CN1078749C - Lithium battery - Google Patents

Lithium battery Download PDF

Info

Publication number
CN1078749C
CN1078749C CN97115403A CN97115403A CN1078749C CN 1078749 C CN1078749 C CN 1078749C CN 97115403 A CN97115403 A CN 97115403A CN 97115403 A CN97115403 A CN 97115403A CN 1078749 C CN1078749 C CN 1078749C
Authority
CN
China
Prior art keywords
lithium
secondary battery
composite oxide
o4
li
Prior art date
Application number
CN97115403A
Other languages
Chinese (zh)
Other versions
CN1173746A (en
Inventor
山下裕久
服部康次
Original Assignee
株式会社村田制作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP20666196 priority Critical
Priority to JP8248673A priority patent/JP3047827B2/en
Application filed by 株式会社村田制作所 filed Critical 株式会社村田制作所
Publication of CN1173746A publication Critical patent/CN1173746A/en
Application granted granted Critical
Publication of CN1078749C publication Critical patent/CN1078749C/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators

Abstract

本发明提供一种锂蓄电池,包括含有尖晶石结构的锂锰复合氧化物作为活性材料的阴极(3),其特征在于所述尖晶石结构的锂锰复合氧化物颗粒是中空、球形的由初级颗粒烧结而成的次级颗粒,所述次级颗粒的平均粒径为1-5微米,比表面积为2-10m The present invention provides a lithium secondary battery, comprising a lithium manganese composite oxide containing a spinel structure as a cathode active material (3), characterized in that the particles of the lithium manganese composite oxide spinel structure is hollow, spherical by sintering of the primary particles formed the secondary particles, the secondary particle average particle size of 1-5 micrometers and a specific surface area of ​​2-10m

Description

锂蓄电池 Lithium secondary battery

本发明涉及锂蓄电池,具体地说,涉及含有以具有尖晶石结构的锂锰复合氧化物作为活性材料的阴极的锂蓄电池。 The present invention relates to a lithium secondary battery, and more particularly, relates to lithium secondary batteries comprising a lithium manganese complex oxide having a spinel structure as a cathode active material.

近来,便携和无绳电子设备越来越流行。 Recently, portable and cordless electronic devices become more popular. 作为这种设备的电源,迫切需要具有高能量密度、小型且轻便的蓄电池。 As such a power source apparatus, an urgent need to have a high energy density, small-sized and lightweight battery. 为满足这种需求,含有非水性电解液的锂蓄电池已投入了实际应用。 To meet this need, lithium secondary batteries comprising a non-aqueous electrolyte solution have been put to practical use.

一般来说,锂蓄电池包括一个具有含锂化合物作为活性材料的阴极、一个具有能够吸附和解吸锂的材料(如碳物质或锂金属)作为活性材料的阳极、以及一层含有非水性电解液或固体电解质的隔离层。 In general, a lithium secondary battery comprising a lithium-containing compound having as a cathode active material, a lithium absorption and desorption can be materials (such as a carbon material or a lithium metal) has a function as an anode active material, and a layer containing a non-aqueous electrolyte solution or isolation of the solid electrolyte layer. 用作阴极活性材料的含锂化合物包括,例如目前使用的LiCoO2、LiNiO2和LiMn2O4。 As a cathode active material comprising a lithium-containing compound, for example, currently used LiCoO2, LiNiO2 and LiMn2O4. 近来,人们把注意力投向尖晶石结构的锂锰复合氧化物,例如典型的LiMn2O4,因为这种复合氧化物可产生高的氧化-还原电位,并且因为制造这种复合氧化物的原料价格低廉,从而可望能稳定地获得这种复合氧化物。 Recently, attention is devoted lithium manganese composite oxides having a spinel structure, such as a typical LiMn2O4, since the complex oxide may produce high oxidation - reduction potential, and since the price of raw materials for producing such a composite oxide is low thereby expected to stably obtain such a composite oxide. 在这种情况下,提出了含有该复合氧化物作为阴极活性材料的各种锂蓄电池。 In this case, various lithium secondary batteries comprising the complex oxide as a cathode active material.

例如,日本已公开的专利申请94-333562披露了一种含有LiMn2O4型化合物作为阴极活性材料的锂蓄电池,其中该化合物是球形颗粒状的,具有均匀的粗糙表面,其中值直径为0.5-0.6微米,粒径为0.1-1.1微米。 For example, Japanese Laid-Open Patent Application No. 94-333562 discloses a lithium secondary battery as a cathode active material LiMn2O4 containing compound, wherein the compound is the form of spherical particles having uniformly rough surface, wherein the median diameter of 0.5 to 0.6 microns a particle size of 0.1-1.1 microns. 日本已公开专利申请96-69790披露了一种含有锂锰复合氧化物作为阴极活性材料的锂蓄电池,其中复合氧化物的比表面积为0.05-5.0m2/g。 Japanese Laid-Open Patent Application No. 96-69790 discloses a lithium secondary battery as a cathode active material containing lithium manganese composite oxide, wherein the specific surface area of ​​the composite oxide was 0.05-5.0m2 / g.

但是含有这种尖晶石结构的锂锰复合氧化物作为阴极活性材料的常规锂蓄电池在蓄电池容量和充放电循环特性方面仍不能令人满意。 However, such lithium manganese composite oxide containing a spinel structure as a cathode active material of conventional lithium secondary battery is still not satisfactory in battery capacity and charge-discharge cycle characteristics.

因此,本发明的目的是提供一种具有高容量和优良的充放电循环特性的锂蓄电池。 Accordingly, an object of the present invention is to provide a lithium secondary battery having high capacity and excellent charge-discharge cycle characteristics.

本发明提供上述种类的锂蓄电池,其特征在于所述尖晶石结构的锂锰复合氧化物颗粒是中空的、由初级颗粒烧结而成的球形次级颗粒,所述次级颗粒的平均粒径为1-5微米,比表面积为2-10m2/g。 The present invention provides the kind of lithium secondary battery, wherein the lithium manganese composite oxide particles of spinel structure is hollow, formed by sintering of primary particles of spherical secondary particles, the average particle diameter of secondary particles 1 to 5 microns, a specific surface area of ​​2-10m2 / g.

在上述锂蓄电池中,所述尖晶石结构的锂锰复合氧化物可用通式Li(Mn2-xLix)O4表示,其中0<x<0.02,并且Mn部分地被Cr、Ni、Fe、Co或Mg所代替。 In the above lithium secondary battery, said spinel-structured lithium-manganese complex oxide is represented by the formula Li (Mn2-xLix) O4, where 0 <x <0.02, and Mn is partially substituted with Cr, Ni, Fe, Co, or Mg replaced.

由于锂蓄电池使用粒径和比表面积控制在上述的数值范围内的尖晶石结构的锂锰复合氧化物球形中空颗粒作为阴极活性材料,所以非水性电解液能很好地渗入球形的中空颗粒中,同时避免了分解,并且增大了非水性电解液和颗粒之间的接触面积。 Since the lithium secondary battery using lithium manganese complex oxide and the particle diameter of the spherical hollow particles of a spinel structure in the above range of values ​​to control the specific surface area as a cathode active material, the non-aqueous electrolytic solution can well penetrate into the spherical hollow particles , while avoiding decomposition and increases the contact area between the particles and the non-aqueous electrolyte solution. 从而改善了本发明锂蓄电池中阴极活性材料的利用程度。 Thereby improving the degree of utilization of the lithium secondary battery of the present invention, the cathode active material. 另外,由于阴极活性材料含有相对较大的由初级颗粒烧结而成的次级颗粒,因此它能在具有适当大的比表面积的同时能很好地成形。 Further, since the cathode active material comprises relatively large primary particles formed by sintering secondary particles, so that it can be well shaped while having a suitably large specific surface area. 即使减少添加的粘合剂的量,该材料仍能成形成具有增加的单位体积能量密度的阴极。 Even if the amount of the binder added is reduced, the material can still be shaped to have an increased energy per unit volume density of the cathode.

在上述锂蓄电池中,所述尖晶石结构的锂锰复合氧化物可用通式Li(Mn2-xLix)O4表示,其中0≤x≤0.1。 In the above lithium secondary battery, lithium-manganese composite oxide of the spinel structure represented by the formula Li (Mn2-xLix) O4, where 0≤x≤0.1.

在上述锂蓄电池中,所述尖晶石结构的锂锰复合氧化物可用通式Li(Mn2-xLix)O4表示,其中0<x<0.02。 In the above lithium secondary battery, lithium-manganese composite oxide of the spinel structure represented by the formula Li (Mn2-xLix) O4, where 0 <x <0.02.

在上述锂蓄电池中,所述尖晶石结构的锂锰复合氧化物可用通式Li(Mn2-xLix)O4表示,其中0≤x≤0.1,并且Mn部分地被Cr、Ni、Fe、Co或Mg所代替。 In the above lithium secondary battery, said spinel-structured lithium-manganese complex oxide is represented by the formula Li (Mn2-xLix) O4, where 0≤x≤0.1, and Mn is partially substituted with Cr, Ni, Fe, Co, or Mg replaced.

当用于本发明的尖晶石结构的锂锰复合氧化物用通式Li(Mn2-xLix)O4表示时,x宜落在0≤x≤0.1的范围内,以便使得到的蓄电池具有更高的能量效率和更优良的充放电循环特性。 When used in a spinel structure lithium manganese composite oxide of the present invention represented by the formula O4 Li (Mn2-xLix), it should fall within the range of x 0≤x≤0.1 so that the resulting battery has a higher energy efficiency and more excellent charge-discharge cycle characteristics. 最好的是,所述通式Li(Mn2-xLix)O4中的x落在0<x<0.02的范围内,以便使得到的蓄电池具有更加高的能量效率和更加优良的充放电循环特性。 Most preferably, in the general formula Li (Mn2-xLix) O4 where x falls 0 <x <0.02 in a range so that the resulting battery has a high energy efficiency and more excellent charge-discharge cycle more characteristics.

另外,在本发明中还可使用通过用任何Cr、Ni、Fe、Co和/或Mg取代部分锰的位置而衍生自Li(Mn2-xLix)O4的任何其他尖晶石结构的锂锰复合氧化物,并获得相同的结果。 Further, in the present invention may also be derived from the use of Li (Mn2-xLix) by treatment with any of Cr, Ni, Fe, Co and / or Mg substitution position of any portion of the lithium-manganese composite manganese oxide spinel structure other O4, thereof, and the same results were obtained.

本发明锂蓄电池中还可包括作为阳极活性材料、能吸附和解吸锂的材料,如碳材料、锂金属或锂合金。 The lithium secondary battery of the present invention may further comprise as an anode active material, a material capable of absorbing and desorbing lithium such as a carbon material, lithium metal or a lithium alloy. 用于蓄电池中的非水性电解液可以是由电解质锂盐(如LiPF6、LiClO4、LiBF4或LiAsF6)溶解在含有碳酸亚丙酯或碳酸亚乙酯、以及二乙氧基乙烷或二甲氧基乙烷的混合溶剂中制成的溶液。 For non-aqueous electrolyte battery may be a lithium salt dissolved an electrolyte (e.g. LiPF6, LiClO4, LiBF4 or LiAsF6) containing propylene carbonate or ethylene carbonate, and diethoxyethane or dimethoxyethane ethane mixed solvent prepared. 作为蓄电池的隔离层,可使用多孔聚丙烯膜或无纺织物。 As the battery spacer layer, a porous polypropylene film or non-woven fabric. 也可使用固体电解质代替浸透这种非水性电解液的隔离层。 A solid electrolyte may be used instead of such a non-aqueous electrolyte solution impregnating the separator layer.

图1是用作本发明锂蓄电池阴极活性材料的SEM照片;图2是本发明锂蓄电池一个实例的剖面图;图3是显示各种锂蓄电池充放电循环特性的曲线。 Figure 1 is a lithium secondary battery of the present invention is an SEM photograph of a cathode active material; FIG. 2 is a cross-sectional view of a lithium secondary battery of an example of the present invention; FIG. 3 is a graph of cycle characteristics of various lithium secondary batteries show charge and discharge.

下面将参照实施例对本发明较好的实例进行描述。 The following examples of preferred embodiments with reference to the examples of the present invention will be described.

实施例1使用硝酸锂和硝酸锰作为金属化合物制备锂锰复合氧化物。 Example 1 using lithium nitrate and manganese nitrate as the metal compound was prepared embodiment of a lithium-manganese composite oxide. 以摩尔比Li/Mn为1.02/1.98精确称重该硝酸锂和硝酸锰,形成锂锰复合氧化物Li(Mn2-xLix)O4,将其置于一容器中,加入1000ml体积比为1/1的水/乙醇混合液,将其搅拌后形成溶液。 A molar ratio of Li / Mn of 1.02 / 1.98 and accurately weighed lithium nitrate manganese nitrate, forming lithium manganese composite oxide Li (Mn2-xLix) O4, which was placed in a container, a volume ratio of 1/1 was added 1000ml water / ethanol mixture to form a solution which was stirred.

随后将得到的溶液以1200ml/小时的速率通过一个喷嘴喷入预定温度为600-800℃的竖式热分解炉中进行雾化,并在该炉中热解成粉末状复合氧化物。 The resulting solution is then at a rate of 1200ml / hr sprayed through a nozzle into a predetermined temperature is 600-800 deg.] C in the vertical thermal decomposition furnace atomized and pyrolyzed to obtain a powdery complex oxide in the furnace. 接着将生成的复合氧化物置于一个氧化铝盒子中并在300-900℃预定的温度下退火2小时。 The resulting composite oxide is then placed in an alumina case and annealed at a predetermined temperature 300-900 ℃ 2 hours. 用这种方法获得Li(Mn1.98Li0.02)O4复合氧化物试样11-15(参见表1)。 Obtained Li (Mn1.98Li0.02) O4 composite oxide sample 11-15 (see Table 1) in this way. 在表1中带有星号(*)的试样超出了本发明的范围,而其他试样是在本发明范围之内的。 Specimens with an asterisk (*) in Table 1 are beyond the scope of the present invention, while the others are within the scope of the present invention.

除了这些试样以外,表1中还列出了由熔融浸渍法获得的Li(Mn1.98Li0.02)O4比较试样16。 In addition to these samples, also listed in Table 1 Li obtained by the melt impregnation method (Mn1.98Li0.02) O4 comparative sample 16. 该试样由硝酸锂和EMD(电解二氧化锰)作为原料制得。 The sample of lithium nitrate and the EMD (electrolytic manganese dioxide) as raw materials. 以Li/Mn摩尔比1.02/1.98精确称重该硝酸锂和EMD,随后在球磨机中研磨并混合之,接着在600℃煅烧48小时,以获得锂已经熔融浸渍在EMD中的复合氧化物。 In Li / Mn molar ratio of 1.02 / 1.98 and accurately weighed EMD lithium nitrate, followed by a ball mill and mixed, and then calcined at 600 ℃ 48 hours to obtain a lithium composite oxide has been melt impregnation of EMD.

此外,表1中还列出了由固相反应法制得的另一个Li(Mn1.98Li0.02)O4比较试样17。 In addition, Table 1 also shows the comparison O4 another Li (Mn1.98Li0.02) 17 samples by a solid phase reaction method were. 该试样由碳酸锂和碳酸锰作为原料制得。 The sample of lithium carbonate and manganese carbonate as raw materials. 以Li/Mn摩尔比1.02/1.98精确称重该碳酸锂和碳酸锰,随后在球磨机中研磨并混合之,接着在900℃煅烧48小时,以获得复合氧化物。 In Li / molar ratio of Mn 1.02 / 1.98 were accurately weighed and lithium manganese carbonate, and then ground and mixed in a ball mill, and thereafter calcined at 900 ℃ 48 hours to obtain a composite oxide.

上面得到的粉末状复合氧化物的照片是使用扫描电子显微照相法(SEM)获得的,在照片中观察了颗粒的形态并测量了粒径。 Pictures of the powdery complex oxides obtained hereinabove photography using scanning electron microscopy (SEM) is obtained, in a photograph of the morphology of the particles was observed and measured particle size. 另外,使用氮气吸附法获得了各种复合氧化物的比表面积。 Further, the nitrogen adsorption method using a specific surface area obtained various composite oxides. 使用X-射线衍射法(diffractometry)(XRD)分析复合氧化物。 Analysis of the composite oxide using X- ray diffraction (diffractometry) (XRD). 获得的数据列于表1。 The data obtained are shown in Table 1. 在表1中,LM是指试样是尖晶石结构的锂锰复合氧化物并没有任何杂质的衍射图谱。 In Table 1, LM means that the sample was a spinel structure lithium manganese complex oxide is not diffraction patterns of any impurities.

试样的SEM照片列于图1。 SEM photograph of the sample shown in FIG. 由图1可见复合氧化物试样1包括球形的、中空并多孔的由初级颗粒烧结而成的次级颗粒。 1 comprises a spherical, hollow and porous sintered primary particles formed by the secondary particles of composite oxide samples seen from Figure 1. 每个中空、球形次级颗粒的表面具有许多通向其内部的深的孔穴。 Each hollow, spherical secondary particle surface having a plurality of deep pores running into the inside.

接着,将上面制得的粉末状复合氧化物成形成阴极,并评估其成形性。 Next, the above-obtained powdery complex oxide to form a cathode, and to evaluate its formability. 简单地说,将100重量份阴极活性材料(复合氧化物)、5重量份的导体(乙炔黑)和5-20重量份粘合剂(聚四氟乙烯)捏和并成形成片。 Briefly, 100 parts by weight of the cathode active material (complex oxide), 5 parts by weight of a conductor (acetylene black) and 5 to 20 parts by weight of the binder (polytetrafluoroethylene) were kneaded and shaped into sheets. 混合物成形成片的成形性列于表1。 Forming the mixture into a sheet form shown in Table 1. 在表1中,“O”表示混合物很好地形成了片;“P”表示混合物接近形成了片;“X”表示混合物不能形成片。 In Table 1, "O" indicates a mixture of well formed sheet; "P" denotes a mixture is formed near the sheet; "X" indicates the mixture is not formed into a sheet.

表1 Table 1

接着使用上面制得的各种复合氧化物作为阴极活性材料制备蓄电池。 Then using the above prepared complex oxides as cathode active material prepared secondary battery.

确切地说,将100重量份各种复合氧化物、5重量份导体(乙炔黑)和5重量份粘合剂(对试样16和17,使用10重量份粘合剂,因为由表1可见它们的成形性较差)捏和并成形成片。 Precisely, 100 parts by weight of the complex oxides, 5 parts by weight of a conductor (acetylene black), and 5 parts by weight of binder (sample 16 and 17, using 10 parts by weight of the binder, as can be seen from Table 1 their poor moldability) were kneaded and shaped into sheets. 将每种片加压粘附在17mm直径的SUS筛网盘上制成阴极。 Each sheet was attached under pressure made on 17mm diameter disc of SUS mesh of the cathode.

接着,如图2所示,使阴极3的SUS筛网朝外将阴极3和锂金属阳极4(直径17mm,厚0.2mm)复合在一起,其间放入聚丙烯隔离层5,并使阴极3朝下将其装入不锈钢阴极容器1中。 Next, as shown in FIG. 2, the SUS mesh of the cathode 3 facing outward cathode 3 and anode 4 of lithium metal (diameter 17mm, thickness 0.2mm) with a composite, a polypropylene separator 5 therebetween, and a cathode 3 facing downward into a stainless steel container a cathode. 随后使电解液浸入隔离层5。 Then immersed in the electrolyte separator layer 5. 这里所用的电解液是将LiPF6溶解在体积比为1/1的碳酸亚丙酯和1,1-二甲氧基乙烷的混合溶剂中制得的浓度为1M的溶液。 As used herein an electrolyte is a solution 1M LiPF6 dissolved in a volume ratio of 1/1 mixed solvent of propylene carbonate and 1,1-dimethoxyethane is prepared in concentration. 接着借助于绝缘填料6用不锈钢阳极板2密封阴极容器1的开口。 Then by means of the insulating filler opening of a stainless steel anode plate 62 a cathode sealed container 1. 从而获得锂蓄电池。 Thereby obtaining a lithium secondary battery.

接着在充放电电流密度为1.0mA/cm2、最高充电电压为4.3V、截止放电电压为3.0V的条件下对如此获得的锂蓄电池进行200次循环的充放电试验。 Next, in the charge and discharge current density of 1.0mA / cm2, the maximum charge voltage of 4.3V, a discharge cutoff voltage of charge and discharge test of lithium secondary battery thus obtained was subjected to 200 cycles under the conditions of 3.0V. 试验结果列于图3。 Test results are shown in FIG. 在图3中,蓄电池的试样号相同于用作阴极活性材料的复合氧化物的试样号。 In Figure 3, the battery is the same as Sample No. Sample No. used as a composite oxide cathode active material. 由表1和图3的数据可见,含有尖晶石结构的Li(Mn1.98Li0.02)O4(它是由初级颗粒烧结而成的平均粒径为1-5微米、比表面积2-10m2/g的球形中空次级颗粒)作为阴极活性材料的锂蓄电池试样11-13具有高的容量和优良的充放电循环特性。 Table 1 and FIG. 3 is seen from the data, containing a spinel structure Li (Mn1.98Li0.02) O4 (which is formed by sintering of primary particles of an average particle size of 1-5 micrometers and a specific surface area of ​​2-10m2 / g spherical hollow secondary particles) as a cathode active material of a lithium secondary battery having high capacity samples 11-13 and excellent charge-discharge cycle characteristics.

与此相反,对于含有比表面积大于10m2/g的Li(Mn1.98Li0.02)O4颗粒的蓄电池试样14来说,它的充放电循环特征是差的。 In contrast, for the battery of sample containing Li (Mn1.98Li0.02) specific surface area above 10m2 / g of particles O4 14, its charge-discharge cycle characteristics were bad. 这是因为在该蓄电池中复合氧化物颗粒和非水性电解液之间的接触面积太大,导致非水性电解液分解严重。 This is because the battery in the contact area between the complex oxide particles and a non-aqueous electrolyte solution is too large, resulting in serious decomposition of the non-aqueous electrolyte solution. 另一方面,对于含有比表面积小于2m2/g复合氧化物颗粒的蓄电池试样15来说,其容量是低的。 On the other hand, for the battery of sample 15 for containing a surface area less than 2m2 / g of the composite oxide particles, its capacity was low. 这是因为在该蓄电池中复合氧化物颗粒与非水性电解液之间的接触面积太小。 This is because the contact area between the complex oxide particles and the non-aqueous electrolytic solution in this battery was too small.

对复合氧化物Li(Mn1.98Li0.02)O4是松散的而非中空球形颗粒的蓄电池试样16来说,它的容量是低的。 Composite oxide Li (Mn1.98Li0.02) O4 battery of sample No. 16 was bulky but not hollow spherical particles, its capacity was low. 这是因为复合氧化物和非水性电解液之间的接触面积不能大得令人满意,此外,由于材料的成形性差使得难以提高活性材料在阴极中的比例。 This is because the contact area between the complex oxide and the non-aqueous electrolyte solution can not be satisfactorily large, in addition, since the molding material is poor making it difficult to increase the proportion of the active material in the cathode.

蓄电池试样17中的复合氧化物Li(Mn1.98Li0.02)O4如试样16那样是松散的。 Composite oxide sample 17 battery Li (Mn1.98Li0.02) O4 as sample 16 that is loose. 因此,蓄电池试样17的容量是低的并且充放电特性较差。 Thus, the sample capacity of the battery 17 is low and poor charge and discharge characteristics. 这是因为在该蓄电池中复合氧化物和复合氧化物之间的接触面积不能令人满意地大,由于该材料差的成形性使得难以提高该蓄电池阴极中活性材料的比例,另外,由于该氧化物是通过固相反应形成的,所以所用的复合氧化物组合物是不均匀的。 This is because the battery in the contact area between the complex oxide and the composite oxides can not be satisfactorily large, the moldability of the material makes it difficult to increase the ratio of the difference between the battery cathode active material, further, since the oxidation was formed by a solid phase reaction, the used complex oxide composition is not uniform.

实施例2用硝酸锂和硝酸锰作为构成锂锰复合氧化物的金属化合物。 Example 2 A lithium nitrate and manganese nitrate as the metal compound constituting the lithium manganese composite oxide. 精确称重这些硝酸锂和硝酸锰,形成表2所示的通式Li(Mn2-xLix)O4(其中0≤x≤0.1)的各种锂锰复合氧化物,将其置于一容器中,加入1000ml体积比为1/1的水/乙醇的混合液,将其搅拌形成溶液。 Accurately weighed these lithium nitrate and manganese nitrate, forming the formula shown in Table 2 Li (Mn2-xLix) O4 (wherein 0≤x≤0.1) of various lithium manganese composite oxide, which is placed in a container, Add 1000ml volume ratio of 1/1 water / ethanol mixture, which was stirred to form a solution.

随后将得到的溶液以1200ml/小时的速率通过一个喷嘴喷入预定温度为700℃的竖式热分解炉中进行雾化,并在该炉中热解成粉末状复合氧化物。 The resulting solution is then at a rate of 1200ml / hr sprayed through a nozzle into a predetermined temperature is 700 deg.] C in the vertical thermal decomposition furnace atomized and pyrolyzed to obtain a powdery complex oxide in the furnace. 接着将生成的复合氧化物置于一个氧化铝盒子中并在700℃退火2小时。 The resulting composite oxide is then placed in an aluminum box and annealed at 700 ℃ 2 hours. 用这种方法获得表2所示的复合氧化物试样21-28。 Shown in Table 2 is obtained by this method is a composite oxide sample 21-28.

上面得到的粉末状复合氧化物的照片是使用扫描电子显微照相法(SEM)获得的,在照片上测量颗粒的粒径。 Pictures of the powdery complex oxides obtained hereinabove photography using scanning electron microscopy (SEM) obtained by measuring the particle size on the photograph. 另外,使用氮气吸附法获得了各种复合氧化物的比表面积。 Further, the nitrogen adsorption method using a specific surface area obtained various composite oxides. 使用X-射线衍射法(diffractometry)(XRD)鉴别复合氧化物。 Using X- ray diffraction method (diffractometry) (XRD) authentication composite oxide. 获得的数据列于表2。 The data obtained are shown in Table 2. 在表2中,LM是指试样是尖晶石结构的锂锰复合氧化物并没有任何杂质的衍射图谱。 In Table 2, LM means that the sample was a spinel structure lithium manganese complex oxide is not diffraction patterns of any impurities.

表2 Table 2

接着使用上面制得的各种复合氧化物作为阴极活性材料制备蓄电池。 Then using the above prepared complex oxides as cathode active material prepared secondary battery.

确切地说,将100重量份各种复合氧化物、5重量份导体(乙炔黑)和5重量份粘合剂(聚四氟乙烯)捏和并成形成片。 Precisely, 100 parts by weight of the complex oxides, 5 parts by weight of a conductor (acetylene black), and 5 parts by weight of the binder (polytetrafluoroethylene) were kneaded and shaped into sheets. 将每种片加压粘附在17mm直径的SUS筛网盘上制成阴极。 Each sheet was attached under pressure made on 17mm diameter disc of SUS mesh of the cathode.

接着,使用相同于实施例1的方法但使用上面制得的阴极制备锂蓄电池。 Next, a method using the same manner as in Preparation Example 1 but using the cathode prepared above lithium secondary battery. 对这些蓄电池进行与实施例1相同的充放电试验。 The storage battery of Example 1 in the same charge-discharge test. 试验结果列于表3。 Test results are shown in Table 3. 在表3中,蓄电池的试样标号相同于用作阴极活性材料的复合氧化物的试样标号。 In Table 3, the sample numbers batteries are the same as reference sample composite oxide cathode active material.

表3 table 3

由表2和表3的数据明显地可见,将式Li(Mn2-xLix)O4的锂锰复合氧化物中锂对锰的取代程度x限定在大于0(0<x),可防止Jahn-Teller相变,从而防止充放电循环后含有复合氧化物的蓄电池容量的下降,另外,当将取代程度x限定在等于或小于0.10,最好小于0.02时,含复合氧化物的蓄电池可具有更高的初始容量。 Clearly seen from the data of Table 2 and Table 3, the formula Li (Mn2-xLix) O4, lithium manganese composite oxide of lithium manganese degree of substitution x is defined greater than 0 (0 <x), prevented Jahn-Teller phase change, to prevent the reduction of the composite oxide-containing battery capacity after the charge-discharge cycle, Further, when the degree of substitution of less than or equal to x is defined in 0.10, preferably less than 0.02, the composite oxide-containing battery may have a higher The initial capacity. 因此,式Li(Mn2-xLix)O4中的x值宜在0≤x≤0.10,最好在0<x<0.02的范围内。 Thus, the formula Li (Mn2-xLix) O4 in the value of x should be in 0≤x≤0.10, preferably in the range of 0 <x <0.02 in.

在上述各个实施例中,使用尖晶石结构的式Li(Mn2-xLix)O4锂锰复合氧化物作为阴极活性材料。 In each of the above embodiments, a spinel structure of formula Li (Mn2-xLix) O4 lithium manganese composite oxide as a cathode active material. 但是,在本发明中复合氧化物不受此限制。 However, the composite oxide in the present invention is not limited thereto. 任何通过用Cr、Ni、Fe、Co和/或Mg取代部分Mn的位置而衍生自Li(Mn2-xLix)O4的其它尖晶石结构的锂锰复合氧化物也可用于本发明中,并取得相同的结果。 By treatment with any of Cr, Ni, Fe, Co and / or Mg for part of Mn substitution position derived from Li (Mn2-xLix) other lithium manganese composite oxide having a spinel structure O4 can also be used in the present invention, and to obtain the same results.

除了上述实施例中使用的雾化热解法制备阴极活性材料(尖晶石结构的锂锰复合氧化物)以外、本发明中也可使用任何其它方法制备复合氧化物颗粒。 In addition to spray fumed prepared cathode active material (lithium-manganese composite oxide having a spinel structure) used in the above embodiments, the present invention may also be composite oxide particles prepared using any other method. 例如,由湿合成法制得的细颗粒可在雾化干燥器中生长成中空的球形次级颗粒。 For example, by a wet synthesis method, the fine particles may be grown to hollow, spherical secondary particles in a spray dryer.

如上面详细描述的那样,本发明锂蓄电池含有尖晶石结构的复合氧化物作为活性材料,其特征在于所述尖晶石结构的锂锰复合氧化物是中空、球形的由初级颗粒烧结而成的次级颗粒,所述次级颗粒的平均粒径为1-5微米,比表面积为2-10m2/g。 As described above in detail above, the present invention is a lithium secondary battery comprising a composite oxide having a spinel structure as an active material, characterized in that said spinel-structured lithium-manganese complex oxide are hollow, spherical primary particles formed by sintering secondary particles, the secondary particle average particle size of 1-5 micrometers and a specific surface area of ​​2-10m2 / g. 因此,本发明锂蓄电池具有高的容量和优良的充放电循环特性。 Accordingly, the present invention is a lithium secondary battery having high capacity and excellent charge-discharge cycle characteristics.

较好的是,在本发明蓄电池中用作阴极活性材料的复合氧化物由式Li(Mn2-xLix)O4表示,其中0≤x≤0.1,最好0<x<0.02。 Preferably, the cathode active material used in the battery according to the present invention, a composite oxide represented by the formula O4 Li (Mn2-xLix), wherein 0≤x≤0.1, preferably 0 <x <0.02. 使用这种类型的复合氧化物,可使本发明锂蓄电池具有更高的容量和更优良的充放电循环特性。 With this type of composite oxide, the present invention allows a lithium secondary battery having a higher capacity and more excellent charge-discharge cycle characteristics. 另外,任何通过用Cr、Ni、Fe、Co和/或Mg取代部分Mn的位置而衍生自Li(Mn2-xLix)O4的其它尖晶石结构的锂锰复合氧化物也可用于本发明中,并取得相同的结果。 Further, by treatment with any of Cr, Ni, Fe, Co and / or Mg for part of Mn substitution position derived from Li (Mn2-xLix) lithium manganese complex oxide other O4 spinel structure it may also be used in the present invention, and get the same results.

Claims (5)

1.一种锂蓄电池,包括含有尖晶石结构的锂锰复合氧化物作为活性材料的阴极(3),其特征在于所述尖晶石结构的锂锰复合氧化物颗粒是中空、球形颗粒,所述颗粒表面具有许多通向其内部的深的孔穴并且其平均粒径为1-5微米,比表面积为2-10m2/g。 A lithium secondary battery, comprising a lithium manganese composite oxide containing a spinel structure as a cathode active material (3), characterized in that said lithium manganese composite oxide particles of spinel structure is hollow, spherical particles, the particle surface having many deep pores running into the inside of and average particle size of 1-5 micrometers and a specific surface area of ​​2-10m2 / g.
2.如权利要求1所述的锂蓄电池,其特征在于所述尖晶石结构的锂锰复合氧化物由式Li(Mn2-xLix)O4表示,其中0≤x≤0.1。 2. The lithium secondary battery according to claim 1, characterized in that said spinel-structured lithium-manganese complex oxide represented by the formula of O4 Li (Mn2-xLix), wherein 0≤x≤0.1.
3.如权利要求1所述的锂蓄电池,其特征在于所述尖晶石结构的锂锰复合氧化物由式Li(Mn2-xLix)O4表示,其中0<x<0.02。 The lithium secondary battery as claimed in claim 1, characterized in that said spinel-structured lithium-manganese complex oxide represented by the formula of O4 Li (Mn2-xLix), where 0 <x <0.02.
4.如权利要求1所述的锂蓄电池,其特征在于所述尖晶石结构的锂锰复合氧化物由式Li(Mn2-xLix)O4表示,其中0≤x≤0.1,并且Mn部分地被Cr、Ni、Fe、Co或Mg所代替。 The lithium secondary battery according to claim 1, characterized in that said spinel-structured lithium-manganese complex oxide represented by the formula of O4 Li (Mn2-xLix), wherein 0≤x≤0.1, and Mn is partially cr, Ni, Fe, Co or Mg replaced.
5.如权利要求1所述的锂蓄电池,其特征在于所述尖晶石结构的锂锰复合氧化物由式Li(Mn2-xLix)O4表示,其中0<x<0.02,并且Mn部分地被Cr、Ni、Fe、Co或Mg所代替。 The lithium secondary battery according to claim 1, characterized in that said spinel-structured lithium-manganese complex oxide represented by the formula Li (Mn2-xLix) O4, where 0 <x <0.02, and Mn is partially cr, Ni, Fe, Co or Mg replaced.
CN97115403A 1996-07-16 1997-07-15 Lithium battery CN1078749C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20666196 1996-07-16
JP8248673A JP3047827B2 (en) 1996-07-16 1996-08-29 Lithium secondary battery

Publications (2)

Publication Number Publication Date
CN1173746A CN1173746A (en) 1998-02-18
CN1078749C true CN1078749C (en) 2002-01-30

Family

ID=26515783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97115403A CN1078749C (en) 1996-07-16 1997-07-15 Lithium battery

Country Status (6)

Country Link
US (1) US6270924B1 (en)
EP (1) EP0820113B1 (en)
JP (1) JP3047827B2 (en)
CN (1) CN1078749C (en)
CA (1) CA2209531C (en)
DE (2) DE69700091T2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976489A (en) * 1996-04-10 1999-11-02 Valence Technology, Inc. Method for preparing lithium manganese oxide compounds
JP3221352B2 (en) 1996-06-17 2001-10-22 株式会社村田製作所 Method for producing a spinel-type lithium manganese complex oxide
US6270926B1 (en) 1996-07-16 2001-08-07 Murata Manufacturing Co., Ltd. Lithium secondary battery
JPH10255804A (en) * 1997-01-07 1998-09-25 Murata Mfg Co Ltd Lithium secondary battery
DE19727611A1 (en) * 1997-06-28 1999-02-04 Merck Patent Gmbh Process for the preparation of lithium manganese mixed oxides and their use
JPH11278848A (en) * 1998-03-26 1999-10-12 Murata Mfg Co Ltd Production of spinel type lithium manganese multiple oxide
JP3526223B2 (en) 1998-09-17 2004-05-10 日本碍子株式会社 Lithium secondary battery
US6136287A (en) * 1998-11-09 2000-10-24 Nanogram Corporation Lithium manganese oxides and batteries
US6607706B1 (en) 1998-11-09 2003-08-19 Nanogram Corporation Composite metal oxide particles
US6506493B1 (en) 1998-11-09 2003-01-14 Nanogram Corporation Metal oxide particles
JP2000169150A (en) * 1998-12-02 2000-06-20 Murata Mfg Co Ltd Spinel type lithium manganese double oxide and lithium secondary cell
JP2000251894A (en) * 1998-12-29 2000-09-14 Hitachi Maxell Ltd Nonaqueous secondary battery, and usage thereof
US6322744B1 (en) 1999-02-17 2001-11-27 Valence Technology, Inc. Lithium manganese oxide-based active material
EP1049187A3 (en) * 1999-04-27 2004-04-28 Hitachi, Ltd. Lithium secondary battery
US6482374B1 (en) 1999-06-16 2002-11-19 Nanogram Corporation Methods for producing lithium metal oxide particles
US6749648B1 (en) 2000-06-19 2004-06-15 Nanagram Corporation Lithium metal oxides
US6706446B2 (en) * 2000-12-26 2004-03-16 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
JP2003203632A (en) * 2002-01-09 2003-07-18 Hitachi Ltd Positive electrode active material for lithium secondary battery and its manufacturing method, lithium secondary battery using the same, and battery pack module
JP4740409B2 (en) * 2003-06-11 2011-08-03 新神戸電機株式会社 Lithium secondary battery for electric vehicle or hybrid vehicle
JP5098192B2 (en) * 2005-06-29 2012-12-12 パナソニック株式会社 Composite particle for lithium secondary battery, its manufacturing method, and lithium secondary battery using the same
US7682741B2 (en) 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
JP5166850B2 (en) * 2007-12-25 2013-03-21 花王株式会社 Method for producing sintered composite metal oxide
EP2239230A4 (en) 2007-12-25 2017-01-04 Kao Corporation Burned composite metal oxide and process for producing the same
JP5208492B2 (en) * 2007-12-25 2013-06-12 花王株式会社 Composite metal oxide fired body
CN101335348B (en) * 2008-07-18 2010-06-02 清华大学 Preparing method of lithium ionic cell 5V anode material spherical LiNi0.5Mn1.5O4
WO2010101307A2 (en) * 2009-06-25 2010-09-10 日本碍子株式会社 Positive electrode active material and lithium secondary battery using same
EP2447214A2 (en) * 2009-06-25 2012-05-02 NGK Insulators, Ltd. Positive electrode active material and lithium secondary battery
US20110003206A1 (en) * 2009-09-29 2011-01-06 Ngk Insulators, Ltd. Positive electrode active element and lithium secondary battery
JP5175826B2 (en) 2009-12-02 2013-04-03 トヨタ自動車株式会社 Active material particles and use thereof
JP2011016718A (en) * 2010-09-06 2011-01-27 Kyocera Corp Inorganic hollow powder and method for manufacturing the same
US9184442B2 (en) * 2010-11-12 2015-11-10 Toyota Jidosha Kabushiki Kaisha Secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012676A1 (en) * 1994-10-19 1996-05-02 Valence Technology, Inc. Lithium manganese oxide, method of preparation and uses thereof

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567031A (en) 1983-12-27 1986-01-28 Combustion Engineering, Inc. Process for preparing mixed metal oxides
GB2210605B (en) 1987-10-05 1991-06-26 Merck Patent Gmbh Process for the preparation of metal oxide powders
US5081102A (en) 1988-11-09 1992-01-14 Rockwell International Corporation Preparation of precursor superconductor metal oxide powders by spray calcination from atomized nitrate solution
US5264201A (en) 1990-07-23 1993-11-23 Her Majesty The Queen In Right Of The Province Of British Columbia Lithiated nickel dioxide and secondary cells prepared therefrom
US5122505A (en) 1990-10-01 1992-06-16 Sri International Carbonate-free inorganic nitrates or oxides and process thereof
US5110696A (en) 1990-11-09 1992-05-05 Bell Communications Research Rechargeable lithiated thin film intercalation electrode battery
US5135732A (en) * 1991-04-23 1992-08-04 Bell Communications Research, Inc. Method for preparation of LiMn2 O4 intercalation compounds and use thereof in secondary lithium batteries
JPH05299092A (en) 1992-01-17 1993-11-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic lithium secondary battery and manufacture thereof
CA2096386A1 (en) 1992-05-18 1993-11-19 Masahiro Kamauchi Lithium secondary battery
DE69314088D1 (en) 1992-06-04 1997-10-30 Matsushita Electric Ind Co Ltd The positive electrode for lithium secondary battery and methods for its preparation and a non-aqueous electrolyte lithium secondary battery using the same
JPH0660887A (en) 1992-08-06 1994-03-04 Sanyo Electric Co Ltd Nonaqueous battery
JPH08507745A (en) * 1993-03-17 1996-08-20 アルトラライフ バッテリーズ (ユーケー) リミテッド Method for producing a lithium manganate and lithium manganate produced by this method
JP2729176B2 (en) 1993-04-01 1998-03-18 富士化学工業株式会社 Lim3 + O2 or LiMn2 O4 preparation and a secondary battery positive electrode material for a LiNi3 + O2
FR2704216A1 (en) 1993-04-23 1994-10-28 Centre Nat Rech Scient Electrode materials for rechargeable lithium batteries and their method of synthesis
JP3276451B2 (en) * 1993-05-20 2002-04-22 新神戸電機株式会社 Lithium battery
DE69416640D1 (en) 1993-05-31 1999-04-01 Hitachi Maxell Lithium secondary cell with organic electrolyte, active material for positive electrode of a li-secondary cell and method for manufacturing the active material
JPH076764A (en) 1993-06-21 1995-01-10 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
US5496664A (en) 1993-08-18 1996-03-05 Varta Batterie Aktiengesellschaft Process for producing a positive electrode for lithium secondary batteries
US5742070A (en) 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
WO1995009449A1 (en) 1993-09-27 1995-04-06 Arthur D. Little, Inc. Small particle electrodes by aerosol process
CA2114493C (en) 1994-01-28 1999-01-12 E-One Moli Energy (Canada) Limited Method for increasing the reversible capacity of lithium transition metal oxide cathodes
WO1995034919A1 (en) * 1994-06-10 1995-12-21 Danionics A/S A cathode material for lithium secondary batteries and a process and a precursor material for the production thereof
FR2721308B1 (en) 1994-06-21 1996-10-11 Commissariat Energie Atomique insertion compounds based on manganese oxide used as a positive electrode in a lithium battery.
JP3067531B2 (en) 1994-07-13 2000-07-17 松下電器産業株式会社 Nonaqueous positive electrode active material and a battery using the electrolytic solution secondary battery
JP3427570B2 (en) 1994-10-26 2003-07-22 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP3451763B2 (en) * 1994-11-29 2003-09-29 ソニー株式会社 Manufacturing method of positive electrode active material
DE69502690T2 (en) 1994-12-16 1998-11-26 Matsushita Electric Ind Co Ltd A process for producing positive active material for lithium secondary batteries containing them and secondary cells
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
JP3581474B2 (en) * 1995-03-17 2004-10-27 キヤノン株式会社 Secondary battery using lithium
US5702679A (en) 1995-10-06 1997-12-30 Kerr-Mcgee Chemical Corp. Method of preparing Li1+X- Mn2-X O4 for use as secondary battery
CA2163695C (en) * 1995-11-24 2000-08-01 Qiming Zhong Method for preparing li1+xmn2-x-ymyo4 for use in lithium batteries
US5792442A (en) 1995-12-05 1998-08-11 Fmc Corporation Highly homogeneous spinel Li1+X Mn2-X O4 intercalation compounds and method for preparing same
AT195495T (en) * 1996-04-05 2000-09-15 Fmc Corp -Spinelleinlagerungsverbindungen method for producing Li (1 + x) Mn (2-x) 0 (4 + y)
US5718877A (en) 1996-06-18 1998-02-17 Fmc Corporation Highly homogeneous spinal Li1+x Mn2-x O4+y intercalation compounds and method for preparing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012676A1 (en) * 1994-10-19 1996-05-02 Valence Technology, Inc. Lithium manganese oxide, method of preparation and uses thereof

Also Published As

Publication number Publication date
JPH1083816A (en) 1998-03-31
EP0820113A1 (en) 1998-01-21
EP0820113B1 (en) 1999-01-07
JP3047827B2 (en) 2000-06-05
US6270924B1 (en) 2001-08-07
CA2209531A1 (en) 1998-01-16
CA2209531C (en) 2002-05-21
CN1173746A (en) 1998-02-18
DE69700091T2 (en) 1999-05-27
KR980012678A (en) 1998-04-30
DE69700091D1 (en) 1999-02-18

Similar Documents

Publication Publication Date Title
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
US10297822B2 (en) Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
US9847526B2 (en) Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US7981547B2 (en) Process for positive electrode active substance for lithium secondary battery
US9249034B2 (en) Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
US7785742B2 (en) Lithium-nickel-cobalt-manganese containing composite oxide
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP5044467B2 (en) Lithium transition metal composite oxide
EP1742281B1 (en) Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
JP4954451B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
ES2584027T3 (en) Li-Ni complex oxide particle powder for a secondary non-aqueous electrolyte battery, process for its production, and secondary non-aqueous electrolyte battery
ES2599646T3 (en) Active substance precursor particle powder for an active electrode, active substance particle powder for a positive electrode and secondary non-aqueous electrolyte battery
CN100334758C (en) Positive electrode active material powder for lithium secondary battery
US8821766B2 (en) Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
US8021785B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and its production method
US7316865B2 (en) Active material for lithium secondary battery and method of preparing active material
CN1242504C (en) Active positive electrode material and non-aqueous electrolyte secondary battery with the material
CN1329307C (en) Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
US7504180B2 (en) Positive electrode material for lithium secondary battery and process for producing the same
CN1287474C (en) Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US6753112B2 (en) Positive electrode active material and non-aqueous secondary battery using the same
CN100353596C (en) Positive electrode active material for lithium secondary cell and lithium secondary cell
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP4666653B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
CA2341751C (en) Nonaqueous electrolyte solution secondary battery

Legal Events

Date Code Title Description
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
PB01 Publication
C06 Publication
GR01 Patent grant
C14 Grant of patent or utility model
CX01 Expiry of patent term

Granted publication date: 20020130

CX01 Expiry of patent term