CN107856737A - A kind of man-machine coordination rotating direction control method based on degree of danger variable weight - Google Patents

A kind of man-machine coordination rotating direction control method based on degree of danger variable weight Download PDF

Info

Publication number
CN107856737A
CN107856737A CN201711075923.3A CN201711075923A CN107856737A CN 107856737 A CN107856737 A CN 107856737A CN 201711075923 A CN201711075923 A CN 201711075923A CN 107856737 A CN107856737 A CN 107856737A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711075923.3A
Other languages
Chinese (zh)
Other versions
CN107856737B (en
Inventor
郭洪艳
宋林桓
郭洋洋
刘俊
刘风
胡云峰
陈虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen huituo infinite Technology Co.,Ltd.
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201711075923.3A priority Critical patent/CN107856737B/en
Publication of CN107856737A publication Critical patent/CN107856737A/en
Application granted granted Critical
Publication of CN107856737B publication Critical patent/CN107856737B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Abstract

The invention discloses a kind of man-machine coordination rotating direction control method based on degree of danger variable weight, comprise the following steps:Establish simplified model;Determine vehicle safe driving road boundary;Determine driving environment hazard index and driver's operational hazards exponential expression, it is then determined that driving environment hazard index and the membership function of driver's operational hazards index and automatic Pilot weight coefficient, different classes of dangerous degree are divided according to fuzzy rule, automatic Pilot weight coefficient is obtained on driving environment hazard index and the three-dimensional map of driver's operational hazards index, driving environment hazard index and driver's operational hazards index are determined in real time, and automatic Pilot weight coefficient is obtained using three-dimensional map;The man-machine coordination steering controller based on degree of danger variable weight is carried out to design and complete to control.The present invention changes driving weight by differentiating driver and vehicle risk degree, using Constrained Model Predictive Control, enables the vehicle to meet driver's driving intention as far as possible.

Description

A kind of man-machine coordination rotating direction control method based on degree of danger variable weight
Technical field
The present invention relates to a kind of man-machine coordination rotating direction control method based on degree of danger variable weight, be consider driver and The man-machine coordination rotating direction control method of vehicle risk degree, belong to advanced auxiliary driving field.
Background technology
In the last few years, unmanned technology had been to be concerned by more and more people, and U.S. SAE has been divided into five by unmanned Level, wherein, man-machine coordination control is in centre position, to realize complete unmanned, and man-machine coordination is the only stage which must be passed by, man-machine Collaboration is people and controller co- controlling vehicle, when people controls automobile, and when controller is controlled vapour Car, when the two mutual Collaborative Control vehicle, be man-machine coordination control research root problem.When people is in driving procedure Effect it is more and more weaker, until controller substitutes people to carry out the control of vehicle completely, unpiloted purpose just reaches.It is man-machine It is to improve drive safety to cooperate with most important task.Secondly it is also contemplated that the comfortableness of driver, and the manipulation of vehicle are steady The index such as qualitative.Give more preferable driving experience in the case where ensureing driving safety.
The content of the invention
In order to solve above mentioned problem existing for prior art, the present invention provides a kind of based on the man-machine of degree of danger variable weight Rotating direction control method is cooperateed with, it changes driving weight by differentiating driver and vehicle risk degree, pre- using restricted model Observing and controlling system, on the premise of avoidance safety is met, enable the vehicle to meet driver's driving intention as far as possible.
It is of the invention that purpose is achieved through the following technical solutions:
1. a kind of man-machine coordination rotating direction control method based on degree of danger variable weight, comprises the following steps:
Step 1: establish comprehensive vehicle dynamics and kinematic simplified model:
In formula,
X=[yo ψ β r]T, u=δf.
In formula, x is the state vector of system;U is system control amount;A is sytem matrix;B is input matrix;yoFor vehicle Barycenter o lateral position, unit:m;ψ is vehicle course angle, unit:rad;V be vehicle centroid at longitudinal velocity, unit:m/ s;β be vehicle side slip angle, unit:rad;R be vehicle yaw velocity, unit:rad/s;CfFor vehicle front-wheel wheel The cornering stiffness of tire, unit:N/rad;CrFor the cornering stiffness of vehicle rear wheel tire, unit:N/rad;M is the quality of vehicle, Unit:kg;IzRotary inertia for vehicle around z-axis, unit:kg·m2;A is vehicle centroid o to the distance of automobile front-axle, unit: m;B is vehicle centroid o to the distance of vehicle rear axle, unit:m;δfFor the front wheel angle of vehicle, unit:rad;
Step 2: determine vehicle safe driving road boundary:
In formula, fl(x) it is that the left margin for post-processing obtained front connecting way region is scanned by sensory perceptual system;fr(x) For the right margin in the front connecting way region obtained by sensory perceptual system scanning post processing;W is vehicle width, unit, m;lf Distance for vehicle centroid o to vehicle front point F, unit, m;lrDistance for vehicle centroid o to rear vehicle end point R, unit, m;ψ is vehicle course angle, unit, rad;
Step 3: determine automatic Pilot weight coefficient:
Driving environment hazard index and driver's operational hazards exponential expression are determined first, it is then determined that driving environment is endangered Dangerous index and the membership function of driver's operational hazards index and automatic Pilot weight coefficient, according to fuzzy rule division not Same classes of dangerous degree, automatic Pilot weight coefficient is obtained on driving environment hazard index and driver's operational hazards index Three-dimensional map, it is last to determine driving environment hazard index and driver's operational hazards index in real time, obtained using the three-dimensional map Automatic Pilot weight coefficient;
Step 4: the automatic Pilot weight coefficient obtained using step 3, using MPC methods based on degree of danger become The man-machine coordination steering controller design of weight:
Meet:X (k+i+1)=Acx(k+i)+Bcu(k+i)
In formula:
Cψ=[0 10 0]
Wherein, J is the object function of majorized function;δhFor the desired front wheel angle of driver, unit:rad;lfFor vehicle Barycenter o is to vehicle front point F distance, unit:m;lrDistance for vehicle centroid o to rear vehicle end point R, unit:m;u(k+ I) for the k+i moment system control amount, as vehicle front wheel steering angle, unit:rad;X (k+i) is the system shape at k+i moment State vector;Y (k+i) is the system output quantity at k+i moment;P is prediction time domain, and N is control time domain;ΓdAnd ΓhRespectively control Measure the weight coefficient and driver's target weight coefficient of increment;ΓyAnd ΓβRespectively road axis follows weight coefficient and matter Heart side drift angle weight coefficient;Γ is automatic Pilot weight coefficient;fl(k+i) it is front connecting way region left side boundary line fl(x) exist Moment k+i sampled value, unit:m;fr(k+i) it is then boundary line f on the right of the connecting way region of frontr(x) in moment k+i sampling Value, unit:m;TsFor sampling time, unit:s;X is the state vector of system;A is sytem matrix;B is input matrix;
Step 5: choose controlled quentity controlled variable and complete to control:
Choosing control rate u is:
U=U*(1) (4)
Wherein, U*To optimize obtained optimal control sequence;First amount of optimal control sequence is chosen as control Amount is applied on controlled vehicle;To subsequent time, the shared steering controller based on Model Predictive Control will be according to Current vehicle State recalculates an optimum control amount;It is reciprocal with this, realize rolling optimization control.
By the implementation of above scheme, beneficial effects of the present invention are:
1st, the present invention makes vehicle to be travelled with avoiding obstacles in safety zone.
2nd, the present invention considers the shape of vehicle when avoidance security constraint is chosen.
3rd, the present invention considers driver intention and driving environment degree of danger.
Brief description of the drawings
Fig. 1 is the man-machine steering cooperative control method flow chart of the present invention based on degree of danger variable weight
Fig. 2 is auto model schematic diagram
Fig. 3 is vehicle of the present invention and road relation model schematic
Fig. 4 is road hazard parameter membership function schematic diagram
Fig. 5 is driver's risk parameters membership function schematic diagram
Fig. 6 is automatic Pilot weight coefficient membership function schematic diagram
Fig. 7 is automatic Pilot weight coefficient membership function on environmental hazard index and driver's operational hazards index Three-dimensional map schematic diagrames
Embodiment
Below in conjunction with accompanying drawing, the present invention is described in detail:
The present invention is a kind of man-machine coordination rotating direction control method based on degree of danger variable weight, as shown in figure 1, specific real It is as follows to apply step:
Step 1: establish comprehensive dynamics of vehicle and kinematic simplified model
(1) vehicle dynamic model is established
Vehicle dynamic model only considers the side of vehicle as shown in Fig. 2 wherein vehicle centroid o is the origin of coordinates herein To kinematics and weaving kinematics, ignore the longitudinal dynamics of vehicle.Then we can obtain one it is simplified Two degrees of freedom auto model.Vehicle body direction of advance is x-axis positive direction, perpendicular to x-axis it is upward for y-axis positive direction.According to power Gaining knowledge, it is as shown in Equation 5 to obtain two degrees of freedom kinetics equation.
Wherein, β is side slip angle, unit, rad;V be vehicle centroid at longitudinal velocity, unit, m/s;R is vehicle Yaw velocity, unit, rad/s;CfFor the cornering stiffness of vehicle front tyre, unit, N/rad;CrFor vehicle rear wheel tire Cornering stiffness, unit, N/rad;M be vehicle quality, unit, kg;IzRotary inertia for vehicle around z-axis, unit, kg m2;A is vehicle centroid o to the distance of automobile front-axle, unit, m;B is vehicle centroid o to the distance of vehicle rear axle, unit, m;δf For vehicle front wheel steering angle, unit, rad;
(2) vehicle kinematics model
Dynamics of vehicle equation schematic diagram is as illustrated in fig. 2, it is assumed that vehicle is a rigid body, due to vehicle in the process of moving The road curvature perceived is smaller, and course angle ψ and side slip angle β also change in smaller range, so we can It is shown with the vehicle kinematics equation such as formula (6) after being simplified:
In formula, β is side slip angle, unit, rad;xoFor vehicle centroid o lengthwise position, unit, m;yoFor vehicle matter Heart o lateral position, unit, m;R be vehicle yaw velocity, unit, rad/s;ψ is vehicle course angle, unit, rad;
(3) auto model is established
We assume that the longitudinal velocity v of vehicle keeps constant, convolution (5) and formula (6) can obtain dynamics of vehicle with Shown in the kinematic differential equation such as formula (7):
We choose [yoψ β r] system state variables is used as, choose front wheel angle δfAs system control input.Then I Can obtain shown in system state equation such as formula (8):
Wherein:
X=[yo ψ β r]T, u=δf.
Wherein, x is the state vector of system;U is system control amount;A is sytem matrix;B is input matrix;
Step 2: determine vehicle safe driving road boundary:
Two-dimentional bus or train route relational model is illustrated in figure 3, ignores body width in this figure, vehicle is considered into a rigidity Bar, wherein F are vehicle front point, and R is rear vehicle end point, and o is vehicle centroid.Meanwhile in order to ensure to simplify reasonability, Wo Mentong Upper and lower road boundary is respectively shortened half vehicle commander by sample.Then road boundary such as formula (9) institute after we can be simplified Show:
Wherein fl' (x) and fr' (x) be simplify after road boundary.flAnd f (x)r(x) it is original road boundary, w is Body width.
As long as we ensure that front and rear end points F and R cans in road boundary of vehicle realize anticollision.Fig. 4 gives just Property rod end point and barycenter between relation, it is same we assume that vehicle course angle ψ and side slip angle β is also in the process of moving Change in smaller range.We can be obtained shown in final road boundary expression formula such as formula (10):
Step 3: determine automatic Pilot weight coefficient
Automatic Pilot weight coefficient Γ is drawn by considering road and driver's comprehensive condition.
(1) shown in driving environment hazard index expression formula such as formula (11):
Wherein, YvehicleRepresent vehicle centroid changing coordinates;YcenterRepresent road-center line coordinates;EAIt is one and is more than 0 Determination coefficient.The position of vehicle is so converted into embodying for safe coefficient.The bigger representative of driving environment hazard index Vehicle distances road boundary is nearer, and degree of danger is higher.
(2) shown in driver's operational hazards exponential expression such as formula (12):
Wherein, δhumanRepresent the desired front wheel angle of driver, δpredictionThe front wheel angle of system prediction is represented, it is Prediction obtains in last moment PREDICTIVE CONTROL, EBIt is adjustment factor.The index characterizes driver's practical operation and meets system It is expected that the degree of operation.
(3) automatic Pilot weight coefficient Γ is on driving environment hazard index and the three-dimensional of driver's operational hazards index map:Utilize driving environment hazard index EroadWith driver's operational hazards index Edriver, using fuzzy method, obtain automatic Weight coefficient Γ is driven on EroadAnd EdriverThree-dimensional map.
First by driving environment hazard index EroadWith driver's operational hazards index EdriverObscure respectively and turn to 5 collection Close:S (safety), MS (safer), M (in), MD (relatively hazardous), D (danger).As shown in Figure 4, Figure 5, adjustment parameter E is utilizedAWill EroadExcursion is set as [0,1], shown in the expression formula such as formula (13) of its membership function;Utilize adjustment parameter EBBy Edriver Excursion be set to [0,1], shown in the expression formula such as formula (14) of its membership function:
Equally automatic Pilot weight coefficient Γ is also obscured and turns to 5 set:S (small), MS (smaller), M (in), MB (compared with Greatly), B (big).As shown in fig. 6, shown in its corresponding membership function expression formula such as formula (15):
Wherein Aij、Bij、Cij(i=1,2,3;J=1,2,3,4,5) it is constant.
Then the foundation of fuzzy rule is carried out.Specific fuzzy rule is as shown in table 1:
The fuzzy rule of table 1
Finally, determine automatic Pilot weight coefficient Γ on E by fuzzy rule and above-mentioned membership functionroadWith EdriverThree-dimensional map, as shown in Figure 7;
(4) automatic Pilot weight coefficient Γ real-time determination
It is last to determine driving environment hazard index and driver's operational hazards index in real time, obtained using above-mentioned three-dimensional map To automatic Pilot weight coefficient Γ;
Step 4: the automatic Pilot weight coefficient obtained using step 3, using MPC (Model Predictive Control, Model Predictive Control) method carry out based on degree of danger variable weight man-machine coordination steering controller design
(1) control targe of the invention is as follows:
1) system control is made to follow driver intention as far as possible, while controlled quentity controlled variable keeps smooth-going.
2) ensure vehicle in lane boundary line during travelling.
(2) the man-machine coordination steering controller design based on degree of danger variable weight
The present invention makes hypothesis below:Assuming that autonomous land vehicle is predicted in time domain at one keeps constant speed drive.Formula (8) For the continuous model of Vehicular system, for the design for the domain type path following control algorithm based on Model Predictive Control, need By formula (8) discretization, the Vehicular system model of discrete time is obtained, as shown in formula (13):
X (k+1)=Acx(k)+Bcu(k) (16)
In formula,Wherein TsFor the sampling time.
It is assumed that prediction time domain is P, it is N to control time domain, and meets N≤P.Assume to control the controlled quentity controlled variable outside time domain to protect simultaneously Hold it is constant, i.e. u (k+N)=u (k+N+1)=...=u (k+P-1), can derive P step status predication equation, such as formula (17):
Definition:
Then we can be obtained shown in driver's object function such as formula (18):
Wherein, δhFor the desired front wheel angle of driver, unit, rad.U (k) is control input, Δ u (k+i)=u (k+ I)-u (k+i-1) is increment of the front wheel angle in sampling interval.ΓdAnd ΓhThe respectively weight coefficient of controlled quentity controlled variable increment and driving Member's target weight coefficient.
Then we can be obtained shown in controller object function such as formula (19):
Wherein yc(k+i) it is the lateral position of road axis, the expectation y (k+i) as vehicle lateral position is vehicle Actual lateral position, β (k+i)=CβX (k+i), Cβ=[0 01 0].ΓyAnd ΓβRespectively road axis follows weight system Number and side slip angle weight coefficient.
Mutually tied with automatic Pilot weight coefficient determined by driver's risk parameters further according to road hazard parameter in Fig. 7 Close, we are obtained shown in final Controlling object function such as formula (20):
J=JH+ΓJA (20)
Wherein, JHFor driver's object function, JAFor automatic controller object function, Γ is automatic Pilot weight coefficient.
The lateral position of vehicle centroid meets the constraint in formula (10), and the output constraint can be written to as shown in formula (21) Form:
In formula, ψ (k+i)=Cψx(k+i),Cψ=[0 10 0], fl(k+i) it is front connecting way region left side boundary line fl(x) in moment k+i sampled value, unit, m;fr(k+i) it is then boundary line f on the right of the connecting way region of frontr(x) in moment k+ I sampled value, unit, m.
Shared steering controller design is carried out using restricted model Forecasting Methodology, arranges and is;
Meet:X (k+i+1)=Acx(k+i)+Bcu(k+i)
In formula:
Cψ=[0 10 0]
Wherein, J is the object function of majorized function;δhFor the desired front wheel angle of driver, unit, rad;lfFor vehicle Barycenter o is to vehicle front point F distance, unit, m;lrDistance for vehicle centroid o to rear vehicle end point R, unit, m;u(k+ I) for the k+i moment system control amount, as vehicle front wheel steering angle, unit, rad;X (k+i) is the system shape at k+i moment State vector;Y (k+i) is the system output quantity at k+i moment;P is prediction time domain, and N is control time domain;ΓdAnd ΓhRespectively control Measure the weight coefficient and driver's target weight coefficient of increment;ΓyAnd ΓβRespectively road axis follows weight coefficient and matter Heart side drift angle weight coefficient;Γ is automatic Pilot weight coefficient;fl(k+i) it is front connecting way region left side boundary line fl(x) exist Moment k+i sampled value, unit, m;fr(k+i) it is then boundary line f on the right of the connecting way region of frontr(x) in moment k+i sampling Value, unit, m;TsFor sampling time, unit s;X is the state vector of system;A is sytem matrix;B is input matrix.
Step 5: choosing controlled quentity controlled variable and completing to control, choosing control rate u is:
U=U*(1) (23)
Wherein, U*To optimize obtained optimal control sequence;
First amount for choosing optimal control sequence is applied on controlled vehicle as controlled quentity controlled variable.To subsequent time, base An optimum control amount will be recalculated according to current vehicle condition in the shared steering controller of Model Predictive Control, it is past with this It is multiple, that is, realize rolling optimization control.

Claims (2)

1. a kind of man-machine coordination rotating direction control method based on degree of danger variable weight, it is characterised in that comprise the following steps:
Step 1: establish comprehensive vehicle dynamics and kinematic simplified model:
<mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mi>x</mi> <mo>+</mo> <mi>B</mi> <mi>u</mi> </mrow>
In formula,
X=[yo ψ β r]T, u=δf.
<mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>v</mi> </mtd> <mtd> <mi>v</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>m</mi> <mi>v</mi> </mrow> </mfrac> </mtd> <mtd> <mrow> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>aC</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>bC</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>mv</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>aC</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>bC</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>I</mi> <mi>z</mi> </msub> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>I</mi> <mi>z</mi> </msub> <mi>v</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> <mrow> <mi>m</mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>aC</mi> <mi>f</mi> </msub> </mrow> <msub> <mi>I</mi> <mi>z</mi> </msub> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
In formula, x is the state vector of system;U is system control amount;A is sytem matrix;B is input matrix;yoFor vehicle centroid o Lateral position, unit:m;ψ is vehicle course angle, unit:rad;V be vehicle centroid at longitudinal velocity, unit:m/s;β is The side slip angle of vehicle, unit:rad;R be vehicle yaw velocity, unit:rad/s;CfFor the side of vehicle front tyre Inclined rigidity, unit:N/rad;CrFor the cornering stiffness of vehicle rear wheel tire, unit:N/rad;M be vehicle quality, unit: kg;IzRotary inertia for vehicle around z-axis, unit:kg·m2;A is vehicle centroid o to the distance of automobile front-axle, unit:m;B is Vehicle centroid o is to the distance of vehicle rear axle, unit:m;δfFor the front wheel angle of vehicle, unit:rad;
Step 2: determine vehicle safe driving road boundary:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>w</mi> <mn>2</mn> </mfrac> <mo>-</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <mi>&amp;psi;</mi> <mo>&amp;le;</mo> <msub> <mi>y</mi> <mi>o</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>f</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>w</mi> <mn>2</mn> </mfrac> <mo>-</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <mi>&amp;psi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>w</mi> <mn>2</mn> </mfrac> <mo>+</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <mi>&amp;psi;</mi> <mo>&amp;le;</mo> <msub> <mi>y</mi> <mi>o</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>f</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>w</mi> <mn>2</mn> </mfrac> <mo>+</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <mi>&amp;psi;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
In formula, fl(x) it is that the left margin for post-processing obtained front connecting way region is scanned by sensory perceptual system;fr(x) it is logical Cross the right margin in the front connecting way region that sensory perceptual system scanning post processing obtains;W is vehicle width, unit, m;lfFor car Barycenter o is to vehicle front point F distance, unit, m;lrDistance for vehicle centroid o to rear vehicle end point R, unit, m;ψ is Vehicle course angle, unit, rad;
Step 3: determine automatic Pilot weight coefficient:
Driving environment hazard index and driver's operational hazards exponential expression are determined first, it is then determined that driving environment danger refers to The membership function of number and driver's operational hazards index and automatic Pilot weight coefficient, different danger are divided according to fuzzy rule Dangerous intensity grade, automatic Pilot weight coefficient is obtained on driving environment hazard index and the three-dimensional of driver's operational hazards index Map, it is last to determine driving environment hazard index and driver's operational hazards index in real time, obtained automatically using the three-dimensional map Drive weight coefficient;
Step 4: the automatic Pilot weight coefficient obtained using step 3, carries out being based on degree of danger variable weight using MPC methods Man-machine coordination steering controller design:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <munder> <mi>min</mi> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </munder> <mi>J</mi> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>&amp;delta;</mi> <mi>h</mi> </msub> <mo>-</mo> <mi>u</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>|</mo> <mo>+</mo> <msub> <mi>&amp;Gamma;</mi> <mi>d</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;Delta;</mi> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mi>i</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Gamma;</mi> <mo>(</mo> <msub> <mi>&amp;Gamma;</mi> <mi>y</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>P</mi> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mi>i</mi> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mi>i</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>&amp;Gamma;</mi> <mi>&amp;beta;</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>P</mi> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;beta;</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mi>i</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
Meet:X (k+i+1)=Acx(k+i)+Bcu(k+i)
<mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>w</mi> <mn>2</mn> </mfrac> <mo>-</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>&amp;psi;</mi> </msub> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>f</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mi>w</mi> <mn>2</mn> </mfrac> <mo>-</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>&amp;psi;</mi> </msub> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>w</mi> <mn>2</mn> </mfrac> <mo>+</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>&amp;psi;</mi> </msub> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>f</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mi>w</mi> <mn>2</mn> </mfrac> <mo>+</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>&amp;psi;</mi> </msub> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow>
In formula:
<mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
<mrow> <msub> <mi>A</mi> <mi>c</mi> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>AT</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>,</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> </msubsup> <msup> <mi>e</mi> <mrow> <mi>A</mi> <mi>&amp;tau;</mi> </mrow> </msup> <mi>d</mi> <mi>&amp;tau;</mi> <mo>&amp;CenterDot;</mo> <mi>B</mi> <mo>;</mo> </mrow>
Cψ=[0 10 0]
Wherein, J is the object function of majorized function;δhFor the desired front wheel angle of driver, unit:rad;lfFor vehicle centroid o To vehicle front point F distance, unit:m;lrDistance for vehicle centroid o to rear vehicle end point R, unit:m;U (k+i) is k+ The front wheel steering angle of the system control amount at i moment, as vehicle, unit:rad;X (k+i) be the k+i moment system mode to Amount;Y (k+i) is the system output quantity at k+i moment;P is prediction time domain, and N is control time domain;ΓdAnd ΓhRespectively controlled quentity controlled variable increases The weight coefficient and driver's target weight coefficient of amount;ΓyAnd ΓβRespectively road axis follows weight coefficient and barycenter side Drift angle weight coefficient;Γ is automatic Pilot weight coefficient;fl(k+i) it is front connecting way region left side boundary line fl(x) at the moment K+i sampled value, unit:m;fr(k+i) it is then boundary line f on the right of the connecting way region of frontr(x) in moment k+i sampled value, Unit:m;TsFor sampling time, unit:s;X is the state vector of system;A is sytem matrix;B is input matrix;
Step 5: choose controlled quentity controlled variable and complete to control:
Choosing control rate u is:
U=U*(1)
Wherein, U*To optimize obtained optimal control sequence;First amount for choosing optimal control sequence acts on as controlled quentity controlled variable Onto controlled vehicle;To subsequent time, the shared steering controller based on Model Predictive Control will be according to current vehicle condition weight Newly calculate an optimum control amount;It is reciprocal with this, realize rolling optimization control.
2. a kind of man-machine coordination rotating direction control method based on degree of danger variable weight as claimed in claim 1, its feature exist In the step 3 determines that automatic Pilot weight coefficient specifically includes procedure below:
3.1) driving environment hazard index and driver's operational hazards exponential expression are determined:
Driving environment hazard index expression formula is:
<mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mrow> <mi>v</mi> <mi>e</mi> <mi>h</mi> <mi>i</mi> <mi>c</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mrow> <mi>c</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>E</mi> <mi>A</mi> </msub> </msup> </mrow>
In formula, YvehicleRepresent vehicle centroid changing coordinates;YcenterRepresent road-center line coordinates;EAIt is one and is more than 0 really Determine coefficient;
Driver's operational hazards exponential expression is:
<mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&amp;delta;</mi> <mrow> <mi>h</mi> <mi>u</mi> <mi>m</mi> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;delta;</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> <mi>i</mi> <mi>c</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>|</mo> </mrow> <msub> <mi>E</mi> <mi>B</mi> </msub> </mfrac> </mrow>
In formula, δhumanRepresent the desired front wheel angle of driver, δpredictionThe front wheel angle of system prediction is represented, it is upper one Prediction obtains in moment PREDICTIVE CONTROL, EBIt is adjustment factor;
3.2) driving environment hazard index E is utilizedroadWith driver's operational hazards index Edriver, using fuzzy method, obtain Automatic Pilot weight coefficient Γ is on EroadAnd EdriverThree-dimensional map:
First by driving environment hazard index EroadWith driver's operational hazards index EdriverObscure respectively and turn to 5 set:Peace Full S, safer MS, middle M, relatively hazardous MD, dangerous D;Utilize adjustment parameter EABy EroadExcursion is set as [0,1], and it is subordinate to The expression formula for spending function is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>M</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>13</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>13</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>13</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>13</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>13</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>13</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>M</mi> <mi>S</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>12</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>12</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>M</mi> <mi>D</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>14</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>14</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>14</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>14</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>14</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>14</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>A</mi> <mn>11</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mi>A</mi> <mn>11</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>B</mi> <mn>11</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>C</mi> <mn>11</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mrow> <msub> <mi>C</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>11</mn> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>B</mi> <mn>11</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>C</mi> <mn>11</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>C</mi> <mn>11</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>D</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>A</mi> <mn>15</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>15</mn> </msub> </mrow> <mrow> <msub> <mi>B</mi> <mn>15</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>15</mn> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>A</mi> <mn>15</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>B</mi> <mn>15</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>15</mn> </msub> </mrow> <mrow> <msub> <mi>C</mi> <mn>15</mn> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>15</mn> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>B</mi> <mn>15</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>C</mi> <mn>15</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>C</mi> <mn>15</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
Utilize adjustment parameter EBBy EdriverExcursion be set to [0,1], the expression formula of its membership function is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>M</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>23</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>23</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>23</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>23</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>23</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>23</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>M</mi> <mi>S</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>22</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>22</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>M</mi> <mi>D</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>24</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>24</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>24</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>24</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>24</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>24</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>A</mi> <mn>11</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>21</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mi>A</mi> <mn>21</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>B</mi> <mn>21</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>C</mi> <mn>21</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mrow> <msub> <mi>C</mi> <mn>21</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>21</mn> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>B</mi> <mn>21</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>C</mi> <mn>21</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>C</mi> <mn>21</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>D</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>A</mi> <mn>25</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>25</mn> </msub> </mrow> <mrow> <msub> <mi>B</mi> <mn>25</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>25</mn> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>A</mi> <mn>25</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>B</mi> <mn>25</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>25</mn> </msub> </mrow> <mrow> <msub> <mi>C</mi> <mn>25</mn> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>25</mn> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>B</mi> <mn>25</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>C</mi> <mn>25</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>C</mi> <mn>25</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
Equally automatic Pilot weight coefficient Γ is also obscured and turns to 5 set:Small S, smaller MS, middle M, larger MB, big B, its is right The expression formula for the membership function answered is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>M</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>33</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>33</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mo>-</mo> <msub> <mi>B</mi> <mn>33</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>33</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>33</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mo>-</mo> <msub> <mi>B</mi> <mn>33</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>M</mi> <mi>S</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>32</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>32</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mo>-</mo> <msub> <mi>B</mi> <mn>32</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>32</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>32</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mo>-</mo> <msub> <mi>B</mi> <mn>32</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>M</mi> <mi>D</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>34</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>34</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mo>-</mo> <msub> <mi>B</mi> <mn>34</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>B</mi> <mn>34</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>34</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mo>-</mo> <msub> <mi>B</mi> <mn>34</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mi>&amp;Gamma;</mi> <mo>&amp;le;</mo> <msub> <mi>A</mi> <mn>31</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mo>-</mo> <msub> <mi>A</mi> <mn>31</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>31</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>31</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mi>A</mi> <mn>31</mn> </msub> <mo>&amp;le;</mo> <mi>&amp;Gamma;</mi> <mo>&amp;le;</mo> <msub> <mi>B</mi> <mn>31</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>C</mi> <mn>31</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;Gamma;</mi> <mrow> <msub> <mi>C</mi> <mn>31</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>31</mn> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>B</mi> <mn>31</mn> </msub> <mo>&amp;le;</mo> <mi>&amp;Gamma;</mi> <mo>&amp;le;</mo> <msub> <mi>C</mi> <mn>31</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>&amp;Gamma;</mi> <mo>&amp;GreaterEqual;</mo> <msub> <mi>C</mi> <mn>31</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>D</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>&amp;Gamma;</mi> <mo>&amp;le;</mo> <msub> <mi>A</mi> <mn>35</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;Gamma;</mi> <mo>-</mo> <msub> <mi>A</mi> <mn>35</mn> </msub> </mrow> <mrow> <msub> <mi>B</mi> <mn>35</mn> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>35</mn> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>A</mi> <mn>15</mn> </msub> <mo>&amp;le;</mo> <mi>&amp;Gamma;</mi> <mo>&amp;le;</mo> <msub> <mi>B</mi> <mn>15</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;Gamma;</mi> <mo>-</mo> <msub> <mi>C</mi> <mn>35</mn> </msub> </mrow> <mrow> <msub> <mi>C</mi> <mn>35</mn> </msub> <mo>-</mo> <msub> <mi>B</mi> <mn>35</mn> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>B</mi> <mn>35</mn> </msub> <mo>&amp;le;</mo> <mi>&amp;Gamma;</mi> <mo>&amp;le;</mo> <msub> <mi>C</mi> <mn>35</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mi>&amp;Gamma;</mi> <mo>&amp;GreaterEqual;</mo> <msub> <mi>C</mi> <mn>35</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
In formula, Aij、Bij、Cij(i=1,2,3;J=1,2,3,4,5) it is constant;
Then the foundation of fuzzy rule, specific fuzzy rule such as following table are carried out:
Finally, determine automatic Pilot weight coefficient Γ on E by fuzzy rule and above-mentioned membership functionroadAnd EdriverThree Tie up map;
3.3) driving environment hazard index and driver's operational hazards index are determined in real time, are obtained certainly using above-mentioned three-dimensional map It is dynamic to drive weight coefficient Γ.
CN201711075923.3A 2017-11-06 2017-11-06 A kind of man-machine coordination rotating direction control method based on degree of danger variable weight Active CN107856737B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711075923.3A CN107856737B (en) 2017-11-06 2017-11-06 A kind of man-machine coordination rotating direction control method based on degree of danger variable weight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711075923.3A CN107856737B (en) 2017-11-06 2017-11-06 A kind of man-machine coordination rotating direction control method based on degree of danger variable weight

Publications (2)

Publication Number Publication Date
CN107856737A true CN107856737A (en) 2018-03-30
CN107856737B CN107856737B (en) 2019-09-13

Family

ID=61700867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711075923.3A Active CN107856737B (en) 2017-11-06 2017-11-06 A kind of man-machine coordination rotating direction control method based on degree of danger variable weight

Country Status (1)

Country Link
CN (1) CN107856737B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549367A (en) * 2018-04-09 2018-09-18 吉林大学 A kind of man-machine method for handover control based on prediction safety
CN108803322A (en) * 2018-05-30 2018-11-13 吉林大学 A kind of driver of time domain variable weight-automated driving system flexible connecting pipe method
CN108873694A (en) * 2018-05-30 2018-11-23 吉林大学 A kind of automated driving system of time domain variable weight-driver's flexible connecting pipe method
CN109885040A (en) * 2019-02-20 2019-06-14 江苏大学 It is a kind of it is man-machine drive altogether in vehicle drive control distribution system
CN110329277A (en) * 2019-07-19 2019-10-15 中汽研(天津)汽车工程研究院有限公司 A kind of intelligent automobile man-machine coordination control Weight Value Distributed Methods
CN111688704A (en) * 2020-06-24 2020-09-22 吉林大学 Man-machine torque cooperative steering control method based on driving state prediction
CN111861010A (en) * 2020-07-23 2020-10-30 中国人民解放军军事科学院军事科学信息研究中心 Prediction method and prediction system for key technology in field of man-machine cooperation
CN113076641A (en) * 2021-03-31 2021-07-06 同济大学 Intelligent vehicle-to-vehicle and computer-to-vehicle cooperative steering control parallel computing method based on risk assessment
CN113911140A (en) * 2021-11-24 2022-01-11 无锡物联网创新中心有限公司 Man-machine co-driving control method based on non-cooperative game and related device
CN115457783A (en) * 2022-08-30 2022-12-09 重庆长安汽车股份有限公司 Method and system for traffic, cooperation and cooperation at signal lamp-free intersection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105279309A (en) * 2015-09-16 2016-01-27 南京航空航天大学 Aligning torque estimation based design method for active steering ideal steering wheel torque
CN106004870A (en) * 2016-06-23 2016-10-12 吉林大学 Vehicle stability integrated control method based on variable-weight model prediction algorithm
JP2017001501A (en) * 2015-06-09 2017-01-05 株式会社デンソー Road surface display device
CN107085423A (en) * 2016-02-16 2017-08-22 丰田自动车株式会社 Controller of vehicle
CN107140012A (en) * 2017-05-10 2017-09-08 南京航空航天大学 A kind of wire-controlled steering system and control method based on the Kalman filter that can suppress diverging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001501A (en) * 2015-06-09 2017-01-05 株式会社デンソー Road surface display device
CN105279309A (en) * 2015-09-16 2016-01-27 南京航空航天大学 Aligning torque estimation based design method for active steering ideal steering wheel torque
CN107085423A (en) * 2016-02-16 2017-08-22 丰田自动车株式会社 Controller of vehicle
CN106004870A (en) * 2016-06-23 2016-10-12 吉林大学 Vehicle stability integrated control method based on variable-weight model prediction algorithm
CN107140012A (en) * 2017-05-10 2017-09-08 南京航空航天大学 A kind of wire-controlled steering system and control method based on the Kalman filter that can suppress diverging

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549367A (en) * 2018-04-09 2018-09-18 吉林大学 A kind of man-machine method for handover control based on prediction safety
CN108803322A (en) * 2018-05-30 2018-11-13 吉林大学 A kind of driver of time domain variable weight-automated driving system flexible connecting pipe method
CN108873694A (en) * 2018-05-30 2018-11-23 吉林大学 A kind of automated driving system of time domain variable weight-driver's flexible connecting pipe method
CN108803322B (en) * 2018-05-30 2021-11-30 吉林大学 Time-domain variable-weight flexible take-over method for driver-automatic driving system
CN109885040B (en) * 2019-02-20 2022-04-26 江苏大学 Vehicle driving control right distribution system in man-machine driving
CN109885040A (en) * 2019-02-20 2019-06-14 江苏大学 It is a kind of it is man-machine drive altogether in vehicle drive control distribution system
CN110329277A (en) * 2019-07-19 2019-10-15 中汽研(天津)汽车工程研究院有限公司 A kind of intelligent automobile man-machine coordination control Weight Value Distributed Methods
CN111688704A (en) * 2020-06-24 2020-09-22 吉林大学 Man-machine torque cooperative steering control method based on driving state prediction
CN111688704B (en) * 2020-06-24 2021-05-25 吉林大学 Man-machine torque cooperative control method based on driving state prediction
CN111861010A (en) * 2020-07-23 2020-10-30 中国人民解放军军事科学院军事科学信息研究中心 Prediction method and prediction system for key technology in field of man-machine cooperation
CN111861010B (en) * 2020-07-23 2024-03-29 中国人民解放军军事科学院军事科学信息研究中心 Method and system for predicting field key technology of man-machine cooperation
CN113076641A (en) * 2021-03-31 2021-07-06 同济大学 Intelligent vehicle-to-vehicle and computer-to-vehicle cooperative steering control parallel computing method based on risk assessment
CN113076641B (en) * 2021-03-31 2022-09-20 同济大学 Intelligent vehicle-to-vehicle and computer-to-vehicle cooperative steering control parallel computing method based on risk assessment
CN113911140B (en) * 2021-11-24 2022-09-27 无锡物联网创新中心有限公司 Man-machine co-driving control method based on non-cooperative game and related device
CN113911140A (en) * 2021-11-24 2022-01-11 无锡物联网创新中心有限公司 Man-machine co-driving control method based on non-cooperative game and related device
CN115457783A (en) * 2022-08-30 2022-12-09 重庆长安汽车股份有限公司 Method and system for traffic, cooperation and cooperation at signal lamp-free intersection
CN115457783B (en) * 2022-08-30 2023-08-11 重庆长安汽车股份有限公司 Traffic, cooperation and cooperation method and system for intersection without signal lamp

Also Published As

Publication number Publication date
CN107856737B (en) 2019-09-13

Similar Documents

Publication Publication Date Title
CN107856737B (en) A kind of man-machine coordination rotating direction control method based on degree of danger variable weight
CN107804315B (en) It is a kind of to consider to drive people&#39;s vehicle collaboration rotating direction control method that power is distributed in real time
CN110597245B (en) Automatic driving track-changing planning method based on quadratic planning and neural network
CN107380161B (en) A kind of active steering control device for aiding in driver to realize desired ride track
CN111890951B (en) Intelligent electric automobile trajectory tracking and motion control method
CN104977933B (en) A kind of domain type path tracking control method of autonomous land vehicle
CN107042841B (en) A kind of differential power-assisted steering stability control method of hub motor driven electric vehicle
CN108454628B (en) A kind of driver turns to rolling optimization control method in people&#39;s vehicle collaboration of ring
CN105857306B (en) A kind of vehicle autonomous parking paths planning method for a variety of scenes of parking
Cai et al. Implementation and development of a trajectory tracking control system for intelligent vehicle
CN109976159A (en) Intelligent vehicle crosswise joint method based on safely controllable domain
CN108819951A (en) It is a kind of to consider that the man-machine of driver&#39;s driving efficiency drives transverse driving power distribution method altogether
CN106926844A (en) A kind of dynamic auto driving lane-change method for planning track based on real time environment information
Attia et al. Coupled longitudinal and lateral control strategy improving lateral stability for autonomous vehicle
CN109144076A (en) A kind of more vehicle transverse and longitudinals coupling cooperative control system and control method
CN108674414A (en) A kind of intelligent automobile Trajectory Tracking Control method of limiting condition
CN106671982A (en) Multi-intelligent agent based unmanned electric car automatic overtaking system and method
CN107521496A (en) A kind of transverse and longitudinal of vehicle coordinates control track follow-up control method
CN108717268A (en) Automatic Pilot minimum time maneuver control system and its control method based on optimum control and safe distance
CN109291932A (en) Electric car Yaw stability real-time control apparatus and method based on feedback
CN107885932A (en) It is a kind of to consider man-machine harmonious automobile emergency collision avoidance layer-stepping control method
CN108860149A (en) A kind of Its Track Design method for the most short free lane change of intelligent vehicle time
CN107323457B (en) A kind of shared rotating direction control method of man-machine coordination
CN107839683A (en) A kind of automobile emergency collision avoidance control method for considering moving obstacle
CN107380162B (en) Collision avoidance method is cooperateed with based on function distribution and Multi-Objective Fuzzy Decision

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210810

Address after: 518125 124, block F, Chuang Zhi Park, No. 18, Shangnan Shangliao Industrial Road, Shangliao community, Xinqiao street, Bao'an District, Shenzhen, Guangdong

Patentee after: Shenzhen huituo infinite Technology Co.,Ltd.

Address before: 130012 No. 2699 Qianjin Street, Jilin, Changchun

Patentee before: Jilin University

TR01 Transfer of patent right