CN107878453A - A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier - Google Patents

A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier Download PDF

Info

Publication number
CN107878453A
CN107878453A CN201711081210.8A CN201711081210A CN107878453A CN 107878453 A CN107878453 A CN 107878453A CN 201711081210 A CN201711081210 A CN 201711081210A CN 107878453 A CN107878453 A CN 107878453A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
automobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711081210.8A
Other languages
Chinese (zh)
Other versions
CN107878453B (en
Inventor
李绍松
李政
卢晓晖
郑顺航
于志新
杨士通
韩玲
郭陆平
王国栋
吴晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN201711081210.8A priority Critical patent/CN107878453B/en
Publication of CN107878453A publication Critical patent/CN107878453A/en
Application granted granted Critical
Publication of CN107878453B publication Critical patent/CN107878453B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The present invention relates to a kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier, it is characterized in that, this method is to utilize path Dynamic Programming and real-Time Tracking Control module, according to the obstacle information, coordinate of ground point, motoring condition information gathered in real time, real-time optimization draws the front wheel angle and four wheel slips of automobile, and then controls automobile to realize collision avoidance;Wherein, obstacle information includes the discrete point coordinates that the barrier appearance profile obtained is measured by radar sensor, and motoring condition information includes measuring the automobile longitudinal speed obtained and side velocity by vehicle speed sensor and measures the yaw velocity obtained by gyroscope;During collision avoidance is controlled, pass through electric power steering(Electric Power Steering, EPS)Torque compensation module determines that torque compensation controls gain, steering wheel is mutated into Torque Control in the ideal range, realizes man-machine harmonious automobile emergency collision avoidance according to speed, front-wheel additional rotation angle.

Description

A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier
Technical field
The present invention relates to the advanced driving ancillary technique field of automobile, and in particular to a kind of automobile emergency for hiding dynamic barrier Collision avoidance integral type control method.
Background technology
It is convenient with quick that automobile can be brought, and its driving safety turns into global social concern.In order to enter One step improves traffic safety, helps driver to reduce faulty operation, in recent years with advanced drive assist system (Advanced Driver Assistance Systems, ADAS) is that the intelligent automobile safe practice of representative is gradually paid attention to And development.Automobile emergency anti-collision system the movement locus of auxiliary driver's adjustment automobile, is realized by the pro-active intervention of actuator Collision avoidance.It can save the life of driver in clutch, there is good market prospects.
The existing many achievements in research of automobile emergency collision avoidance control aspect, can preferably solve collision avoidance control problem, but this A little achievements in research are mainly for stationary obstruction.Considering the automobile emergency collision avoidance control aspect of moving obstacle, document [Ackermann C,Isermann R,Min S,etal.Collision avoidance with automatic braking and swerving[J].IFAC Proceedings Volumes,2014,47(3):10694-10699.] consider that barrier is indulged To motion conditions, whether the speed difference of detection automobile and moving obstacle, decision-making goes out the steering opportunity of collision avoidance, i.e., can be turned To collision avoidance, but the dynamic change of dyskinesia object location is not accounted for during collision avoidance, and it is lateral not account for barrier Motion conditions.Publication No. CN105539586A Chinese patent discloses a kind of automobile for autonomous driving and hides mobile barrier Hinder the unified motion planning method of thing, this method considers longitudinal direction and the lateral movement situation of barrier, but only goes out for decision-making The steering opportunity of collision avoidance and collision avoidance path, also without the dynamic change that dyskinesia object location is considered during collision avoidance.
Automobile emergency collision avoidance control be unable to do without the pro-active intervention of steering.The existing rules and regulations steering wheel in Europe is with turning to There must be mechanical connection between wheel, so active front steering system (Active Front Steering, AFS) is as modern The transitional product of wire-controlled steering system (Steering-by-wire, SBW) arises at the historic moment afterwards.Document [Sumio Sugita, Masayoshi Tomizuka.Cancellation ofUnnatural Reaction Torque in Variable-Gear- Ratio[J].Journal of Dynamic Systems Measurement&Control,2012,134(2):021019.] With document [AtsushiOshima, XuChen, Sumio Sugita, Masayoshi Tomizuka.Control design for cancellation of unnatural reaction torque and vibrations in variable- gear-ratio steering system[C].ASME 2013Dynamic Systems and Control Conference.American Society of Mechanical Engineers,2013-3797,V001T11A003: 10pages.] AFS is demonstrated while system displacement transmission characteristic is changed, the force transfering characteristic of steering can be also influenceed, Cause the mutation of hand-wheel torque.Excessive steering wheel mutation torque can aggravate the nervous psychology of driver, easily make driver Maloperation is produced, is unfavorable for driving safety.Appropriate steering wheel mutation torque is but advantageous to the posture change that driver perceives automobile Change, and play warning function.But the acceptable degree that driver is mutated torque to steering wheel varies with each individual.
The content of the invention
In order to solve that the dynamic of dyskinesia object location is not accounted for during collision avoidance existing for existing urgent collision avoidance method State changes and causes the unsafe technical problem of collision avoidance process, and steering wheel mutation torque existing for existing urgent collision avoidance method The uncontrollable technical problem for easily causing driver's maloperation, the present invention provide a kind of automobile emergency collision avoidance for hiding dynamic barrier Integral type control method, driver can be aided in realize safe and reliable collision avoidance, save driver's life at the critical moment.
The technical solution adopted for solving the technical problem of the present invention is as follows:
1st, a kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier, it is characterised in that this method is profit With path Dynamic Programming and real-Time Tracking Control module, according to the obstacle information, coordinate of ground point, running car gathered in real time Status information, real-time optimization draws the front wheel angle and four wheel slips of automobile, and then controls automobile to realize collision avoidance;Its In, obstacle information includes the discrete point coordinates that the barrier appearance profile obtained is measured by radar sensor, running car shape State information includes measuring the automobile longitudinal speed obtained and side velocity by vehicle speed sensor and measures what is obtained by gyroscope Yaw velocity;During collision avoidance is controlled, pass through electric power steering (Electric Power Steering, EPS) torque Compensating module determines that torque compensation controls gain, steering wheel is mutated into Torque Control in ideal according to speed, front-wheel additional rotation angle In the range of, realize man-machine harmonious automobile emergency collision avoidance;
This method comprises the following steps:
Step 1, the performance indications design process of automobile emergency collision avoidance control include following sub-step:
Step 1.1, by the use of two norms of the terminal point coordinate of prediction time domain interior prediction track and coordinate of ground point error as with Track performance indications, embody the track following characteristic of automobile, and its expression formula is as follows:
Wherein, HpTo predict time domain, (Xt+Hp,Yt+Hp) to predict the terminal point coordinate of time domain interior prediction track, by car model Iteration obtains, the automobile coordinate of ground point (X to be reached during collision avoidanceg,Yg);
The Vehicle dynamics are:
Fxi=fxicos(δi)-fyisin(δi),i∈{1,2,3,4} (15)
Fyi=fxisin(δi)+fyicos(δi),i∈{1,2,3,4} (16)
Wherein, Fxi、FyiLongitudinal component and cross component force of respectively four wheels along vehicle body coordinate direction;fxi、fyiPoint Not Wei component of four wheels along wheel coordinate direction, wherein fxiFor four wheel slips and the function of analysis of wheel vertical load, fyiFor front wheel angle and the function of analysis of wheel vertical load, concrete numerical value can be determined by magic formula;Respectively automobile longitudinal Speed and longitudinal acceleration;Respectively automobile side angle speed and side acceleration;Respectively automobile yaw Angle, yaw velocity and yaw angular acceleration;lf、lrRespectively automobile barycenter is to the distance of axle, lsFor wheelspan size Half;JzFor the yaw rotation inertia of the vertical axis around automobile barycenter;M is car mass;X, Y is respectively in earth coordinates The transverse and longitudinal coordinate of Location of Mass Center of Automobiles;δiFor four wheel steering angles, automobile is front-wheel steer here, therefore δ34=0;
The parameter of the magic formula show that expression is as follows by experiment fitting:
Wherein, V is current automobile longitudinal speed;αf、αrRespectively front-wheel side drift angle and trailing wheel side drift angle;Fz,f、Fz,rRespectively For automobile axle load;siFor four wheel slips of automobile;Axi、Bxi、Cxi、Dxi、ExiAnd Ayi、Byi、Cyi、Dyi、EyiFor Fitting parameter is tested, design parameter is as shown in following table:
The magic formula parameter of table 3
a0 a1 a2 a3 a4 a5 a6
1.75 0 1000 1289 7.11 0.0053 0.1925
b0 b1 b2 b3 b4 b5 b6 b7 b8
1.57 35 1200 60 300 0.17 0 0 0.2
Step 1.2, by the use of two norms of controlled quentity controlled variable rate of change as the smooth index of braking in a turn, embody holding during collision avoidance The braking in a turn smoothness properties of row device, controlled quentity controlled variable u are four wheel slip s of vehicle front corner δ and automobilei i∈{1,2, 3,4 }, establishing the discrete smooth index of quadratic form braking in a turn is:
Wherein, HcTo control time domain, t represents current time, and Δ u is controlled quentity controlled variable rate of change, and w is Δ u weight coefficient;
Step 2, consider that the constrained designs process that the automobile emergency collision avoidance of moving obstacle controls includes following sub-step:
Step 2.1, actuator physical constraint is set, meets actuator requirement;
The bound of front wheel angle and four wheel slips is limited using linear inequality, respectively obtains steering, braking The physical constraint of actuator, its mathematic(al) representation are:
δmin< δk,t< δmaxK=t, t+1 ... t+Hc-1 (3)
simin< sik,t< simaxI ∈ { 1,2,3,4 } k=t, t+1 ... t+Hc-1 (4)
Wherein, δminFor front wheel angle lower limit, δmaxFor the front wheel angle upper limit, siminFor four wheel slip lower limits, simax For four wheel slip upper limits;
Step 2.2, set location constraint, ensure to collide with barrier during collision avoidance;
The positional information of t barrier may be characterized as the set of N number of discrete point, and these information can be surveyed by radar sensor Amount obtains, wherein the coordinate representation of j-th of discrete point is (Xj,t,Yj,t), the automobile center-of-mass coordinate of t is designated as (Xk,t,Yk,t), It can be calculated as the car model described in step 1.1, position constraint is set to
Wherein, a is distance of the automobile barycenter to headstock;B is distance of the automobile barycenter to the tailstock;C is the one of automobile overall width Half;For using t as the yaw angle for playing k moment automobiles in point prediction time domain;Dx,j,tIt is j-th of discrete point of barrier in vapour The fore-and-aft distance of automobile barycenter, D are arrived in car coordinate systemy,j,tAutomobile matter is arrived in vehicle axis system for j-th of discrete point of barrier The lateral separation of the heart;
It is assumed that barrier characterizes automobile and barrier along Y-direction with constant speed movement, formula (5) in prediction time domain The degree of closeness of N number of discrete point,Value is bigger, illustrates that the distance of automobile discrete point corresponding with barrier is closer, also more endangers Danger;Define tThe maximum barrier discrete point j of value is the dangerous spot in current sample period, is designated as (Xj,t,Yj,t), pre- Survey in time domain and barrier motion is predicted based on this dangerous spot, iterative relation is expressed as:
Wherein, (Xj,t-1,Yj,t-1) it is coordinate of the dangerous spot at the t-1 moment;(Xj,k,Yj,k) endangered for the k moment in prediction time domain The coordinate nearly put;
The discrete point coordinates of barrier by way of iteration in more new formula (5), by barrier in prediction time domain Change in location is integrated into the position constraint of Model Predictive Control Algorithm;
Step 3, structure automobile emergency collision avoidance Multiobjective Optimal Control Problems, solve Multiobjective Optimal Control Problems, with dynamic Modal constraint form formulates the not collision path of running car, realizes the automobile emergency collision avoidance control for considering moving obstacle, it is wrapped Include following sub-step:
Step 3.1, obstacle information obtained by radar sensor, pass through vehicle speed sensor and gyroscope and obtain garage Status information is sailed, and the obstacle information of acquisition and motoring condition information are inputted into collision avoidance controller;
Step 3.2, using weigthed sums approach by braking in a turn described in tracking performance index described in step 1.1 and step 1.2 Smooth index is converted into single index, builds automobile emergency collision avoidance Multiobjective Optimal Control Problems, and the problem will meet to turn simultaneously To the physical constraint and position constraint of, brake actuator, and ensure that urgent anti-collision system input and output meet described in step 1.1 Vehicle dynamics characteristic:
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
Step 3.3, in urgent collision avoidance controller, call SQP algorithms, solve Multiobjective Optimal Control Problems (10), obtain To optimal opened loop control u*For:
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
Step 3.4, utilize current time optimal opened loop control u*(0) fed back, realize closed-loop control, realize consideration The automobile emergency collision avoidance control of moving obstacle.
Step 4, design are implanted with the EPS torque compensation modules of steering wheel mutation torque hommization regulation algorithm, and EPS torques are mended Module is repaid according to speed, front-wheel additional rotation angle, determines that torque compensation controls gain, steering wheel is mutated Torque Control in preferable model Enclose;Wherein, front-wheel additional rotation angle is front wheel angle and the driver of path Dynamic Programming and real-Time Tracking Control module optimization The difference of front wheel angle caused by input is turned to, is realized by AFS control system;Design process includes following sub-step:
Step 4.1, the design method of EPS torque compensation modules are:Choose several drivers and carry out real vehicle debugging, it is logical first Toning orders speed for a trial, determines torque compensation control gain under front-wheel additional rotation angle, and laboratory technician enters according to the subjective feeling of driver Row is debugged repeatedly, ensures that steering wheel mutation torque can be received by driver;
Step 4.2, change front-wheel additional rotation angle, laboratory technician, which debugs torque compensation control gain, makes different front-wheel additional rotation angles Steering wheel mutation torque under intervening can be received by driver, and then determine that the torque compensation under the speed controls gain;
Step 4.3, determine using identical method torque compensation under different speeds, different front-wheel additional rotation angle interventions Gain is controlled, the determination of speed, front-wheel additional rotation angle, torque compensation control gain three-dimensional MAP is completed, uses torque compensation control The dimension table of gain three processed carries out torque compensation control, and steering wheel is mutated into Torque Control in the ideal range, realizes that steering wheel is dashed forward The automobile emergency collision avoidance of torque-variable hommization regulation.
Step 4.4, EPS torque compensations are controlled in gain three-dimensional MAP implantation EPS controllers, the control of EPS controllers EPS assist motors reach the control effect of torque compensation.
The beneficial effects of the invention are as follows:This method is by building multi-objective optimization question, when solving automobile emergency collision avoidance Path Dynamic Programming and real-time tracking problem, and the situation of dynamic barrier is considered simultaneously, realize the optimal collision avoidance of safety.The party Method is based on Model Predictive Control structure multi-objective optimization question, then not collision path has been formulated in the form of dynamic constrained, with biography Hierarchical method of uniting is high compared to real-time, and path meets Dynamic Constraints, and collision avoidance process is more reliable.This method breaks the barriers The mode of changes in coordinates, barrier motion conditions are converted into the dynamic constrained of collision avoidance control Optimization Solution, solve avoidance control Moving obstacle problem in system;Steering wheel is mutated Torque Control in driver by this method by EPS torque compensation controllers Acceptable scope, this method are debugged, realized repeatedly using the mode of subjectivity evaluation and test to the control gain of EPS torque compensations Hommization is mutated torque adjusting.
Brief description of the drawings
Fig. 1 is the principle schematic for the automobile emergency collision avoidance control integrated process that the present invention hides moving obstacle.
Fig. 2 is automobile and Obstacle Position relation schematic diagram.
Fig. 3 is automobile and barrier movement relation schematic diagram.
Fig. 4 is car model figure of the present invention.
Fig. 5 is the EPS torque compensation controller experiment flows of the present invention.
Fig. 6 is EPS torque compensations control gain three-dimensional MAP of the present invention.
Embodiment
The present invention is described in further details with example below in conjunction with the accompanying drawings.
As shown in figure 1, the present invention it is a kind of hide moving obstacle automobile emergency collision avoidance control integrated process be:Path Dynamic Programming is believed with real-Time Tracking Control module 1 according to the obstacle information, coordinate of ground point, motoring condition gathered in real time Breath, real-time optimization draw the front wheel angle and four wheel slips of automobile 2, and control automobile 2 realizes collision avoidance;Wherein, barrier Information includes the discrete point coordinates of barrier appearance profile, is measured and obtained by radar sensor;Motoring condition information includes Automobile longitudinal speed, side velocity, yaw velocity, automobile longitudinal speed and side velocity are measured by vehicle speed sensor and obtained, Automobile yaw velocity is measured by gyroscope and obtained.During collision avoidance is controlled, by EPS torque compensations module 3 according to speed, Front-wheel additional rotation angle, determine that torque compensation controls gain, steering wheel mutation Torque Control is subjected to ideal range in driver 4 It is interior, realize man-machine harmonious automobile emergency collision avoidance.
Path Dynamic Programming in the present invention includes three parts content with real-Time Tracking Control module 1:1) automobile emergency is kept away Hit the performance indications design of control;2) constrained designs of the automobile emergency collision avoidance control of moving obstacle are hidden;3) control law rolls Dynamic time domain solves.
Below using certain car as platform, method of the invention is illustrated, the major parameter for testing car is as shown in table 1:
Table 1 tests the major parameter of car
In 1) partial content, the performance indications design of automobile emergency collision avoidance control includes following two parts:1.1, with pre- The terminal point coordinate of time domain interior prediction track and two norms of coordinate of ground point error are surveyed as tracking performance index, embody automobile Track following characteristic;1.2nd, by the use of two norms of controlled quentity controlled variable rate of change as the smooth index of braking in a turn, turning for actuator is embodied To braking smoothness properties.
In 1.1 parts, tracking performance index is to predict that the terminal point coordinate of time domain interior prediction track and coordinate of ground point miss Two norms of difference are evaluation criterion, and expression formula is as follows:
Wherein, HpTo predict time domain, (Xt+Hp,Yt+Hp) to predict the terminal point coordinate of time domain interior prediction track, by car model Iteration obtains, the automobile coordinate of ground point (X to be reached during collision avoidanceg,Yg), i.e. the point of safes of barrier rear one.
In 1.2 parts, the braking in a turn of the actuator during collision avoidance is described using two norms of controlled quentity controlled variable rate of change Smoothness properties, wherein controlled quentity controlled variable u are vehicle front corner δ and four wheel slip siI ∈ { 1,2,3,4 }, establish discrete two The secondary smooth index of type braking in a turn is:
Wherein, HcTo control time domain, t represents current time, and Δ u is controlled quentity controlled variable rate of change, and w is Δ u weight coefficient.Tightly Anxious collision avoidance controller design parameter is as shown in table 2, wherein TsFor the sampling period.
The urgent collision avoidance controller design parameter of table 2
Controller parameter Parameter value Controller parameter Parameter value
Hp 4 δmin -6deg
w 0.5 δmax 6deg
Ts 0.5s simin 0
Hc 3 simax 0.25
In 2) partial content, hiding the constrained designs of the automobile emergency collision avoidance control of moving obstacle includes two parts: The 2.1st, actuator physical constraint is set, meet actuator requirement;2.2nd, set location constrains, will not be with barrier during guarantee collision avoidance Thing is hindered to collide.
In 2.1 parts, the bound of front wheel angle and four wheel slips is limited using linear inequality, respectively To steering, the physical constraint of brake actuator, its mathematic(al) representation is:
δmin< δk,t< δmaxK=t, t+1 ... t+Hc-1 (3)
simin< sik,t< simaxI ∈ { 1,2,3,4 } k=t, t+1 ... t+Hc-1 (4)
Wherein δminFor front wheel angle lower limit, δmaxFor the front wheel angle upper limit, siminFor four wheel slip lower limits, simax For four wheel slip upper limits.
In 2.2 parts, as shown in Fig. 2 the positional information of t barrier may be characterized as the set of N number of discrete point, this A little information can be obtained by radar surveying, wherein the coordinate representation of j-th of discrete point is (Xj,t,Yj,t), the automobile barycenter of t is sat Labeled as (Xk,t,Yk,t), it can be calculated by car model, position constraint is set to
Wherein, a is distance of the automobile barycenter to headstock;B is distance of the automobile barycenter to the tailstock;C is the one of automobile overall width Half;For using t as rise point prediction time domain in k moment automobiles yaw angle,;Dx,j,tIt is j-th of discrete point of barrier in vapour The fore-and-aft distance of automobile barycenter is arrived in car coordinate system;Dy,j,tAutomobile matter is arrived in vehicle axis system for j-th of discrete point of barrier The lateral separation of the heart.
As shown in figure 3, in vehicle traveling process, barrier may occur suddenly in a manner of motion;Consider barrier along Y Direction motion conditions, it is assumed that barrier is with constant speed movement in prediction time domain.
Formula (5) characterizes the degree of closeness of automobile and the N number of discrete point of barrier,Value is bigger, illustrates automobile and barrier The distance of corresponding discrete point is closer, also more dangerous.In order to ensure algorithm real-time, t is definedIt is worth maximum barrier Discrete point j is the dangerous spot in current sample period, is designated as (Xj,t,Yj,t), based on this dangerous spot to obstacle in prediction time domain Thing motion is predicted, and iterative relation is expressed as:
Wherein, (Xj,t-1,Yj,t-1) it is coordinate of the dangerous spot at the t-1 moment;(Xj,k,Yj,k) endangered for the k moment in prediction time domain The coordinate nearly put.
The discrete point coordinates of barrier by way of iteration in more new formula (5), by barrier in prediction time domain Change in location is integrated into the position constraint of Model Predictive Control Algorithm, the urgent collision avoidance problem under Optimization Solution moving obstacle.
In 3) partial content, control law rolling time horizon, which solves, to be comprised the following steps:
3.1st, obstacle information and motoring condition information are obtained from radar and onboard sensor, and enters information into and keep away Hit controller;
3.2nd, tracking performance index and the smooth index of braking in a turn are converted into single index using weigthed sums approach, built Urgent collision avoidance Multiobjective Optimal Control Problems, the problem will meet steering, the physical constraint of brake actuator and position simultaneously about Beam, and ensure that urgent anti-collision system input and output meet Vehicle dynamics characteristic:
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
3.3rd, in urgent collision avoidance controller, SQP algorithms are called, Multiobjective Optimal Control Problems (10) is solved, obtains most Excellent opened loop control u*For:
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
3.4th, current time optimal opened loop control u is utilized*(0) fed back, realize closed-loop control;
As shown in figure 4, above-mentioned Vehicle dynamics of the invention are:
Fxi=fxicos(δi)-fyisin(δi),i∈{1,2,3,4} (15)
Fyi=fxisin(δi)+fyicos(δi),i∈{1,2,3,4} (16)
Wherein, Fxi、FyiLongitudinal component and cross component force of respectively four wheels along vehicle body coordinate direction;fxi、fyiPoint It is not component of four wheels along wheel coordinate direction, wherein fxiFor four wheel slips and the function of analysis of wheel vertical load, fyiFor front wheel angle and the function of analysis of wheel vertical load, concrete numerical value can be determined by magic formula;Respectively automobile longitudinal Speed and longitudinal acceleration;Respectively automobile side angle speed and side acceleration;Respectively automobile yaw Angle, yaw velocity and yaw angular acceleration;lf、lrRespectively automobile barycenter is to the distance of axle, lsFor wheelspan size Half;JzFor the yaw rotation inertia of the vertical axis around automobile barycenter;M is car mass;X, Y is respectively in earth coordinates The transverse and longitudinal coordinate of Location of Mass Center of Automobiles;δiFor four wheel steering angles, automobile is front-wheel steer here, therefore δ34=0.
The parameter of above-mentioned magic formula show that expression is as follows by experiment fitting:
Wherein, V is current automobile longitudinal speed;αf、αrRespectively front-wheel side drift angle and trailing wheel side drift angle;Fz,f、Fz,rRespectively For automobile axle load;siFor four wheel slips of automobile;Axi、Bxi、Cxi、Dxi、ExiAnd Ayi、Byi、Cyi、Dyi、EyiFor Fitting parameter is tested, design parameter is as shown in following table:
The magic formula parameter of table 3
a0 a1 a2 a3 a4 a5 a6
1.75 0 1000 1289 7.11 0.0053 0.1925
b0 b1 b2 b3 b4 b5 b6 b7 b8
1.57 35 1200 60 300 0.17 0 0 0.2
The design method of EPS torque compensations module 3 in the present invention is:30 drivers are chosen, according to sex, skilled journey Degree is divided into following four classes:Skilled male driver, skilled female driver, unskilled male driver, unskilled female driver.Driver Real vehicle debugging is carried out respectively according to advance classification, as shown in figure 5, speed is set into 60km/h first, front-wheel adds debugging flow Corner is set to 3deg, and laboratory technician debugs power repeatedly according to the feedback information that torque acceptance level is mutated to steering wheel of driver Square compensation control gain, when driver's sensory papilla torque-variable is excessive, torque compensation is controlled gain reduction by laboratory technician, works as driving When member's sensory papilla torque-variable is too small, laboratory technician then tunes up torque compensation control gain, final to ensure steering wheel mutation torque energy It is enough to be received by driver, and record torque compensation control gain values now;Secondly, speed is still set to 60km/h, front-wheel Additional rotation angle scope is that -6deg arrive 6deg, at intervals of 2deg, during due to motor turning at left and right sides of be symmetrical, front-wheel adds Steering wheel mutation torque is identical caused by the left and right sides in the case of the identical amplitude of corner, therefore need to only adjust additional turn of front-wheel Angular region is that the torque compensation under 0deg to 6deg controls gain.Laboratory technician is mutated according to driver to steering wheel during experiment Torque compensation control gain in the range of acceptance level debugging 0deg to the 6deg of torque under each corner intervention, makes each front-wheel attached Add the steering wheel under corner intervention to be mutated torque by driver to be received, and then determine under the intervention of speed 60km/h differences corner Torque compensation control gain, and record torque compensation control gain concrete numerical value;Finally, debugged out using identical method Torque compensation control gain under different speed difference corner interventions, vehicle speed range is 10km/h to 100km/h, speed at intervals of 20km/h, speed, front-wheel additional rotation angle, three dimension tables of torque compensation control gain are finally determined, Fig. 6 is EPS of the present invention Torque compensation controls gain three-dimensional MAP.Finally EPS torque compensations are controlled in gain three-dimensional MAP implantation EPS controllers, EPS controllers control EPS assist motors reach the control effect of torque compensation.

Claims (1)

1. a kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier, it is characterised in that this method is to utilize road Footpath Dynamic Programming and real-Time Tracking Control module, according to the obstacle information, coordinate of ground point, motoring condition gathered in real time Information, real-time optimization draws the front wheel angle and four wheel slips of automobile, and then controls automobile to realize collision avoidance;Wherein, hinder Thing information is hindered to include measuring the discrete point coordinates of the barrier appearance profile obtained, motoring condition information by radar sensor Including measuring the automobile longitudinal speed obtained and side velocity by vehicle speed sensor and measuring the yaw angle obtained by gyroscope Speed;During collision avoidance is controlled, by EPS torque compensations module according to speed, front-wheel additional rotation angle, torque compensation control is determined Gain processed, steering wheel is mutated Torque Control in the ideal range, realizes man-machine harmonious automobile emergency collision avoidance;
This method comprises the following steps:
Step 1, the performance indications design process of automobile emergency collision avoidance control include following sub-step:
Step 1.1, it is used as tracing property by the use of the terminal point coordinate and two norms of coordinate of ground point error of prediction time domain interior prediction track Energy index, embodies the track following characteristic of automobile, and its expression formula is as follows:
<mrow> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>g</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>p</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>g</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>p</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, HpTo predict time domain, (Xt+Hp,Yt+Hp) to predict the terminal point coordinate of time domain interior prediction track, by car model iteration Obtain, the automobile coordinate of ground point (X to be reached during collision avoidanceg,Yg);
The Vehicle dynamics are:
Fxi=fxicos(δi)-fyisin(δi),i∈{1,2,3,4} (15)
Fyi=fxisin(δi)+fyicos(δi),i∈{1,2,3,4} (16)
Wherein, Fxi、FyiLongitudinal component and cross component force of respectively four wheels along vehicle body coordinate direction;fxi、fyiRespectively Component of four wheels along wheel coordinate direction, wherein fxiFor four wheel slips and the function of analysis of wheel vertical load, fyiFor The function of front wheel angle and analysis of wheel vertical load, concrete numerical value can be determined by magic formula;Respectively automobile longitudinal speed And longitudinal acceleration;Respectively automobile side angle speed and side acceleration;Respectively automobile yaw angle, horizontal stroke Pivot angle speed and yaw angular acceleration;lf、lrRespectively automobile barycenter is to the distance of axle, lsFor the half of wheelspan size; JzFor the yaw rotation inertia of the vertical axis around automobile barycenter;M is car mass;X, Y is respectively automobile in earth coordinates The transverse and longitudinal coordinate of centroid position;δiFor four wheel steering angles, automobile is front-wheel steer here, therefore δ34=0;
The parameter of the magic formula is shown that expression is as follows by experimental fit:
<mrow> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>Mgl</mi> <mi>r</mi> </msub> </mrow> <mrow> <msub> <mi>l</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>Mgl</mi> <mi>f</mi> </msub> </mrow> <mrow> <msub> <mi>l</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mi>arctan</mi> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mi>arctan</mi> <mi> </mi> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>B</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <msup> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>3</mn> </msub> <msup> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>4</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>C</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <msub> <mi>b</mi> <mn>5</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>6</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>7</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>8</mn> </msub> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>D</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mi>arctan</mi> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mi>arctan</mi> <mi> </mi> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>B</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;alpha;</mi> <mi>f</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msup> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>arctan</mi> <mo>(</mo> <mrow> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>C</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>D</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mi>arctan</mi> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mi>arctan</mi> <mi> </mi> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>B</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <msup> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>3</mn> </msub> <msup> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>4</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>C</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <msub> <mi>b</mi> <mn>5</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>6</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>7</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>8</mn> </msub> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>D</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mi>arctan</mi> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mi>arctan</mi> <mi> </mi> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>B</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;alpha;</mi> <mi>r</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msup> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>arctan</mi> <mo>(</mo> <mrow> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>C</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>D</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <msub> <mi>F</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow>
Wherein, V is current automobile longitudinal speed;αf、αrRespectively front-wheel side drift angle and trailing wheel side drift angle;Fz,f、Fz,rRespectively vapour Car axle load;siFor four wheel slips of automobile;Axi、Bxi、Cxi、Dxi、ExiAnd Ayi、Byi、Cyi、Dyi、EyiFor experiment Fitting parameter, design parameter is as shown in following table:
The magic formula parameter of table 3
a0 a1 a2 a3 a4 a5 a6 1.75 0 1000 1289 7.11 0.0053 0.1925 b0 b1 b2 b3 b4 b5 b6 b7 b8 1.57 35 1200 60 300 0.17 0 0 0.2
Step 1.2, by the use of two norms of controlled quentity controlled variable rate of change as the smooth index of braking in a turn, embody the actuator during collision avoidance Braking in a turn smoothness properties, controlled quentity controlled variable u is four wheel slip s of vehicle front corner δ and automobileiI ∈ { 1,2,3,4 }, Establishing the discrete smooth index of quadratic form braking in a turn is:
<mrow> <mi>w</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>c</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mo>|</mo> <mo>|</mo> <msub> <mi>&amp;Delta;u</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>|</mo> <msub> <mo>|</mo> <mn>2</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, HcTo control time domain, t represents current time, and Δ u is controlled quentity controlled variable rate of change, and w is Δ u weight coefficient;
Step 2, consider that the constrained designs process that the automobile emergency collision avoidance of moving obstacle controls includes following sub-step:
Step 2.1, actuator physical constraint is set, meets actuator requirement;
The bound of front wheel angle and four wheel slips is limited using linear inequality, respectively obtains steering, braking performs The physical constraint of device, its mathematic(al) representation are:
δmin< δk,t< δmaxK=t, t+1 ... t+Hc-1 (3)
simin< sik,t< simaxI ∈ { 1,2,3,4 } k=t, t+1 ... t+Hc-1 (4)
Wherein, δminFor front wheel angle lower limit, δmaxFor the front wheel angle upper limit, siminFor four wheel slip lower limits, simaxFor four The individual wheel slip upper limit;
Step 2.2, set location constraint, ensure to collide with barrier during collision avoidance;
The positional information of t barrier may be characterized as the set of N number of discrete point, and these information can be obtained by radar sensor measurement , wherein the coordinate representation of j-th of discrete point is (Xj,t,Yj,t), the automobile center-of-mass coordinate of t is designated as (Xk,t,Yk,t), can be by Car model described in step 1.1 is calculated, and position constraint is set to
<mrow> <mi>l</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>a</mi> <mo>-</mo> <mo>|</mo> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>|</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&gt;</mo> <mi>a</mi> <mo>)</mo> <mo>&amp;cup;</mo> <mo>(</mo> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&lt;</mo> <mo>-</mo> <mi>b</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>c</mi> <mo>-</mo> <mo>|</mo> <msub> <mi>D</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>|</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>b</mi> <mo>,</mo> <mi>a</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Wherein, a is distance of the automobile barycenter to headstock;B is distance of the automobile barycenter to the tailstock;C is the half of automobile overall width; For using t as the yaw angle for playing k moment automobiles in point prediction time domain;Dx,j,tIt is j-th of discrete point of barrier in automobile coordinate The fore-and-aft distance of automobile barycenter, D are arrived in systemy,j,tThe horizontal stroke of automobile barycenter is arrived in vehicle axis system for j-th of discrete point of barrier To distance;
It is assumed that for barrier along Y-direction with constant speed movement, it is N number of with barrier that formula (5) characterizes automobile in prediction time domain The degree of closeness of discrete point,Value is bigger, illustrates that the distance of automobile discrete point corresponding with barrier is closer, also more dangerous;It is fixed Adopted tThe maximum barrier discrete point j of value is the dangerous spot in current sample period, is designated as (Xj,t,Yj,t), in prediction Barrier motion is predicted based on this dangerous spot in domain, iterative relation is expressed as:
<mrow> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> <mo>=</mo> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> <mo>+</mo> <msub> <mi>&amp;Delta;d</mi> <mi>t</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>=</mo> <mi>t</mi> <mo>,</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>p</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;d</mi> <mi>t</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Wherein, (Xj,t-1,Yj,t-1) it is coordinate of the dangerous spot at the t-1 moment;(Xj,k,Yj,k) it is k moment dangerous spots in prediction time domain Coordinate;
The discrete point coordinates of barrier by way of iteration in more new formula (5), by the position of barrier in prediction time domain Change is integrated into the position constraint of Model Predictive Control Algorithm;
Step 3, structure automobile emergency collision avoidance Multiobjective Optimal Control Problems, solve Multiobjective Optimal Control Problems, with dynamically about Beam form formulates the not collision path of running car, realizes the automobile emergency collision avoidance control for considering moving obstacle, it is included such as Lower sub-step:
Step 3.1, obstacle information obtained by radar sensor, pass through vehicle speed sensor and gyroscope and obtain running car shape State information, and the obstacle information of acquisition and motoring condition information are inputted into collision avoidance controller;
It is step 3.2, using weigthed sums approach that braking in a turn described in tracking performance index described in step 1.1 and step 1.2 is smooth Index is converted into single index, builds automobile emergency collision avoidance Multiobjective Optimal Control Problems, and the problem will meet to turn to, make simultaneously The physical constraint and position constraint of dynamic actuator, and ensure that urgent anti-collision system input and output meet the automobile described in step 1.1 Kinetic model characteristic:
<mrow> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>u</mi> </munder> <mo>{</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>g</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>p</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>g</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>p</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>+</mo> <mi>w</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>c</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mo>|</mo> <mo>|</mo> <msub> <mi>&amp;Delta;u</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>|</mo> <msub> <mo>|</mo> <mn>2</mn> </msub> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
Step 3.3, in urgent collision avoidance controller, call SQP algorithms, solve Multiobjective Optimal Control Problems (10), obtain most Excellent opened loop control u*For:
<mrow> <msup> <mi>u</mi> <mo>*</mo> </msup> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>u</mi> </munder> <mo>{</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>g</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>p</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>g</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>p</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>+</mo> <mi>w</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>H</mi> <mi>c</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mo>|</mo> <mo>|</mo> <msub> <mi>&amp;Delta;u</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>|</mo> <msub> <mo>|</mo> <mn>2</mn> </msub> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Submit to
I) Vehicle dynamics
Ii) constraints is formula (3)~(9)
Step 3.4, utilize current time optimal opened loop control u*(0) fed back, realize closed-loop control, realized and hide motion The automobile emergency collision avoidance control of barrier.
Step 4, design are implanted with the EPS torque compensation modules of steering wheel mutation torque hommization regulation algorithm, EPS torque compensation moulds Root tuber determines that torque compensation controls gain, steering wheel is mutated into Torque Control in ideal range according to speed, front-wheel additional rotation angle; Design process includes following sub-step:
Step 4.1, the design method of EPS torque compensation modules are:Choose several drivers and carry out real vehicle debugging, pass through tune first The torque compensation for order speed for a trial, determining under front-wheel additional rotation angle controls gain, and laboratory technician carries out anti-according to the subjective feeling of driver Polyphony tries, and ensures that steering wheel mutation torque can be received by driver;
Step 4.2, change front-wheel additional rotation angle, laboratory technician, which debugs torque compensation control gain, makes different front-wheel additional rotation angle interventions Under steering wheel mutation torque can be received by driver, and then determine the torque compensation under the speed control gain;
Step 4.3, determine using identical method torque compensation control under different speeds, different front-wheel additional rotation angle interventions Gain, the determination of speed, front-wheel additional rotation angle, torque compensation control gain three-dimensional MAP is completed, is controlled and increased using torque compensation Beneficial three dimension tables carry out torque compensation control, and steering wheel is mutated into Torque Control in the ideal range, realize that steering wheel is mutated power The automobile emergency collision avoidance of square hommization regulation.
Step 4.4, EPS torque compensations are controlled in gain three-dimensional MAP implantation EPS controllers, EPS controllers control EPS is helped Force motor reaches the control effect of torque compensation.
CN201711081210.8A 2017-11-07 2017-11-07 A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier Expired - Fee Related CN107878453B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711081210.8A CN107878453B (en) 2017-11-07 2017-11-07 A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711081210.8A CN107878453B (en) 2017-11-07 2017-11-07 A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier

Publications (2)

Publication Number Publication Date
CN107878453A true CN107878453A (en) 2018-04-06
CN107878453B CN107878453B (en) 2019-07-30

Family

ID=61779047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711081210.8A Expired - Fee Related CN107878453B (en) 2017-11-07 2017-11-07 A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier

Country Status (1)

Country Link
CN (1) CN107878453B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109808687A (en) * 2019-01-17 2019-05-28 福瑞泰克智能系统有限公司 A kind of driving assistance method, device and equipment
CN112068445A (en) * 2020-09-23 2020-12-11 北京理工大学 Integrated control method and system for path planning and path tracking of automatic driving vehicle
CN114071013A (en) * 2021-10-13 2022-02-18 浙江大华技术股份有限公司 Target capturing and tracking method and device for vehicle-mounted camera
WO2024152489A1 (en) * 2023-01-18 2024-07-25 清华大学 Intelligent vehicle emergency collision avoidance method and system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023775A (en) * 2008-07-23 2010-02-04 Toyota Motor Corp Control device for power transmission device for vehicle
CN104977933A (en) * 2015-07-01 2015-10-14 吉林大学 Regional path tracking control method for autonomous land vehicle
CN105313891A (en) * 2015-10-22 2016-02-10 清华大学 Multi-vehicle cooperative collision avoidance method and apparatus
CN105539586A (en) * 2014-08-29 2016-05-04 通用汽车环球科技运作有限责任公司 Unified motion planner for autonomous driving vehicle in avoiding the moving obstacle
CN105691388A (en) * 2016-01-14 2016-06-22 南京航空航天大学 Vehicle collision avoidance system and track planning method thereof
CN105930611A (en) * 2016-05-10 2016-09-07 长春工业大学 Automobile electric power steering characteristic vehicle speed interval division method
US20170003686A1 (en) * 2015-07-03 2017-01-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Automatic control method for the insertion and the extraction of a vehicle into and from a receiving station, and control device implementing a method of this kind
CN106564495A (en) * 2016-10-19 2017-04-19 江苏大学 Intelligent vehicle safety driving enveloping reconstruction method integrated with characteristic of space and dynamics

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023775A (en) * 2008-07-23 2010-02-04 Toyota Motor Corp Control device for power transmission device for vehicle
CN105539586A (en) * 2014-08-29 2016-05-04 通用汽车环球科技运作有限责任公司 Unified motion planner for autonomous driving vehicle in avoiding the moving obstacle
CN104977933A (en) * 2015-07-01 2015-10-14 吉林大学 Regional path tracking control method for autonomous land vehicle
US20170003686A1 (en) * 2015-07-03 2017-01-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Automatic control method for the insertion and the extraction of a vehicle into and from a receiving station, and control device implementing a method of this kind
CN105313891A (en) * 2015-10-22 2016-02-10 清华大学 Multi-vehicle cooperative collision avoidance method and apparatus
CN105691388A (en) * 2016-01-14 2016-06-22 南京航空航天大学 Vehicle collision avoidance system and track planning method thereof
CN105930611A (en) * 2016-05-10 2016-09-07 长春工业大学 Automobile electric power steering characteristic vehicle speed interval division method
CN106564495A (en) * 2016-10-19 2017-04-19 江苏大学 Intelligent vehicle safety driving enveloping reconstruction method integrated with characteristic of space and dynamics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨莉; 吴晓东; 许敏; 叶昌: "基于位置-力矩混合方法的线控转向系统双向控制", 《汽车技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109808687A (en) * 2019-01-17 2019-05-28 福瑞泰克智能系统有限公司 A kind of driving assistance method, device and equipment
CN109808687B (en) * 2019-01-17 2021-09-21 福瑞泰克智能系统有限公司 Driving assistance method, device and equipment
CN112068445A (en) * 2020-09-23 2020-12-11 北京理工大学 Integrated control method and system for path planning and path tracking of automatic driving vehicle
US11634146B2 (en) 2020-09-23 2023-04-25 Beijing Institute Of Technology Method and system for integrated path planning and path tracking control of autonomous vehicle
CN114071013A (en) * 2021-10-13 2022-02-18 浙江大华技术股份有限公司 Target capturing and tracking method and device for vehicle-mounted camera
WO2024152489A1 (en) * 2023-01-18 2024-07-25 清华大学 Intelligent vehicle emergency collision avoidance method and system

Also Published As

Publication number Publication date
CN107878453B (en) 2019-07-30

Similar Documents

Publication Publication Date Title
CN113386795B (en) Intelligent decision-making and local track planning method for automatic driving vehicle and decision-making system thereof
CN110286681B (en) Dynamic automatic driving track-changing planning method for curvature-variable curve
CN107839683B (en) A kind of automobile emergency collision avoidance control method considering moving obstacle
CN106004870B (en) A kind of intact stability integrated control method based on variable weight model prediction algorithm
CN105966396B (en) A kind of vehicle intelligent collision control method based on driver&#39;s collision avoidance behavior
US20210213935A1 (en) Safety and Stability Control Method against Vehicle Tire Burst
Attia et al. Coupled longitudinal and lateral control strategy improving lateral stability for autonomous vehicle
CN107885932B (en) Automobile emergency collision avoidance layered control method considering man-machine harmony
CN107867290B (en) A kind of automobile emergency collision avoidance layer-stepping control method considering moving obstacle
CN103921719B (en) The interactive commercial vehicle rollover method for early warning of chaufeur and system
Wnag et al. Path planning and stability control of collision avoidance system based on active front steering
Cai et al. Implementation and development of a trajectory tracking control system for intelligent vehicle
CN104176054B (en) A kind of automatic lane change control system of automobile active anti-corrosion and method of work thereof
CN107878453B (en) A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier
CN107856737A (en) A kind of man-machine coordination rotating direction control method based on degree of danger variable weight
CN107380162B (en) Collision avoidance method is cooperateed with based on function distribution and Multi-Objective Fuzzy Decision
Hongbo et al. Lane‐keeping control based on an improved artificial potential method and coordination of steering/braking systems
Smith et al. Effects of model complexity on the performance of automated vehicle steering controllers: controller development and evaluation
Mohajer et al. Effects of road path profiles on autonomous vehicles’ handling behaviour
Dandiwala et al. Vehicle dynamics and active rollover stability control of an electric narrow three-wheeled vehicle: A review and concern towards improvement
CN107856733B (en) A kind of automobile towards man-machine harmony hides dynamic barrier control method
Yue et al. Automated hazard escaping trajectory planning/tracking control framework for vehicles subject to tire blowout on expressway
CN107885931A (en) A kind of automobile emergency collision avoidance control method of steering wheel mutation torque hommization regulation
Zhu et al. Trajectory planning algorithm using Gauss pseudo-spectral method based on vehicle-infrastructure cooperative system
CN110516353B (en) Method for rapidly identifying design defects of expressway curve in mountain area

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190730

Termination date: 20201107

CF01 Termination of patent right due to non-payment of annual fee