency collision avoidance according to speed, front-wheel additional rotation angle.
Description
Technical field
The present invention relates to the advanced driving ancillary technique field of automobile, and in particular to a kind of automobile emergency for hiding dynamic barrier
Collision avoidance integral type control method.
Background technology
It is convenient with quick that automobile can be brought, and its driving safety turns into global social concern.In order to enter
One step improves traffic safety, helps driver to reduce faulty operation, in recent years with advanced drive assist system
(Advanced Driver Assistance Systems, ADAS) is that the intelligent automobile safe practice of representative is gradually paid attention to
And development.Automobile emergency anti-collision system the movement locus of auxiliary driver's adjustment automobile, is realized by the pro-active intervention of actuator
Collision avoidance.It can save the life of driver in clutch, there is good market prospects.
The existing many achievements in research of automobile emergency collision avoidance control aspect, can preferably solve collision avoidance control problem, but this
A little achievements in research are mainly for stationary obstruction.Considering the automobile emergency collision avoidance control aspect of moving obstacle, document
[Ackermann C,Isermann R,Min S,etal.Collision avoidance with automatic braking
and swerving[J].IFAC Proceedings Volumes,2014,47(3):10694-10699.] consider that barrier is indulged
To motion conditions, whether the speed difference of detection automobile and moving obstacle, decision-making goes out the steering opportunity of collision avoidance, i.e., can be turned
To collision avoidance, but the dynamic change of dyskinesia object location is not accounted for during collision avoidance, and it is lateral not account for barrier
Motion conditions.Publication No. CN105539586A Chinese patent discloses a kind of automobile for autonomous driving and hides mobile barrier
Hinder the unified motion planning method of thing, this method considers longitudinal direction and the lateral movement situation of barrier, but only goes out for decision-making
The steering opportunity of collision avoidance and collision avoidance path, also without the dynamic change that dyskinesia object location is considered during collision avoidance.
Automobile emergency collision avoidance control be unable to do without the pro-active intervention of steering.The existing rules and regulations steering wheel in Europe is with turning to
There must be mechanical connection between wheel, so active front steering system (Active Front Steering, AFS) is as modern
The transitional product of wire-controlled steering system (Steering-by-wire, SBW) arises at the historic moment afterwards.Document [Sumio Sugita,
Masayoshi Tomizuka.Cancellation ofUnnatural Reaction Torque in Variable-Gear-
Ratio[J].Journal of Dynamic Systems Measurement&Control,2012,134(2):021019.]
With document [AtsushiOshima, XuChen, Sumio Sugita, Masayoshi Tomizuka.Control design
for cancellation of unnatural reaction torque and vibrations in variable-
gear-ratio steering system[C].ASME 2013Dynamic Systems and Control
Conference.American Society of Mechanical Engineers,2013-3797,V001T11A003:
10pages.] AFS is demonstrated while system displacement transmission characteristic is changed, the force transfering characteristic of steering can be also influenceed,
Cause the mutation of hand-wheel torque.Excessive steering wheel mutation torque can aggravate the nervous psychology of driver, easily make driver
Maloperation is produced, is unfavorable for driving safety.Appropriate steering wheel mutation torque is but advantageous to the posture change that driver perceives automobile
Change, and play warning function.But the acceptable degree that driver is mutated torque to steering wheel varies with each individual.
The content of the invention
In order to solve that the dynamic of dyskinesia object location is not accounted for during collision avoidance existing for existing urgent collision avoidance method
State changes and causes the unsafe technical problem of collision avoidance process, and steering wheel mutation torque existing for existing urgent collision avoidance method
The uncontrollable technical problem for easily causing driver's maloperation, the present invention provide a kind of automobile emergency collision avoidance for hiding dynamic barrier
Integral type control method, driver can be aided in realize safe and reliable collision avoidance, save driver's life at the critical moment.
The technical solution adopted for solving the technical problem of the present invention is as follows:
1st, a kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier, it is characterised in that this method is profit
With path Dynamic Programming and real-Time Tracking Control module, according to the obstacle information, coordinate of ground point, running car gathered in real time
Status information, real-time optimization draws the front wheel angle and four wheel slips of automobile, and then controls automobile to realize collision avoidance;Its
In, obstacle information includes the discrete point coordinates that the barrier appearance profile obtained is measured by radar sensor, running car shape
State information includes measuring the automobile longitudinal speed obtained and side velocity by vehicle speed sensor and measures what is obtained by gyroscope
Yaw velocity;During collision avoidance is controlled, pass through electric power steering (Electric Power Steering, EPS) torque
Compensating module determines that torque compensation controls gain, steering wheel is mutated into Torque Control in ideal according to speed, front-wheel additional rotation angle
In the range of, realize man-machine harmonious automobile emergency collision avoidance;
This method comprises the following steps:
Step 1, the performance indications design process of automobile emergency collision avoidance control include following sub-step:
Step 1.1, by the use of two norms of the terminal point coordinate of prediction time domain interior prediction track and coordinate of ground point error as with
Track performance indications, embody the track following characteristic of automobile, and its expression formula is as follows:
Wherein, HpTo predict time domain, (Xt+Hp,Yt+Hp) to predict the terminal point coordinate of time domain interior prediction track, by car model
Iteration obtains, the automobile coordinate of ground point (X to be reached during collision avoidanceg,Yg);
The Vehicle dynamics are:
Fxi=fxicos(δi)-fyisin(δi),i∈{1,2,3,4} (15)
Fyi=fxisin(δi)+fyicos(δi),i∈{1,2,3,4} (16)
Wherein, Fxi、FyiLongitudinal component and cross component force of respectively four wheels along vehicle body coordinate direction;fxi、fyiPoint
Not Wei component of four wheels along wheel coordinate direction, wherein fxiFor four wheel slips and the function of analysis of wheel vertical load,
fyiFor front wheel angle and the function of analysis of wheel vertical load, concrete numerical value can be determined by magic formula;Respectively automobile longitudinal
Speed and longitudinal acceleration;Respectively automobile side angle speed and side acceleration;Respectively automobile yaw
Angle, yaw velocity and yaw angular acceleration;lf、lrRespectively automobile barycenter is to the distance of axle, lsFor wheelspan size
Half;JzFor the yaw rotation inertia of the vertical axis around automobile barycenter;M is car mass;X, Y is respectively in earth coordinates
The transverse and longitudinal coordinate of Location of Mass Center of Automobiles;δiFor four wheel steering angles, automobile is front-wheel steer here, therefore δ3=δ4=0;
The parameter of the magic formula show that expression is as follows by experiment fitting:
Wherein, V is current automobile longitudinal speed;αf、αrRespectively front-wheel side drift angle and trailing wheel side drift angle;Fz,f、Fz,rRespectively
For automobile axle load;siFor four wheel slips of automobile;Axi、Bxi、Cxi、Dxi、ExiAnd Ayi、Byi、Cyi、Dyi、EyiFor
Fitting parameter is tested, design parameter is as shown in following table:
The magic formula parameter of table 3
a0 | a1 | a2 | a3 | a4 | a5 | a6 | ||
1.75 | 0 | 1000 | 1289 | 7.11 | 0.0053 | 0.1925 | ||
b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 |
1.57 | 35 | 1200 | 60 | 300 | 0.17 | 0 | 0 | 0.2 |
Step 1.2, by the use of two norms of controlled quentity controlled variable rate of change as the smooth index of braking in a turn, embody holding during collision avoidance
The braking in a turn smoothness properties of row device, controlled quentity controlled variable u are four wheel slip s of vehicle front corner δ and automobilei i∈{1,2,
3,4 }, establishing the discrete smooth index of quadratic form braking in a turn is:
Wherein, HcTo control time domain, t represents current time, and Δ u is controlled quentity controlled variable rate of change, and w is Δ u weight coefficient;
Step 2, consider that the constrained designs process that the automobile emergency collision avoidance of moving obstacle controls includes following sub-step:
Step 2.1, actuator physical constraint is set, meets actuator requirement;
The bound of front wheel angle and four wheel slips is limited using linear inequality, respectively obtains steering, braking
The physical constraint of actuator, its mathematic(al) representation are:
δmin< δk,t< δmaxK=t, t+1 ... t+Hc-1 (3)
simin< sik,t< simaxI ∈ { 1,2,3,4 } k=t, t+1 ... t+Hc-1 (4)
Wherein, δminFor front wheel angle lower limit, δmaxFor the front wheel angle upper limit, siminFor four wheel slip lower limits, simax
For four wheel slip upper limits;
Step 2.2, set location constraint, ensure to collide with barrier during collision avoidance;
The positional information of t barrier may be characterized as the set of N number of discrete point, and these information can be surveyed by radar sensor
Amount obtains, wherein the coordinate representation of j-th of discrete point is (Xj,t,Yj,t), the automobile center-of-mass coordinate of t is designated as (Xk,t,Yk,t),
It can be calculated as the car model described in step 1.1, position constraint is set to
Wherein, a is distance of the automobile barycenter to headstock;B is distance of the automobile barycenter to the tailstock;C is the one of automobile overall width
Half;For using t as the yaw angle for playing k moment automobiles in point prediction time domain;Dx,j,tIt is j-th of discrete point of barrier in vapour
The fore-and-aft distance of automobile barycenter, D are arrived in car coordinate systemy,j,tAutomobile matter is arrived in vehicle axis system for j-th of discrete point of barrier
The lateral separation of the heart;
It is assumed that barrier characterizes automobile and barrier along Y-direction with constant speed movement, formula (5) in prediction time domain
The degree of closeness of N number of discrete point,Value is bigger, illustrates that the distance of automobile discrete point corresponding with barrier is closer, also more endangers
Danger;Define tThe maximum barrier discrete point j of value is the dangerous spot in current sample period, is designated as (Xj,t,Yj,t), pre-
Survey in time domain and barrier motion is predicted based on this dangerous spot, iterative relation is expressed as:
Wherein, (Xj,t-1,Yj,t-1) it is coordinate of the dangerous spot at the t-1 moment;(Xj,k,Yj,k) endangered for the k moment in prediction time domain
The coordinate nearly put;
The discrete point coordinates of barrier by way of iteration in more new formula (5), by barrier in prediction time domain
Change in location is integrated into the position constraint of Model Predictive Control Algorithm;
Step 3, structure automobile emergency collision avoidance Multiobjective Optimal Control Problems, solve Multiobjective Optimal Control Problems, with dynamic
Modal constraint form formulates the not collision path of running car, realizes the automobile emergency collision avoidance control for considering moving obstacle, it is wrapped
Include following sub-step:
Step 3.1, obstacle information obtained by radar sensor, pass through vehicle speed sensor and gyroscope and obtain garage
Status information is sailed, and the obstacle information of acquisition and motoring condition information are inputted into collision avoidance controller;
Step 3.2, using weigthed sums approach by braking in a turn described in tracking performance index described in step 1.1 and step 1.2
Smooth index is converted into single index, builds automobile emergency collision avoidance Multiobjective Optimal Control Problems, and the problem will meet to turn simultaneously
To the physical constraint and position constraint of, brake actuator, and ensure that urgent anti-collision system input and output meet described in step 1.1
Vehicle dynamics characteristic:
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
Step 3.3, in urgent collision avoidance controller, call SQP algorithms, solve Multiobjective Optimal Control Problems (10), obtain
To optimal opened loop control u*For:
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
Step 3.4, utilize current time optimal opened loop control u*(0) fed back, realize closed-loop control, realize consideration
The automobile emergency collision avoidance control of moving obstacle.
Step 4, design are implanted with the EPS torque compensation modules of steering wheel mutation torque hommization regulation algorithm, and EPS torques are mended
Module is repaid according to speed, front-wheel additional rotation angle, determines that torque compensation controls gain, steering wheel is mutated Torque Control in preferable model
Enclose;Wherein, front-wheel additional rotation angle is front wheel angle and the driver of path Dynamic Programming and real-Time Tracking Control module optimization
The difference of front wheel angle caused by input is turned to, is realized by AFS control system;Design process includes following sub-step:
Step 4.1, the design method of EPS torque compensation modules are:Choose several drivers and carry out real vehicle debugging, it is logical first
Toning orders speed for a trial, determines torque compensation control gain under front-wheel additional rotation angle, and laboratory technician enters according to the subjective feeling of driver
Row is debugged repeatedly, ensures that steering wheel mutation torque can be received by driver;
Step 4.2, change front-wheel additional rotation angle, laboratory technician, which debugs torque compensation control gain, makes different front-wheel additional rotation angles
Steering wheel mutation torque under intervening can be received by driver, and then determine that the torque compensation under the speed controls gain;
Step 4.3, determine using identical method torque compensation under different speeds, different front-wheel additional rotation angle interventions
Gain is controlled, the determination of speed, front-wheel additional rotation angle, torque compensation control gain three-dimensional MAP is completed, uses torque compensation control
The dimension table of gain three processed carries out torque compensation control, and steering wheel is mutated into Torque Control in the ideal range, realizes that steering wheel is dashed forward
The automobile emergency collision avoidance of torque-variable hommization regulation.
Step 4.4, EPS torque compensations are controlled in gain three-dimensional MAP implantation EPS controllers, the control of EPS controllers
EPS assist motors reach the control effect of torque compensation.
The beneficial effects of the invention are as follows:This method is by building multi-objective optimization question, when solving automobile emergency collision avoidance
Path Dynamic Programming and real-time tracking problem, and the situation of dynamic barrier is considered simultaneously, realize the optimal collision avoidance of safety.The party
Method is based on Model Predictive Control structure multi-objective optimization question, then not collision path has been formulated in the form of dynamic constrained, with biography
Hierarchical method of uniting is high compared to real-time, and path meets Dynamic Constraints, and collision avoidance process is more reliable.This method breaks the barriers
The mode of changes in coordinates, barrier motion conditions are converted into the dynamic constrained of collision avoidance control Optimization Solution, solve avoidance control
Moving obstacle problem in system;Steering wheel is mutated Torque Control in driver by this method by EPS torque compensation controllers
Acceptable scope, this method are debugged, realized repeatedly using the mode of subjectivity evaluation and test to the control gain of EPS torque compensations
Hommization is mutated torque adjusting.
Brief description of the drawings
Fig. 1 is the principle schematic for the automobile emergency collision avoidance control integrated process that the present invention hides moving obstacle.
Fig. 2 is automobile and Obstacle Position relation schematic diagram.
Fig. 3 is automobile and barrier movement relation schematic diagram.
Fig. 4 is car model figure of the present invention.
Fig. 5 is the EPS torque compensation controller experiment flows of the present invention.
Fig. 6 is EPS torque compensations control gain three-dimensional MAP of the present invention.
Embodiment
The present invention is described in further details with example below in conjunction with the accompanying drawings.
As shown in figure 1, the present invention it is a kind of hide moving obstacle automobile emergency collision avoidance control integrated process be:Path
Dynamic Programming is believed with real-Time Tracking Control module 1 according to the obstacle information, coordinate of ground point, motoring condition gathered in real time
Breath, real-time optimization draw the front wheel angle and four wheel slips of automobile 2, and control automobile 2 realizes collision avoidance;Wherein, barrier
Information includes the discrete point coordinates of barrier appearance profile, is measured and obtained by radar sensor;Motoring condition information includes
Automobile longitudinal speed, side velocity, yaw velocity, automobile longitudinal speed and side velocity are measured by vehicle speed sensor and obtained,
Automobile yaw velocity is measured by gyroscope and obtained.During collision avoidance is controlled, by EPS torque compensations module 3 according to speed,
Front-wheel additional rotation angle, determine that torque compensation controls gain, steering wheel mutation Torque Control is subjected to ideal range in driver 4
It is interior, realize man-machine harmonious automobile emergency collision avoidance.
Path Dynamic Programming in the present invention includes three parts content with real-Time Tracking Control module 1:1) automobile emergency is kept away
Hit the performance indications design of control;2) constrained designs of the automobile emergency collision avoidance control of moving obstacle are hidden;3) control law rolls
Dynamic time domain solves.
Below using certain car as platform, method of the invention is illustrated, the major parameter for testing car is as shown in table 1:
Table 1 tests the major parameter of car
In 1) partial content, the performance indications design of automobile emergency collision avoidance control includes following two parts:1.1, with pre-
The terminal point coordinate of time domain interior prediction track and two norms of coordinate of ground point error are surveyed as tracking performance index, embody automobile
Track following characteristic;1.2nd, by the use of two norms of controlled quentity controlled variable rate of change as the smooth index of braking in a turn, turning for actuator is embodied
To braking smoothness properties.
In 1.1 parts, tracking performance index is to predict that the terminal point coordinate of time domain interior prediction track and coordinate of ground point miss
Two norms of difference are evaluation criterion, and expression formula is as follows:
Wherein, HpTo predict time domain, (Xt+Hp,Yt+Hp) to predict the terminal point coordinate of time domain interior prediction track, by car model
Iteration obtains, the automobile coordinate of ground point (X to be reached during collision avoidanceg,Yg), i.e. the point of safes of barrier rear one.
In 1.2 parts, the braking in a turn of the actuator during collision avoidance is described using two norms of controlled quentity controlled variable rate of change
Smoothness properties, wherein controlled quentity controlled variable u are vehicle front corner δ and four wheel slip siI ∈ { 1,2,3,4 }, establish discrete two
The secondary smooth index of type braking in a turn is:
Wherein, HcTo control time domain, t represents current time, and Δ u is controlled quentity controlled variable rate of change, and w is Δ u weight coefficient.Tightly
Anxious collision avoidance controller design parameter is as shown in table 2, wherein TsFor the sampling period.
The urgent collision avoidance controller design parameter of table 2
Controller parameter | Parameter value | Controller parameter | Parameter value |
Hp | 4 | δmin | -6deg |
w | 0.5 | δmax | 6deg |
Ts | 0.5s | simin | 0 |
Hc | 3 | simax | 0.25 |
In 2) partial content, hiding the constrained designs of the automobile emergency collision avoidance control of moving obstacle includes two parts:
The 2.1st, actuator physical constraint is set, meet actuator requirement;2.2nd, set location constrains, will not be with barrier during guarantee collision avoidance
Thing is hindered to collide.
In 2.1 parts, the bound of front wheel angle and four wheel slips is limited using linear inequality, respectively
To steering, the physical constraint of brake actuator, its mathematic(al) representation is:
δmin< δk,t< δmaxK=t, t+1 ... t+Hc-1 (3)
simin< sik,t< simaxI ∈ { 1,2,3,4 } k=t, t+1 ... t+Hc-1 (4)
Wherein δminFor front wheel angle lower limit, δmaxFor the front wheel angle upper limit, siminFor four wheel slip lower limits, simax
For four wheel slip upper limits.
In 2.2 parts, as shown in Fig. 2 the positional information of t barrier may be characterized as the set of N number of discrete point, this
A little information can be obtained by radar surveying, wherein the coordinate representation of j-th of discrete point is (Xj,t,Yj,t), the automobile barycenter of t is sat
Labeled as (Xk,t,Yk,t), it can be calculated by car model, position constraint is set to
Wherein, a is distance of the automobile barycenter to headstock;B is distance of the automobile barycenter to the tailstock;C is the one of automobile overall width
Half;For using t as rise point prediction time domain in k moment automobiles yaw angle,;Dx,j,tIt is j-th of discrete point of barrier in vapour
The fore-and-aft distance of automobile barycenter is arrived in car coordinate system;Dy,j,tAutomobile matter is arrived in vehicle axis system for j-th of discrete point of barrier
The lateral separation of the heart.
As shown in figure 3, in vehicle traveling process, barrier may occur suddenly in a manner of motion;Consider barrier along Y
Direction motion conditions, it is assumed that barrier is with constant speed movement in prediction time domain.
Formula (5) characterizes the degree of closeness of automobile and the N number of discrete point of barrier,Value is bigger, illustrates automobile and barrier
The distance of corresponding discrete point is closer, also more dangerous.In order to ensure algorithm real-time, t is definedIt is worth maximum barrier
Discrete point j is the dangerous spot in current sample period, is designated as (Xj,t,Yj,t), based on this dangerous spot to obstacle in prediction time domain
Thing motion is predicted, and iterative relation is expressed as:
Wherein, (Xj,t-1,Yj,t-1) it is coordinate of the dangerous spot at the t-1 moment;(Xj,k,Yj,k) endangered for the k moment in prediction time domain
The coordinate nearly put.
The discrete point coordinates of barrier by way of iteration in more new formula (5), by barrier in prediction time domain
Change in location is integrated into the position constraint of Model Predictive Control Algorithm, the urgent collision avoidance problem under Optimization Solution moving obstacle.
In 3) partial content, control law rolling time horizon, which solves, to be comprised the following steps:
3.1st, obstacle information and motoring condition information are obtained from radar and onboard sensor, and enters information into and keep away
Hit controller;
3.2nd, tracking performance index and the smooth index of braking in a turn are converted into single index using weigthed sums approach, built
Urgent collision avoidance Multiobjective Optimal Control Problems, the problem will meet steering, the physical constraint of brake actuator and position simultaneously about
Beam, and ensure that urgent anti-collision system input and output meet Vehicle dynamics characteristic:
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
3.3rd, in urgent collision avoidance controller, SQP algorithms are called, Multiobjective Optimal Control Problems (10) is solved, obtains most
Excellent opened loop control u*For:
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
3.4th, current time optimal opened loop control u is utilized*(0) fed back, realize closed-loop control;
As shown in figure 4, above-mentioned Vehicle dynamics of the invention are:
Fxi=fxicos(δi)-fyisin(δi),i∈{1,2,3,4} (15)
Fyi=fxisin(δi)+fyicos(δi),i∈{1,2,3,4} (16)
Wherein, Fxi、FyiLongitudinal component and cross component force of respectively four wheels along vehicle body coordinate direction;fxi、fyiPoint
It is not component of four wheels along wheel coordinate direction, wherein fxiFor four wheel slips and the function of analysis of wheel vertical load,
fyiFor front wheel angle and the function of analysis of wheel vertical load, concrete numerical value can be determined by magic formula;Respectively automobile longitudinal
Speed and longitudinal acceleration;Respectively automobile side angle speed and side acceleration;Respectively automobile yaw
Angle, yaw velocity and yaw angular acceleration;lf、lrRespectively automobile barycenter is to the distance of axle, lsFor wheelspan size
Half;JzFor the yaw rotation inertia of the vertical axis around automobile barycenter;M is car mass;X, Y is respectively in earth coordinates
The transverse and longitudinal coordinate of Location of Mass Center of Automobiles;δiFor four wheel steering angles, automobile is front-wheel steer here, therefore δ3=δ4=0.
The parameter of above-mentioned magic formula show that expression is as follows by experiment fitting:
Wherein, V is current automobile longitudinal speed;αf、αrRespectively front-wheel side drift angle and trailing wheel side drift angle;Fz,f、Fz,rRespectively
For automobile axle load;siFor four wheel slips of automobile;Axi、Bxi、Cxi、Dxi、ExiAnd Ayi、Byi、Cyi、Dyi、EyiFor
Fitting parameter is tested, design parameter is as shown in following table:
The magic formula parameter of table 3
a0 | a1 | a2 | a3 | a4 | a5 | a6 | ||
1.75 | 0 | 1000 | 1289 | 7.11 | 0.0053 | 0.1925 | ||
b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 |
1.57 | 35 | 1200 | 60 | 300 | 0.17 | 0 | 0 | 0.2 |
The design method of EPS torque compensations module 3 in the present invention is:30 drivers are chosen, according to sex, skilled journey
Degree is divided into following four classes:Skilled male driver, skilled female driver, unskilled male driver, unskilled female driver.Driver
Real vehicle debugging is carried out respectively according to advance classification, as shown in figure 5, speed is set into 60km/h first, front-wheel adds debugging flow
Corner is set to 3deg, and laboratory technician debugs power repeatedly according to the feedback information that torque acceptance level is mutated to steering wheel of driver
Square compensation control gain, when driver's sensory papilla torque-variable is excessive, torque compensation is controlled gain reduction by laboratory technician, works as driving
When member's sensory papilla torque-variable is too small, laboratory technician then tunes up torque compensation control gain, final to ensure steering wheel mutation torque energy
It is enough to be received by driver, and record torque compensation control gain values now;Secondly, speed is still set to 60km/h, front-wheel
Additional rotation angle scope is that -6deg arrive 6deg, at intervals of 2deg, during due to motor turning at left and right sides of be symmetrical, front-wheel adds
Steering wheel mutation torque is identical caused by the left and right sides in the case of the identical amplitude of corner, therefore need to only adjust additional turn of front-wheel
Angular region is that the torque compensation under 0deg to 6deg controls gain.Laboratory technician is mutated according to driver to steering wheel during experiment
Torque compensation control gain in the range of acceptance level debugging 0deg to the 6deg of torque under each corner intervention, makes each front-wheel attached
Add the steering wheel under corner intervention to be mutated torque by driver to be received, and then determine under the intervention of speed 60km/h differences corner
Torque compensation control gain, and record torque compensation control gain concrete numerical value;Finally, debugged out using identical method
Torque compensation control gain under different speed difference corner interventions, vehicle speed range is 10km/h to 100km/h, speed at intervals of
20km/h, speed, front-wheel additional rotation angle, three dimension tables of torque compensation control gain are finally determined, Fig. 6 is EPS of the present invention
Torque compensation controls gain three-dimensional MAP.Finally EPS torque compensations are controlled in gain three-dimensional MAP implantation EPS controllers,
EPS controllers control EPS assist motors reach the control effect of torque compensation.
Claims (1)
1. a kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier, it is characterised in that this method is to utilize road
Footpath Dynamic Programming and real-Time Tracking Control module, according to the obstacle information, coordinate of ground point, motoring condition gathered in real time
Information, real-time optimization draws the front wheel angle and four wheel slips of automobile, and then controls automobile to realize collision avoidance;Wherein, hinder
Thing information is hindered to include measuring the discrete point coordinates of the barrier appearance profile obtained, motoring condition information by radar sensor
Including measuring the automobile longitudinal speed obtained and side velocity by vehicle speed sensor and measuring the yaw angle obtained by gyroscope
Speed;During collision avoidance is controlled, by EPS torque compensations module according to speed, front-wheel additional rotation angle, torque compensation control is determined
Gain processed, steering wheel is mutated Torque Control in the ideal range, realizes man-machine harmonious automobile emergency collision avoidance;
This method comprises the following steps:
Step 1, the performance indications design process of automobile emergency collision avoidance control include following sub-step:
Step 1.1, it is used as tracing property by the use of the terminal point coordinate and two norms of coordinate of ground point error of prediction time domain interior prediction track
Energy index, embodies the track following characteristic of automobile, and its expression formula is as follows:
<mrow>
<msqrt>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mi>g</mi>
</msub>
<mo>-</mo>
<msub>
<mi>X</mi>
<mrow>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>p</mi>
</msub>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>Y</mi>
<mi>g</mi>
</msub>
<mo>-</mo>
<msub>
<mi>Y</mi>
<mrow>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>p</mi>
</msub>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
Wherein, HpTo predict time domain, (Xt+Hp,Yt+Hp) to predict the terminal point coordinate of time domain interior prediction track, by car model iteration
Obtain, the automobile coordinate of ground point (X to be reached during collision avoidanceg,Yg);
The Vehicle dynamics are:
Fxi=fxicos(δi)-fyisin(δi),i∈{1,2,3,4} (15)
Fyi=fxisin(δi)+fyicos(δi),i∈{1,2,3,4} (16)
Wherein, Fxi、FyiLongitudinal component and cross component force of respectively four wheels along vehicle body coordinate direction;fxi、fyiRespectively
Component of four wheels along wheel coordinate direction, wherein fxiFor four wheel slips and the function of analysis of wheel vertical load, fyiFor
The function of front wheel angle and analysis of wheel vertical load, concrete numerical value can be determined by magic formula;Respectively automobile longitudinal speed
And longitudinal acceleration;Respectively automobile side angle speed and side acceleration;Respectively automobile yaw angle, horizontal stroke
Pivot angle speed and yaw angular acceleration;lf、lrRespectively automobile barycenter is to the distance of axle, lsFor the half of wheelspan size;
JzFor the yaw rotation inertia of the vertical axis around automobile barycenter;M is car mass;X, Y is respectively automobile in earth coordinates
The transverse and longitudinal coordinate of centroid position;δiFor four wheel steering angles, automobile is front-wheel steer here, therefore δ3=δ4=0;
The parameter of the magic formula is shown that expression is as follows by experimental fit:
<mrow>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>f</mi>
</mrow>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>Mgl</mi>
<mi>r</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>l</mi>
<mi>f</mi>
</msub>
<mo>+</mo>
<msub>
<mi>l</mi>
<mi>r</mi>
</msub>
</mrow>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>21</mn>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>Mgl</mi>
<mi>f</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>l</mi>
<mi>f</mi>
</msub>
<mo>+</mo>
<msub>
<mi>l</mi>
<mi>r</mi>
</msub>
</mrow>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>22</mn>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mo>-</mo>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mi>s</mi>
<mi>i</mi>
<mi>n</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mi>arctan</mi>
<mo>(</mo>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>E</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mi>arctan</mi>
<mi> </mi>
<msub>
<mi>A</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>B</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>s</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<mi>i</mi>
<mo>&Element;</mo>
<mo>{</mo>
<mn>1</mn>
<mo>,</mo>
<mn>2</mn>
<mo>}</mo>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>23</mn>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>C</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>b</mi>
<mn>0</mn>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
<msup>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>B</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
<msup>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>b</mi>
<mn>4</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>C</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<msup>
<mi>e</mi>
<mrow>
<msub>
<mi>b</mi>
<mn>5</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
</mrow>
</msup>
</mrow>
</mfrac>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>b</mi>
<mn>6</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>b</mi>
<mn>7</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>b</mi>
<mn>8</mn>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
<mi>i</mi>
<mo>&Element;</mo>
<mo>{</mo>
<mn>1</mn>
<mo>,</mo>
<mn>2</mn>
<mo>}</mo>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>24</mn>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mo>-</mo>
<msub>
<mi>D</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mi>s</mi>
<mi>i</mi>
<mi>n</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mi>arctan</mi>
<mo>(</mo>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>E</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mi>arctan</mi>
<mi> </mi>
<msub>
<mi>A</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>B</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>&alpha;</mi>
<mi>f</mi>
</msub>
<mo>,</mo>
<mi>i</mi>
<mo>&Element;</mo>
<mo>{</mo>
<mn>1</mn>
<mo>,</mo>
<mn>2</mn>
<mo>}</mo>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>25</mn>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>C</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>D</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<msup>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>f</mi>
</mrow>
</msub>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>f</mi>
</mrow>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>B</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mi>arctan</mi>
<mo>(</mo>
<mrow>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>f</mi>
</mrow>
</msub>
<mo>/</mo>
<msub>
<mi>a</mi>
<mn>4</mn>
</msub>
</mrow>
<mo>)</mo>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msub>
<mi>C</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<msub>
<mi>D</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
</mrow>
</mfrac>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>a</mi>
<mn>5</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>f</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>6</mn>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
<mi>i</mi>
<mo>&Element;</mo>
<mo>{</mo>
<mn>1</mn>
<mo>,</mo>
<mn>2</mn>
<mo>}</mo>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>26</mn>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mo>-</mo>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mi>s</mi>
<mi>i</mi>
<mi>n</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mi>arctan</mi>
<mo>(</mo>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>E</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mi>arctan</mi>
<mi> </mi>
<msub>
<mi>A</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>B</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>s</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<mi>i</mi>
<mo>&Element;</mo>
<mo>{</mo>
<mn>3</mn>
<mo>,</mo>
<mn>4</mn>
<mo>}</mo>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>27</mn>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>C</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>b</mi>
<mn>0</mn>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
<msup>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>B</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
<msup>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>b</mi>
<mn>4</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mi>C</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<msup>
<mi>e</mi>
<mrow>
<msub>
<mi>b</mi>
<mn>5</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
</mrow>
</msup>
</mrow>
</mfrac>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mi>x</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>b</mi>
<mn>6</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>b</mi>
<mn>7</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>r</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>b</mi>
<mn>8</mn>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
<mi>i</mi>
<mo>&Element;</mo>
<mo>{</mo>
<mn>3</mn>
<mo>,</mo>
<mn>4</mn>
<mo>}</mo>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>28</mn>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mo>-</mo>
<msub>
<mi>D</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mi>s</mi>
<mi>i</mi>
<mi>n</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mi>arctan</mi>
<mo>(</mo>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>E</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mi>arctan</mi>
<mi> </mi>
<msub>
<mi>A</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>B</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>&alpha;</mi>
<mi>r</mi>
</msub>
<mo>,</mo>
<mi>i</mi>
<mo>&Element;</mo>
<mo>{</mo>
<mn>3</mn>
<mo>,</mo>
<mn>4</mn>
<mo>}</mo>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>29</mn>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>C</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>D</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<msup>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>f</mi>
</mrow>
</msub>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>f</mi>
</mrow>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>B</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mi>arctan</mi>
<mo>(</mo>
<mrow>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>f</mi>
</mrow>
</msub>
<mo>/</mo>
<msub>
<mi>a</mi>
<mn>4</mn>
</msub>
</mrow>
<mo>)</mo>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msub>
<mi>C</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<msub>
<mi>D</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
</mrow>
</mfrac>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mi>y</mi>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>a</mi>
<mn>5</mn>
</msub>
<msub>
<mi>F</mi>
<mrow>
<mi>z</mi>
<mo>,</mo>
<mi>f</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>6</mn>
</msub>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
<mi>i</mi>
<mo>&Element;</mo>
<mo>{</mo>
<mn>3</mn>
<mo>,</mo>
<mn>4</mn>
<mo>}</mo>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>30</mn>
<mo>)</mo>
</mrow>
</mrow>
Wherein, V is current automobile longitudinal speed;αf、αrRespectively front-wheel side drift angle and trailing wheel side drift angle;Fz,f、Fz,rRespectively vapour
Car axle load;siFor four wheel slips of automobile;Axi、Bxi、Cxi、Dxi、ExiAnd Ayi、Byi、Cyi、Dyi、EyiFor experiment
Fitting parameter, design parameter is as shown in following table:
The magic formula parameter of table 3
Step 1.2, by the use of two norms of controlled quentity controlled variable rate of change as the smooth index of braking in a turn, embody the actuator during collision avoidance
Braking in a turn smoothness properties, controlled quentity controlled variable u is four wheel slip s of vehicle front corner δ and automobileiI ∈ { 1,2,3,4 },
Establishing the discrete smooth index of quadratic form braking in a turn is:
<mrow>
<mi>w</mi>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mi>t</mi>
</mrow>
<mrow>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>c</mi>
</msub>
<mo>-</mo>
<mn>1</mn>
</mrow>
</munderover>
<mo>|</mo>
<mo>|</mo>
<msub>
<mi>&Delta;u</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo>|</mo>
<msub>
<mo>|</mo>
<mn>2</mn>
</msub>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</mrow>
Wherein, HcTo control time domain, t represents current time, and Δ u is controlled quentity controlled variable rate of change, and w is Δ u weight coefficient;
Step 2, consider that the constrained designs process that the automobile emergency collision avoidance of moving obstacle controls includes following sub-step:
Step 2.1, actuator physical constraint is set, meets actuator requirement;
The bound of front wheel angle and four wheel slips is limited using linear inequality, respectively obtains steering, braking performs
The physical constraint of device, its mathematic(al) representation are:
δmin< δk,t< δmaxK=t, t+1 ... t+Hc-1 (3)
simin< sik,t< simaxI ∈ { 1,2,3,4 } k=t, t+1 ... t+Hc-1 (4)
Wherein, δminFor front wheel angle lower limit, δmaxFor the front wheel angle upper limit, siminFor four wheel slip lower limits, simaxFor four
The individual wheel slip upper limit;
Step 2.2, set location constraint, ensure to collide with barrier during collision avoidance;
The positional information of t barrier may be characterized as the set of N number of discrete point, and these information can be obtained by radar sensor measurement
, wherein the coordinate representation of j-th of discrete point is (Xj,t,Yj,t), the automobile center-of-mass coordinate of t is designated as (Xk,t,Yk,t), can be by
Car model described in step 1.1 is calculated, and position constraint is set to
<mrow>
<mi>l</mi>
<mo>=</mo>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<mi>a</mi>
<mo>-</mo>
<mo>|</mo>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mo>,</mo>
<mi>j</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo>|</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>i</mi>
<mi>f</mi>
</mrow>
</mtd>
<mtd>
<mrow>
<mo>(</mo>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mo>,</mo>
<mi>j</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo>></mo>
<mi>a</mi>
<mo>)</mo>
<mo>&cup;</mo>
<mo>(</mo>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mo>,</mo>
<mi>j</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo><</mo>
<mo>-</mo>
<mi>b</mi>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mi>c</mi>
<mo>-</mo>
<mo>|</mo>
<msub>
<mi>D</mi>
<mrow>
<mi>y</mi>
<mo>,</mo>
<mi>j</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo>|</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>i</mi>
<mi>f</mi>
</mrow>
</mtd>
<mtd>
<mrow>
<msub>
<mi>D</mi>
<mrow>
<mi>x</mi>
<mo>,</mo>
<mi>j</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo>&Element;</mo>
<mo>&lsqb;</mo>
<mo>-</mo>
<mi>b</mi>
<mo>,</mo>
<mi>a</mi>
<mo>&rsqb;</mo>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
</mrow>
Wherein, a is distance of the automobile barycenter to headstock;B is distance of the automobile barycenter to the tailstock;C is the half of automobile overall width;
For using t as the yaw angle for playing k moment automobiles in point prediction time domain;Dx,j,tIt is j-th of discrete point of barrier in automobile coordinate
The fore-and-aft distance of automobile barycenter, D are arrived in systemy,j,tThe horizontal stroke of automobile barycenter is arrived in vehicle axis system for j-th of discrete point of barrier
To distance;
It is assumed that for barrier along Y-direction with constant speed movement, it is N number of with barrier that formula (5) characterizes automobile in prediction time domain
The degree of closeness of discrete point,Value is bigger, illustrates that the distance of automobile discrete point corresponding with barrier is closer, also more dangerous;It is fixed
Adopted tThe maximum barrier discrete point j of value is the dangerous spot in current sample period, is designated as (Xj,t,Yj,t), in prediction
Barrier motion is predicted based on this dangerous spot in domain, iterative relation is expressed as:
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mrow>
<mi>j</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mi>Y</mi>
<mrow>
<mi>j</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>)</mo>
<mo>=</mo>
<mo>(</mo>
<msub>
<mi>X</mi>
<mrow>
<mi>j</mi>
<mo>,</mo>
<mi>k</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mi>Y</mi>
<mrow>
<mi>j</mi>
<mo>,</mo>
<mi>k</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>)</mo>
<mo>+</mo>
<msub>
<mi>&Delta;d</mi>
<mi>t</mi>
</msub>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mi>t</mi>
<mo>,</mo>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>p</mi>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>&Delta;d</mi>
<mi>t</mi>
</msub>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mrow>
<mi>j</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>X</mi>
<mrow>
<mi>j</mi>
<mo>,</mo>
<mi>t</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mi>Y</mi>
<mrow>
<mi>j</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>X</mi>
<mrow>
<mi>j</mi>
<mo>,</mo>
<mi>t</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow></mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>9</mn>
<mo>)</mo>
</mrow>
</mrow>
Wherein, (Xj,t-1,Yj,t-1) it is coordinate of the dangerous spot at the t-1 moment;(Xj,k,Yj,k) it is k moment dangerous spots in prediction time domain
Coordinate;
The discrete point coordinates of barrier by way of iteration in more new formula (5), by the position of barrier in prediction time domain
Change is integrated into the position constraint of Model Predictive Control Algorithm;
Step 3, structure automobile emergency collision avoidance Multiobjective Optimal Control Problems, solve Multiobjective Optimal Control Problems, with dynamically about
Beam form formulates the not collision path of running car, realizes the automobile emergency collision avoidance control for considering moving obstacle, it is included such as
Lower sub-step:
Step 3.1, obstacle information obtained by radar sensor, pass through vehicle speed sensor and gyroscope and obtain running car shape
State information, and the obstacle information of acquisition and motoring condition information are inputted into collision avoidance controller;
It is step 3.2, using weigthed sums approach that braking in a turn described in tracking performance index described in step 1.1 and step 1.2 is smooth
Index is converted into single index, builds automobile emergency collision avoidance Multiobjective Optimal Control Problems, and the problem will meet to turn to, make simultaneously
The physical constraint and position constraint of dynamic actuator, and ensure that urgent anti-collision system input and output meet the automobile described in step 1.1
Kinetic model characteristic:
<mrow>
<munder>
<mrow>
<mi>m</mi>
<mi>i</mi>
<mi>n</mi>
</mrow>
<mi>u</mi>
</munder>
<mo>{</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mi>g</mi>
</msub>
<mo>-</mo>
<msub>
<mi>X</mi>
<mrow>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>p</mi>
</msub>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>Y</mi>
<mi>g</mi>
</msub>
<mo>-</mo>
<msub>
<mi>Y</mi>
<mrow>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>p</mi>
</msub>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>+</mo>
<mi>w</mi>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mi>t</mi>
</mrow>
<mrow>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>c</mi>
</msub>
<mo>-</mo>
<mn>1</mn>
</mrow>
</munderover>
<mo>|</mo>
<mo>|</mo>
<msub>
<mi>&Delta;u</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo>|</mo>
<msub>
<mo>|</mo>
<mn>2</mn>
</msub>
<mo>}</mo>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>10</mn>
<mo>)</mo>
</mrow>
</mrow>
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
Step 3.3, in urgent collision avoidance controller, call SQP algorithms, solve Multiobjective Optimal Control Problems (10), obtain most
Excellent opened loop control u*For:
<mrow>
<msup>
<mi>u</mi>
<mo>*</mo>
</msup>
<mo>=</mo>
<mi>arg</mi>
<munder>
<mrow>
<mi>m</mi>
<mi>i</mi>
<mi>n</mi>
</mrow>
<mi>u</mi>
</munder>
<mo>{</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mi>g</mi>
</msub>
<mo>-</mo>
<msub>
<mi>X</mi>
<mrow>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>p</mi>
</msub>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>Y</mi>
<mi>g</mi>
</msub>
<mo>-</mo>
<msub>
<mi>Y</mi>
<mrow>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>p</mi>
</msub>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>+</mo>
<mi>w</mi>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mi>t</mi>
</mrow>
<mrow>
<mi>t</mi>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>c</mi>
</msub>
<mo>-</mo>
<mn>1</mn>
</mrow>
</munderover>
<mo>|</mo>
<mo>|</mo>
<msub>
<mi>&Delta;u</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>t</mi>
</mrow>
</msub>
<mo>|</mo>
<msub>
<mo>|</mo>
<mn>2</mn>
</msub>
<mo>}</mo>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>11</mn>
<mo>)</mo>
</mrow>
</mrow>
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
Step 3.4, utilize current time optimal opened loop control u*(0) fed back, realize closed-loop control, realized and hide motion
The automobile emergency collision avoidance control of barrier.
Step 4, design are implanted with the EPS torque compensation modules of steering wheel mutation torque hommization regulation algorithm, EPS torque compensation moulds
Root tuber determines that torque compensation controls gain, steering wheel is mutated into Torque Control in ideal range according to speed, front-wheel additional rotation angle;
Design process includes following sub-step:
Step 4.1, the design method of EPS torque compensation modules are:Choose several drivers and carry out real vehicle debugging, pass through tune first
The torque compensation for order speed for a trial, determining under front-wheel additional rotation angle controls gain, and laboratory technician carries out anti-according to the subjective feeling of driver
Polyphony tries, and ensures that steering wheel mutation torque can be received by driver;
Step 4.2, change front-wheel additional rotation angle, laboratory technician, which debugs torque compensation control gain, makes different front-wheel additional rotation angle interventions
Under steering wheel mutation torque can be received by driver, and then determine the torque compensation under the speed control gain;
Step 4.3, determine using identical method torque compensation control under different speeds, different front-wheel additional rotation angle interventions
Gain, the determination of speed, front-wheel additional rotation angle, torque compensation control gain three-dimensional MAP is completed, is controlled and increased using torque compensation
Beneficial three dimension tables carry out torque compensation control, and steering wheel is mutated into Torque Control in the ideal range, realize that steering wheel is mutated power
The automobile emergency collision avoidance of square hommization regulation.
Step 4.4, EPS torque compensations are controlled in gain three-dimensional MAP implantation EPS controllers, EPS controllers control EPS is helped
Force motor reaches the control effect of torque compensation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711081210.8A CN107878453B (en) | 2017-11-07 | 2017-11-07 | A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711081210.8A CN107878453B (en) | 2017-11-07 | 2017-11-07 | A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107878453A true CN107878453A (en) | 2018-04-06 |
CN107878453B CN107878453B (en) | 2019-07-30 |
Family
ID=61779047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711081210.8A Expired - Fee Related CN107878453B (en) | 2017-11-07 | 2017-11-07 | A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107878453B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109808687A (en) * | 2019-01-17 | 2019-05-28 | 福瑞泰克智能系统有限公司 | A kind of driving assistance method, device and equipment |
CN112068445A (en) * | 2020-09-23 | 2020-12-11 | 北京理工大学 | Integrated control method and system for path planning and path tracking of automatic driving vehicle |
CN114071013A (en) * | 2021-10-13 | 2022-02-18 | 浙江大华技术股份有限公司 | Target capturing and tracking method and device for vehicle-mounted camera |
WO2024152489A1 (en) * | 2023-01-18 | 2024-07-25 | 清华大学 | Intelligent vehicle emergency collision avoidance method and system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010023775A (en) * | 2008-07-23 | 2010-02-04 | Toyota Motor Corp | Control device for power transmission device for vehicle |
CN104977933A (en) * | 2015-07-01 | 2015-10-14 | 吉林大学 | Regional path tracking control method for autonomous land vehicle |
CN105313891A (en) * | 2015-10-22 | 2016-02-10 | 清华大学 | Multi-vehicle cooperative collision avoidance method and apparatus |
CN105539586A (en) * | 2014-08-29 | 2016-05-04 | 通用汽车环球科技运作有限责任公司 | Unified motion planner for autonomous driving vehicle in avoiding the moving obstacle |
CN105691388A (en) * | 2016-01-14 | 2016-06-22 | 南京航空航天大学 | Vehicle collision avoidance system and track planning method thereof |
CN105930611A (en) * | 2016-05-10 | 2016-09-07 | 长春工业大学 | Automobile electric power steering characteristic vehicle speed interval division method |
US20170003686A1 (en) * | 2015-07-03 | 2017-01-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Automatic control method for the insertion and the extraction of a vehicle into and from a receiving station, and control device implementing a method of this kind |
CN106564495A (en) * | 2016-10-19 | 2017-04-19 | 江苏大学 | Intelligent vehicle safety driving enveloping reconstruction method integrated with characteristic of space and dynamics |
-
2017
- 2017-11-07 CN CN201711081210.8A patent/CN107878453B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010023775A (en) * | 2008-07-23 | 2010-02-04 | Toyota Motor Corp | Control device for power transmission device for vehicle |
CN105539586A (en) * | 2014-08-29 | 2016-05-04 | 通用汽车环球科技运作有限责任公司 | Unified motion planner for autonomous driving vehicle in avoiding the moving obstacle |
CN104977933A (en) * | 2015-07-01 | 2015-10-14 | 吉林大学 | Regional path tracking control method for autonomous land vehicle |
US20170003686A1 (en) * | 2015-07-03 | 2017-01-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Automatic control method for the insertion and the extraction of a vehicle into and from a receiving station, and control device implementing a method of this kind |
CN105313891A (en) * | 2015-10-22 | 2016-02-10 | 清华大学 | Multi-vehicle cooperative collision avoidance method and apparatus |
CN105691388A (en) * | 2016-01-14 | 2016-06-22 | 南京航空航天大学 | Vehicle collision avoidance system and track planning method thereof |
CN105930611A (en) * | 2016-05-10 | 2016-09-07 | 长春工业大学 | Automobile electric power steering characteristic vehicle speed interval division method |
CN106564495A (en) * | 2016-10-19 | 2017-04-19 | 江苏大学 | Intelligent vehicle safety driving enveloping reconstruction method integrated with characteristic of space and dynamics |
Non-Patent Citations (1)
Title |
---|
杨莉; 吴晓东; 许敏; 叶昌: "基于位置-力矩混合方法的线控转向系统双向控制", 《汽车技术》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109808687A (en) * | 2019-01-17 | 2019-05-28 | 福瑞泰克智能系统有限公司 | A kind of driving assistance method, device and equipment |
CN109808687B (en) * | 2019-01-17 | 2021-09-21 | 福瑞泰克智能系统有限公司 | Driving assistance method, device and equipment |
CN112068445A (en) * | 2020-09-23 | 2020-12-11 | 北京理工大学 | Integrated control method and system for path planning and path tracking of automatic driving vehicle |
US11634146B2 (en) | 2020-09-23 | 2023-04-25 | Beijing Institute Of Technology | Method and system for integrated path planning and path tracking control of autonomous vehicle |
CN114071013A (en) * | 2021-10-13 | 2022-02-18 | 浙江大华技术股份有限公司 | Target capturing and tracking method and device for vehicle-mounted camera |
WO2024152489A1 (en) * | 2023-01-18 | 2024-07-25 | 清华大学 | Intelligent vehicle emergency collision avoidance method and system |
Also Published As
Publication number | Publication date |
---|---|
CN107878453B (en) | 2019-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113386795B (en) | Intelligent decision-making and local track planning method for automatic driving vehicle and decision-making system thereof | |
CN110286681B (en) | Dynamic automatic driving track-changing planning method for curvature-variable curve | |
CN107839683B (en) | A kind of automobile emergency collision avoidance control method considering moving obstacle | |
CN106004870B (en) | A kind of intact stability integrated control method based on variable weight model prediction algorithm | |
CN105966396B (en) | A kind of vehicle intelligent collision control method based on driver's collision avoidance behavior | |
US20210213935A1 (en) | Safety and Stability Control Method against Vehicle Tire Burst | |
Attia et al. | Coupled longitudinal and lateral control strategy improving lateral stability for autonomous vehicle | |
CN107885932B (en) | Automobile emergency collision avoidance layered control method considering man-machine harmony | |
CN107867290B (en) | A kind of automobile emergency collision avoidance layer-stepping control method considering moving obstacle | |
CN103921719B (en) | The interactive commercial vehicle rollover method for early warning of chaufeur and system | |
Wnag et al. | Path planning and stability control of collision avoidance system based on active front steering | |
Cai et al. | Implementation and development of a trajectory tracking control system for intelligent vehicle | |
CN104176054B (en) | A kind of automatic lane change control system of automobile active anti-corrosion and method of work thereof | |
CN107878453B (en) | A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier | |
CN107856737A (en) | A kind of man-machine coordination rotating direction control method based on degree of danger variable weight | |
CN107380162B (en) | Collision avoidance method is cooperateed with based on function distribution and Multi-Objective Fuzzy Decision | |
Hongbo et al. | Lane‐keeping control based on an improved artificial potential method and coordination of steering/braking systems | |
Smith et al. | Effects of model complexity on the performance of automated vehicle steering controllers: controller development and evaluation | |
Mohajer et al. | Effects of road path profiles on autonomous vehicles’ handling behaviour | |
Dandiwala et al. | Vehicle dynamics and active rollover stability control of an electric narrow three-wheeled vehicle: A review and concern towards improvement | |
CN107856733B (en) | A kind of automobile towards man-machine harmony hides dynamic barrier control method | |
Yue et al. | Automated hazard escaping trajectory planning/tracking control framework for vehicles subject to tire blowout on expressway | |
CN107885931A (en) | A kind of automobile emergency collision avoidance control method of steering wheel mutation torque hommization regulation | |
Zhu et al. | Trajectory planning algorithm using Gauss pseudo-spectral method based on vehicle-infrastructure cooperative system | |
CN110516353B (en) | Method for rapidly identifying design defects of expressway curve in mountain area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190730 Termination date: 20201107 |
|
CF01 | Termination of patent right due to non-payment of annual fee |