CN107871057B - 一种两级入轨可重复使用飞行器规模估算方法 - Google Patents

一种两级入轨可重复使用飞行器规模估算方法 Download PDF

Info

Publication number
CN107871057B
CN107871057B CN201711145852.XA CN201711145852A CN107871057B CN 107871057 B CN107871057 B CN 107871057B CN 201711145852 A CN201711145852 A CN 201711145852A CN 107871057 B CN107871057 B CN 107871057B
Authority
CN
China
Prior art keywords
stage
mass
aircraft
propellant
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711145852.XA
Other languages
English (en)
Other versions
CN107871057A (zh
Inventor
刘磊
杨肖锋
唐伟
肖光明
魏东
刘深深
冯毅
杜雁霞
桂业伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Computational Aerodynamics Institute of China Aerodynamics Research and Development Center
Original Assignee
Computational Aerodynamics Institute of China Aerodynamics Research and Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Computational Aerodynamics Institute of China Aerodynamics Research and Development Center filed Critical Computational Aerodynamics Institute of China Aerodynamics Research and Development Center
Priority to CN201711145852.XA priority Critical patent/CN107871057B/zh
Publication of CN107871057A publication Critical patent/CN107871057A/zh
Application granted granted Critical
Publication of CN107871057B publication Critical patent/CN107871057B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Feedback Control In General (AREA)
  • Testing Of Engines (AREA)

Abstract

本发明公开了一种两级入轨可重复使用飞行器规模估算方法,包括如下步骤:步骤一、计算预设尺寸下飞行器的第二级结构质量;步骤二、计算第二级所需推进剂质量;步骤三、在第二级结构有效容积足够装载第二级推进剂和有效载荷后得到第二级结构尺寸和质量规模参数;步骤四、计算预设尺寸下飞行器的第一级结构质量;步骤五、计算第一级所需推进剂质量;步骤六、在第一级结构有效容积足够装载第一级推进剂后得到第一级结构尺寸和质量规模参数。本发明方法可系统评估两级入轨可重复使用飞行器在符合入轨需求情况下的结构规模,并可用于分析发动机、燃料、轨道等不同因素对整体结构尺寸和质量规模的影响。

Description

一种两级入轨可重复使用飞行器规模估算方法
技术领域
本发明涉及一种两级入轨可重复使用飞行器规模估算方法。
背景技术
为进一步降低太空运输成本和提高运输可靠性,世界各国都在重点发展可重复使用飞行器并提出了多种单级入轨和两级入轨方案。目前,国内外尚无适合于两级入轨系统完整概念的规模评估方法。现有可计算飞行器一定尺寸下质量的方法无法评估飞行器可否入轨,而可计算入轨飞行器总质量的方法则无法评估飞行器尺寸。本方法使用总体参数回归分析方法获得结构的质量和容积规模,通过逆向分析在考虑发动机不同模态性能和飞行器推阻特性的情况下,基于运载能力同时开展飞行器尺寸和质量规模估算。该方法对进一步开展两级入轨可重复使用飞行器方案设计具有重要参考意义。
发明内容
为了克服现有技术的上述缺点,本发明提出了一种两级入轨可重复使用飞行器规模估算方法。
本发明解决其技术问题所采用的技术方案是:一种两级入轨可重复使用飞行器规模估算方法,包括如下步骤:
步骤一、计算预设尺寸下飞行器的第二级结构质量;
步骤二、以载荷质量和第二级结构质量为基础,利用飞行器的加速过程与推进剂消耗量的关系计算第二级所需推进剂质量,然后确定第二级推进剂体积;
步骤三、判断第二级结构有效容积是否足够装载第二级推进剂和有效载荷:如果否,则改变第二级结构尺寸后返回第一步;如果是,则得到第二级结构尺寸和质量规模参数;
步骤四、计算预设尺寸下飞行器的第一级结构质量;
步骤五、以第一级结构质量为基础,利用飞行器的加速过程与推进剂消耗量的关系计算第一级所需推进剂质量,然后确定第一级推进剂体积;
步骤六、判断第一级结构有效容积是否足够装载第一级推进剂:如果否,则改变第一级结构尺寸后返回第四步;如果是,则得到第一级结构尺寸和质量规模参数。
与现有技术相比,本发明的积极效果是:本发明方法可系统评估两级入轨可重复使用飞行器在符合入轨需求情况下的结构规模,并可用于分析发动机、燃料、轨道等不同因素对整体结构尺寸和质量规模的影响。为开展两级入轨可重复使用飞行器设计提供了理论依据,也有助于对可重复使用运载器总体设计方案开展进一步优化。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明方法的总体流程图。
具体实施方式
一种两级入轨可重复使用飞行器规模估算方法,包括如下内容:
本方法首先确定飞行任务的载荷质量和载荷体积,根据入轨需求和飞行剖面,从第二级的规模预测出发,建立各级飞行器外形、燃料、动力、结构质量等总体参数间的关联,最终获得具有实际参考意义的两级入轨全系统规模的评估方法。具体步骤包括:
(1)基于已发展的多型可重复使用航天运载器的总体参数,形成各部件基于尺寸的结构质量计算公式:
机身质量:
Figure BDA0001472431250000031
机翼质量:
Figure BDA0001472431250000032
垂尾质量:
Figure BDA0001472431250000033
热防护系统:
Figure BDA0001472431250000034
其中,Abody为机身表面积,bstr为半弦长位置机翼展长,bbody为机身最大宽度,bvert为尾翼展长,Mland为着陆质量,Nz为极限过载,Sbody为机身投影面积,Sexp为机翼外露面积,Svert为垂尾面积,Sbf为体襟翼面积,troot为翼根厚度,(t/c)vert为尾翼翼型相对厚度,η为机翼效率因子,Kwing为机翼材料常数,Kct为翼面通过常数。
由此,基于初始着陆质量Mland,可获得当前尺寸下的飞行器第二级结构质量。
(2)以载荷质量和计算得到的第二级结构质量为基础,通过分析飞行器的加速过程与推进剂消耗量的关系计算第二级所需推进剂质量。用发动机比冲表示推力可建立飞行器加速运动一般方程:
Figure BDA0001472431250000035
式中,m为飞行器质量;V为飞行器速度;T为发动机推力;D为飞行器阻力;g为重力加速度;γ为飞行器爬升角。
记飞行开始时的速度和高度分别为V1和H1,结束时的速度和高度分别为V2和H2。由于第二级为火箭推进且飞行器推阻比极大,在飞行过程中比冲Isp近似恒定,由式(5)积分可得
Figure BDA0001472431250000041
式中,μ为飞行器总质量和发动机结束工作后的剩余质量之比;△V=V2-V1为飞行器速度增量;△Vg=2g(H2-H1)/(V1+V2)为重力损失量或势能增加量。
根据预设的发动机性能和飞行剖面即可确定以上T、D、V1、V2、H1、H2和Isp等参数。由此,可计算第二级所需推进剂质量。
根据任务需求,在给定着陆时推进剂剩余百分比(本处取10%)和计算得到的第二级结构质量基础上,重复步骤(1)以更新着陆质量Mland(着陆质量Mland为剩余推进剂质量和结构质量之和)。由此,通过增大或缩小飞行器结构尺寸,循环迭代(图1中循环1)至着陆质量Mland不再变化。
再根据结构尺寸得到的结构有效容积,判断该容积是否足够装载第二级推进剂和有效载荷,并进行循环迭代(图1中循环2)以寻求使飞行器有效容积等于推进剂体积和有效载荷体积之和时的结构尺寸。由此,最终获得第二级结构尺寸和质量规模参数。
(3)与步骤(1)相似,考虑到一级需背负大质量的第二级飞行器,同时需达到相当的飞行高度和飞行速度。基于现有航空运载器各部分结构质量的统计数据,采用基于尺寸的结构质量评估方法:
机身质量:
Figure BDA0001472431250000042
机翼质量:
Figure BDA0001472431250000043
垂尾质量:
Figure BDA0001472431250000051
着陆质量:Mlg=62.21(MTO×10-3)0.84 (10)
其中,A为展弦比,D为机身高度,L为机身长度,Ma为马赫数,Nz为极限过载,Srud为方向舵面积,Sscw为操纵面总面积,Svert为垂尾面积,Sw为梯形机翼面积,(t/c)root为翼型相对厚度,W为机身宽度,MTO为起飞质量,λ为机翼尖梢比,Λ为25%MAC机翼后掠角,Λvert为25%MAC垂尾后掠角,Rvert为尾翼尖梢比。
由此,基于初始起飞质量MTO,可获得当前尺寸下的飞行器第一级结构质量。
(4)在计入第二级结构质量的基础上,采用与步骤(2)类似方法,通过分析飞行器的加速过程与推进剂消耗量的关系计算第一级所需推进剂质量。与火箭发动机不同,涡喷、亚燃冲压和超燃冲压等吸气式推进模态,飞行器推阻比较小,阻力损失不可忽略,且比冲Isp也不再为常数,采用火箭推进模态的计算方法将不再适宜。本方法在式(5)的基础上引入发动机功率TV的概念:
Figure BDA0001472431250000052
式中,
Figure BDA0001472431250000053
此时,Ieff可理解为吸气推进模态下燃料的等效比冲。
根据预设的发动机性能和飞行剖面即可确定以上T、D、V1、V2、H1、H2和Isp等参数。由此,可计算第一级所需推进剂质量。
在此基础上,更新起飞质量MTO(第二级质量、第一级结构质量和第一级推进剂质量之和),并通过增大或缩小飞行器结构尺寸,重复步骤(3)循环迭代(图1中循环3)至起飞质量MTO不再变化。
再根据结构尺寸获得的结构有效容积,判断该容积是否足够装载第一级推进剂,并进行循环迭代以寻求使飞行器有效容积等于推进剂体积时的结构尺寸。由此,获得第一级飞行器结构尺寸和质量规模参数。

Claims (8)

1.一种两级入轨可重复使用飞行器规模估算方法,其特征在于:包括如下步骤:
步骤一、计算预设尺寸下飞行器的第二级结构质量;
步骤二、以载荷质量和第二级结构质量为基础,利用飞行器的加速过程与推进剂消耗量的关系计算第二级所需推进剂质量,然后确定第二级推进剂体积;
步骤三、判断第二级结构有效容积是否足够装载第二级推进剂和有效载荷:如果否,则改变第二级结构尺寸后返回第一步;如果是,则得到第二级结构尺寸和质量规模参数;
步骤四、计算预设尺寸下飞行器的第一级结构质量;
步骤五、以第一级结构质量为基础,利用飞行器的加速过程与推进剂消耗量的关系计算第一级所需推进剂质量,然后确定第一级推进剂体积;
步骤六、判断第一级结构有效容积是否足够装载第一级推进剂:如果否,则改变第一级结构尺寸后返回第四步;如果是,则得到第一级结构尺寸和质量规模参数。
2.根据权利要求1所述的一种两级入轨可重复使用飞行器规模估算方法,其特征在于:所述第二级结构质量的计算公式如下:
机身质量:
Figure FDA0002944111850000011
机翼质量:
Figure FDA0002944111850000012
垂尾质量:
Figure FDA0002944111850000013
热防护系统:
Figure FDA0002944111850000021
其中,Abody为机身表面积,bstr为半弦长位置机翼展长,bbody为机身最大宽度,bvert为尾翼展长,Mland为着陆质量,Nz为极限过载,Sbody为机身投影面积,Sexp为机翼外露面积,Svert为垂尾面积,Sbf为体襟翼面积,troot为翼根厚度,(t/c)vert为尾翼翼型相对厚度,η为机翼效率因子,Kwing为机翼材料常数,Kct为翼面通过常数。
3.根据权利要求2所述的一种两级入轨可重复使用飞行器规模估算方法,其特征在于:在计算出第二级所需推进剂质量、确定第二级推进剂体积之前,先判断着陆质量是否收敛:如果收敛,则直接由第二级所需推进剂质量确定第二级推进剂体积;如果不收敛,则改变第二级结构尺寸后返回第一步。
4.根据权利要求1所述的一种两级入轨可重复使用飞行器规模估算方法,其特征在于:所述第一级结构质量的计算公式如下:
机身质量:
Figure FDA0002944111850000022
机翼质量:
Figure FDA0002944111850000023
垂尾质量:
Figure FDA0002944111850000024
着陆质量:Mlg=62.21(MTO×10-3)0.84
其中,A为展弦比,D为机身高度,L为机身长度,Ma为马赫数,Nz为极限过载,Srud为方向舵面积,Sscw为操纵面总面积,Svert为垂尾面积,Sw为梯形机翼面积,(t/c)root为翼型相对厚度,W为机身宽度,MTO为起飞质量,λ为机翼尖梢比,Λ为25%MAC机翼后掠角,Λvert为25%MAC垂尾后掠角,Rvert为尾翼尖梢比,bvert为尾翼展长。
5.根据权利要求4所述的一种两级入轨可重复使用飞行器规模估算方法,其特征在于:所述起飞质量等于第二级结构质量、第一级结构质量和第一级推进剂质量之和。
6.根据权利要求5所述的一种两级入轨可重复使用飞行器规模估算方法,其特征在于:在计算出第一级所需推进剂质量、确定第一级推进剂体积之前,先判断起飞质量是否收敛:如果收敛,则直接由第一级所需推进剂质量确定第一级推进剂体积;如果不收敛,则改变第一级结构尺寸后返回第四步。
7.根据权利要求1所述的一种两级入轨可重复使用飞行器规模估算方法,其特征在于:计算第二级所需推进剂质量的方法为:
(1)建立飞行器加速运动方程:
Figure FDA0002944111850000031
式中,m为飞行器质量,V为飞行器速度,T为发动机推力,D为飞行器阻力,g为重力加速度,γ为飞行器爬升角,Isp为发动机比冲;
(2)对飞行器加速运动方程积分得到:
Figure FDA0002944111850000032
式中,μ为飞行器总质量和发动机结束工作后的剩余质量之比,ΔV=V2-V1为飞行器速度增量,ΔVg=2g(H2-H1)/(V1+V2)为重力损失量或势能增加量,V1和H1分别表示飞行开始时的速度和高度,V2和H2分别表示结束时的速度和高度;
(3)根据预设的发动机性能和飞行剖面确定参数T、D、V1、V2、H1、H2和Isp,由此计算得到第二级所需推进剂质量。
8.根据权利要求7所述的一种两级入轨可重复使用飞行器规模估算方法,其特征在于:计算第一级所需推进剂质量的方法为:
(1)建立飞行器加速运动方程:
Figure FDA0002944111850000041
式中,Ieff为吸气推进模态下燃料的等效比冲;
(2)对飞行器加速运动方程积分得到:
Figure FDA0002944111850000042
式中,
Figure FDA0002944111850000043
式中,η为机翼效率因子;
(3)根据预设的发动机性能和飞行剖面确定参数T、D、V1、V2、H1、H2和Ieff,由此计算得到第一级所需推进剂质量。
CN201711145852.XA 2017-11-17 2017-11-17 一种两级入轨可重复使用飞行器规模估算方法 Active CN107871057B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711145852.XA CN107871057B (zh) 2017-11-17 2017-11-17 一种两级入轨可重复使用飞行器规模估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711145852.XA CN107871057B (zh) 2017-11-17 2017-11-17 一种两级入轨可重复使用飞行器规模估算方法

Publications (2)

Publication Number Publication Date
CN107871057A CN107871057A (zh) 2018-04-03
CN107871057B true CN107871057B (zh) 2021-04-13

Family

ID=61754009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711145852.XA Active CN107871057B (zh) 2017-11-17 2017-11-17 一种两级入轨可重复使用飞行器规模估算方法

Country Status (1)

Country Link
CN (1) CN107871057B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423196A (zh) * 2018-04-08 2018-08-21 中国人民解放军战略支援部队航天工程大学 第一级能重复使用的两级入轨航天器的入轨方法
CN114313324B (zh) * 2022-01-26 2022-07-29 中国科学院力学研究所 一种两级入轨飞行器水平级间分离风洞实验组合结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773883A1 (en) * 1994-08-01 1997-05-21 Patrick J. G. Stiennon Two stage launch vehicle and launch trajectory method
CN101068714A (zh) * 2004-12-09 2007-11-07 空中客车法国公司 超级运输飞行器
CN105005643A (zh) * 2015-06-26 2015-10-28 北京航空航天大学 一种载人登月质量规模估算的方法与系统
CN106288980A (zh) * 2016-08-09 2017-01-04 西北工业大学 一种基于rbcc动力的三级运载器及其使用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253882A (ja) * 1984-05-30 1985-12-14 Fujitsu Ltd 短絡個所検出器
CN106134368B (zh) * 2011-06-28 2014-10-22 上海空间推进研究所 一种提升空间飞行器推进剂携带量的方法
CN105620793B (zh) * 2015-12-21 2018-01-19 南京航空航天大学 一种以空间固体物质为工质的太空推进装置及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773883A1 (en) * 1994-08-01 1997-05-21 Patrick J. G. Stiennon Two stage launch vehicle and launch trajectory method
CN101068714A (zh) * 2004-12-09 2007-11-07 空中客车法国公司 超级运输飞行器
CN105005643A (zh) * 2015-06-26 2015-10-28 北京航空航天大学 一种载人登月质量规模估算的方法与系统
CN106288980A (zh) * 2016-08-09 2017-01-04 西北工业大学 一种基于rbcc动力的三级运载器及其使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Optimal input design for aircraft parameter estimation;carine jauberthie et al.;《aerospace science and technology》;20060531;第10卷(第4期);第331-337页 *
Simulation and analyses of stage separation of two-stage reusable launchi vehicles;bandu N.pamadi et al.;《journal of spacecraft and rockets》;20120523;第44卷(第1期);第66页 *

Also Published As

Publication number Publication date
CN107871057A (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
Nickol et al. Assessment of the Performance Potential of Advanced Subsonic Transport Concepts for NASA’ s Environmentally Responsible Aviation Project
CN108216679B (zh) 一种太阳能无人机总体参数确定方法及系统
Werner-Westphal et al. Multidisciplinary integrated preliminary design applied to unconventional aircraft configurations
CN112528478B (zh) 一种无人机阵风载荷谱快速编制方法
EP3499391A1 (en) Automatic aircraft design optimization based on joint aero-dynamic, structural, and energy performance
CN107871057B (zh) 一种两级入轨可重复使用飞行器规模估算方法
Minardo The tandem wing: theory, experiments and practical realisations
Fujikawa et al. Multidisciplinary design optimization of a two-stage-to-orbit reusable launch vehicle with ethanol-fueled rocket-based combined cycle engines
Paletta et al. Load alleviation on a joined-wing unmanned aircraft
D’Oriano et al. Aerothermodynamic study of a small hypersonic plane
Petersen et al. Some comparisons of turboramjet-powered hypersonic aircraft for cruise and boost missions.
KR101472388B1 (ko) 외부 무장에 따른 경무장 헬기의 공력특성 및 성능예측장치
Wolkovitch Joined-wing research airplane feasibility study
Ricci et al. Development of a wind tunnel model for active flutter suppression studies
Boeswald et al. Solar Impulse-Ground vibration testing and finite element model validation of a lightweight aircraft
Zeune An overview of the Air Force's speed agile concept demonstration program
Mermer Conceptual design of a hybrid (turbofan/solar) powered HALE UAV
Savino et al. HyPlane for space tourism and business transportation
Galiński et al. The concept of the joined wing scaled demonstrator programme
Ferreira Conceptual Design of a Manned Reconnaissance Airplane for Martian Atmospheric Flight
Rohrschneider et al. Flight system options for a long-duration mars airplane
Cipolla et al. Design of solar powered unmanned biplanes for hale missions
Ibren et al. Roll Control Reversal of Variable Swept Wing in Supersonic Flow
Hu et al. High Speed Aircraft/Combined Power Integration Analysis
Van Zante Progress in open rotor research

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant