CN107870188B - 检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途 - Google Patents

检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途 Download PDF

Info

Publication number
CN107870188B
CN107870188B CN201610847435.9A CN201610847435A CN107870188B CN 107870188 B CN107870188 B CN 107870188B CN 201610847435 A CN201610847435 A CN 201610847435A CN 107870188 B CN107870188 B CN 107870188B
Authority
CN
China
Prior art keywords
capillary
electrode
composite
conductive
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610847435.9A
Other languages
English (en)
Other versions
CN107870188A (zh
Inventor
江德臣
潘荣容
陈洪渊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201610847435.9A priority Critical patent/CN107870188B/zh
Priority to PCT/CN2017/102648 priority patent/WO2018054320A1/zh
Publication of CN107870188A publication Critical patent/CN107870188A/zh
Application granted granted Critical
Publication of CN107870188B publication Critical patent/CN107870188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Abstract

本发明涉及检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途。具体而言,本发明所述的检测试剂盒包含:含有非导电性毛细管、Pt层和绝缘层的复合毛细管,第二电极以及检测试剂。本发明所述的分析系统包含通过导电线相互连接的检测试剂盒、电量计和电源。本发明所述的分析系统构造更加简单,同时实现了对单个细胞内的分析物(包括小分子和蛋白质)的精确测量。

Description

检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它 们的用途
技术领域
本发明属于生化检测领域。具体而言,本发明涉及一种用于检测单个细胞内的分析物的检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途。
背景技术
目前的研究(例如,Schubert C,Nature,2011,480(7375):133-137)表明,分析单个细胞内的小分子和蛋白质等对于理解与细胞异质性和疾病状态相关的通路来说是很关键的。为了实现这一目的,现有技术中开发出了大量的荧光探针,该荧光探针能够在结合至靶分子时发出特定波长的荧光,这促进了我们对细胞内信号传导的了解。然而,现有的荧光检测技术在细胞毒性和结构化需求方面存在缺陷。对于荧光标记的蛋白质来说,关于该蛋白改变的化学结构对细胞过程的影响的问题使得本领域技术人员开始开发用于细胞分析的新的分析技术。由于蛋白的局部环境能够显著改变其活性,有必要研究蛋白与其生理伴侣的相互作用以了解该蛋白在细胞通路中的作用。毛细管微米/纳米制造技术的出现使得能够研究靶标物质的化学反应性。例如,Lee CL等,Nat.Biotechnol.,1999,17(8):759-762和Meredith GD等,Nat.Biotechnol.,2000,18(3):309-312等中公开了利用毛细管电泳分析胞内激酶活性的方法。开发出更小且更精细的装置来表征细胞化合物的特性(例如浓度、活性、反应性等)将有助于我们更好地理解细胞异质性和信号传导等。
在生物领域,用于测量小分子和蛋白质等的基于试剂盒的分析技术已得到了长足的发展。试剂盒的组分使得能够将靶蛋白的底物或小分子转化为产物和副产物,以直接进行检测。并且,与上述的荧光检测相比,试剂盒通常使用高度特异性的可商购的酶用于对小分子和蛋白质的活性进行检测,从而避免了用于单个分子的荧光探针的结构设计。因此,基于试剂盒的分析能够对单个细胞中的物质提供特异性检测,从而促进了单个细胞的分析。
对于单个细胞包含的内容物的检测而言,由于细胞本身的尺寸限制,往往需要采用纳米尺寸的设备/装置以实现检测目的。例如,Orane GG等,Cell,2016,166:506-516公开了一种纳米注射器用于提取单个活细胞中的内容物,然而通过该纳米注射器得到的内容物并不能反映出单个细胞内的物质的实时状态。类似地,美国专利申请US 20080044911A1中公开了一种基于化学场效晶体管的纳米生物传感器,其中,该纳米生物传感器包含纳米导线以及含有官能化和或非官能化的纳米导线的纳米导线阵列,可通过例如热裂解细胞来检测一种或多种细胞组分等。
对于其它类型的用于检测细胞内的物质的纳米设备/装置,本领域技术人员也进行了诸多尝试,例如,中国专利申请CN 103616361A中公开了一种荧光葡萄糖纳米生物传感器用于检测细胞内的葡萄糖浓度,其中,该纳米生物传感器包括荧光氧气纳米粒子及偶联至该纳米粒子的葡萄糖氧化酶。正如上文所述,由于该纳米生物传感器中的葡萄糖氧化酶需要偶联荧光氧气纳米粒子,使得有可能在一些环境中影响葡萄糖氧化酶的反应性和活性。国际专利申请WO 2016138116A1公开了一种用于测量单个细胞内的pH的纳米传感器,其中,该纳米传感器包含纳米移液管结构(该纳米移液管结构可操作地连接至显微操作器和传感装置,并且其中包含工作电极和聚合物涂层)、放大器电路以及逻辑电路等。Alimujiang F等,Sensors and Actuators B,2010,150:673-680公开了一种基于硼硅酸玻璃毛细管管头上生成的ZnO纳米片的胞内葡萄糖生物传感器,用于测量人脂肪细胞和蛙卵母细胞中的葡萄糖浓度,其中,该生物传感器包含单独的覆盖有ZnO纳米片的铝工作电极(该电极需要极其锋利以插入活细胞中)和单独的Ag/AgCl参比电极(通过将铬和银先后沉积在硼硅酸玻璃毛细管管头的外表面,并在管头形成AgCl涂层而制得)。类似地,Nascimento RA等,Nano Lett.,2016,16(2):1194-200公开了一种用于测量单个癌细胞中的葡萄糖水平的葡萄糖纳米传感器,其中,所述纳米传感器包含纳米移液管以及定制的扫描离子电导显微镜(SICM)装置,所述纳米移液管为石英纳米管并且其内表面涂覆聚赖氨酸,且需要向纳米移液管中放置Ag/AgCl工作电极,并将另一单独的Ag/AgCl电极浸入待测试溶液中作为参比电极。
如何使得用于检测单个细胞内的物质(包括小分子、蛋白质等)的设备本身结构更加简单且同时满足精确检测的效果,成为本领域技术人员关注的热点。
发明内容
本发明人通过研究发现,通过直接在非导电性毛细管上喷镀Pt(铂)层作为第一电极,同时在该毛细管内放置导电线作为第二电极并放置检测试剂,从而能够利用第二电极使检测试剂在需要时被排出到非导电性毛细管的管口处,并利用Pt层在毛细管的一端的端面上形成的Pt环状电极来使测量装置更加简单便捷化(无需荧光标记检测试剂且无需独立的参比电极等),同时还能够实现精确地检测单个细胞内的靶标小分子的水平或蛋白质的活性的效果。
在一个方面,本发明提供了一种检测试剂盒,其特征在于,所述检测试剂盒包含:
中空的复合毛细管,其中,所述复合毛细管包含具有空腔的非导电性毛细管、覆盖在所述非导电性毛细管外侧的Pt层以及覆盖在所述Pt层外侧的绝缘层;
插入所述非导电性毛细管的空腔中的导电线,作为第二电极;其中,所述复合毛细管的远离所插入的第二电极的一端的端面未用所述绝缘层包覆,从而在所述端面上形成Pt环状电极;以及
检测试剂,其中,在临用前将所述检测试剂加入到所述非导电性毛细管的空腔中,并在检测过程中通过向所述第二电极施加电压将所述检测试剂排出至所述复合毛细管的具有所形成的Pt环状电极的一端的端面上。
在另一方面,本发明提供了一种包含上述检测试剂盒的分析系统,其特征在于,所述分析系统包含:所述检测试剂盒;连接至所述检测试剂盒中的复合毛细管的Pt层的导电线和与所述导电线的另一侧连接的电量计;以及通过两条另外的导线电线分别连接至电量计和所述复合毛细管的第二电极的电源。
在另一方面,本发明提供了一种制备上述检测试剂盒的方法,其特征在于,所述方法包括如下步骤:
(1)提供包含空腔的非导电性毛细管;
(2)向所述非导电性毛细管的外侧喷镀铂层,从而制备得到半成品毛细管;以及
(3)向所述铂层的外侧涂覆绝缘层,其中,保留在所述半成品毛细管的一端的端面上的铂层免于用所述绝缘层进行涂覆,由此在所述端面上形成Pt环状电极,将该端称为环状电极端,从而得到复合毛细管;
(4)向所述复合毛细管的远离所述环状电极端的一端的空腔中插入导电线作为第二电极,其中,将所述复合毛细管的远离所述环状电极端的一端称为远离环状电极端;
(5)将所述步骤(4)中插入导电线的复合毛细管与检测试剂分别单独包装,并组装在一起;
其中,任选所述检测试剂盒进一步包含说明书。
在又一方面,本发明提供了上述检测试剂盒和分析系统在制备用于单个细胞电化学分析的检测物中的用途。
本发明的示例性的技术方案通过如下编号的段落的记载进行描述:
[1].一种检测试剂盒,其特征在于,所述检测试剂盒包含:
中空的复合毛细管,其中,所述复合毛细管包含具有空腔的非导电性毛细管、覆盖在所述非导电性毛细管外侧的Pt层以及覆盖在所述Pt层外侧的绝缘层;
插入所述非导电性毛细管的空腔中的导电线,作为第二电极;其中,所述复合毛细管的远离所插入的第二电极的一端的端面未用所述绝缘层包覆,从而在所述端面上形成Pt环状电极;以及
检测试剂,其中,在临用前将所述检测试剂加入到所述非导电性毛细管的空腔中,并在检测过程中通过向所述第二电极施加电压将所述检测试剂排出至所述复合毛细管的具有所形成的Pt环状电极的一端的端面上。
[2].如段落[1]所述的检测试剂盒,其特征在于,所述复合毛细管的具有所述Pt环状电极的一端处于圆锥体形式。
[3].如段落[1]或[2]所述的检测试剂盒,其特征在于,所述复合毛细管的待插入所述第二电极的一端的开口的外径为0.8mm-1.5mm、优选1mm。
[4].如段落[1]-[3]中任一段所述的检测试剂盒,其特征在于,所述复合毛细管的待插入所述第二电极的一端的开口的内径为0.4mm-0.9mm、优选0.5mm。
[5].如段落[1]-[4]中任一段所述的检测试剂盒,其特征在于,所述复合毛细管的具有所述Pt环状电极的一端的开口的外径为290nm-315nm、优选300nm。
[6].如段落[1]-[5]中任一段所述的检测试剂盒,其特征在于,所述复合毛细管的具有所述Pt环状电极的一端的开口的内径为120-145nm、优选130nm。
[7].如段落[1]-[6]中任一段所述的检测试剂盒,其特征在于,所述复合毛细管的长度为1mm-5cm、优选1mm-10mm、最优选约5mm。
[8].如段落[1]-[7]中任一段所述的检测试剂盒,其特征在于,所述非导电性毛细管选自玻璃毛细管、塑料毛细管和/或光刻胶毛细管。
[9].如段落[8]所述的检测试剂盒,其特征在于,所述非导电性毛细管为硼酸盐玻璃毛细管。
[10].如段落[8]所述的检测试剂盒,其特征在于,所述非导电性毛细管为PDMS塑料毛细管。
[11].如段落[8]所述的检测试剂盒,其特征在于,所述非导电性毛细管为SU-8光刻胶毛细管。
[12].如段落[1]-[11]中任一段所述的检测试剂盒,其特征在于,所述绝缘层为蜡层或阴极电泳漆层。
[13].如段落[12]所述的检测试剂盒,其特征在于,所述蜡层为Apiezon蜡层。
[14].如段落[1]-[13]中任一段所述的检测试剂盒,其特征在于,所述导电线选自Pt导线、Ag导线、Au导线、Cu导线、Al导线和/或石墨烯导线。
[15].如段落[1]-[14]中任一段所述的检测试剂盒,其特征在于,所述检测试剂选自葡萄糖氧化酶;鞘磷脂、碱性磷酸酶和胆碱氧化酶的混合物;胆固醇氧化酶;或者胆碱氧化酶。
[16].如段落[1]-[15]中任一段所述的检测试剂盒,其特征在于,在临用前将大于0毫微微升至小于等于10μl、优选1μl的所述检测试剂加入到所述非导电性毛细管的空腔中。
[17].如段落[1]-[16]中任一段所述的检测试剂盒,其特征在于,向所述第二电极施加的电压为1-10V、优选1-5V、最优选1V。
[18].如段落[1]-[17]中任一段所述的检测试剂盒,其特征在于,向所述第二电极施加电压2-30秒、优选2-15秒、最优选2秒。
[19].一种包含段落[1]-[18]中任一段所述的检测试剂盒的分析系统,其特征在于,所述分析系统包含:
所述检测试剂盒;
连接至所述检测试剂盒中的复合毛细管的Pt层的导电线和与所述导电线的另一侧连接的电量计;以及
通过两条另外的导电线分别连接至电量计和所述复合毛细管的第二电极的电源。
[20].如段落[19]所述的分析系统,其特征在于,所述导电线选自Pt导线、Ag导线、Au导线、Cu导线、Al导线和/或石墨烯导线。
[21].一种制备段落[1]-[18]中任一段所述的检测试剂盒的方法,其中,所述方法包括如下步骤:
(1)提供包含空腔的非导电性毛细管;
(2)向所述非导电性毛细管的外侧喷镀铂层,从而制备得到半成品毛细管;以及
(3)向所述铂层的外侧涂覆绝缘层,其中,保留在所述半成品毛细管的一端的端面上的铂层免于用所述绝缘层进行涂覆,由此在所述端面上形成Pt环状电极,将该端称为环状电极端,从而得到复合毛细管;
(4)向所述复合毛细管的远离所述环状电极端的一端的空腔中插入Pt导线作为第二电极,其中,将所述复合毛细管的远离所述环状电极端的一端称为远离环状电极端;
(5)将所述步骤(4)中插入导电线的复合毛细管与检测试剂分别单独包装,并组装在一起;
其中,任选所述检测试剂盒进一步包含说明书。
[22].如段落[21]所述的方法,其特征在于,在所述步骤(1)中,将所述非导电性毛细管的待在其端面上形成环状电极的一端拉制成圆锥体形状。
[23].如段落[21]或[22]所述的方法,其特征在于,在所述步骤(1)中,所述非导电性毛细管选自玻璃毛细管、塑料毛细管和/或光刻胶毛细管。
[24].如段落[23]所述的方法,其特征在于,在所述步骤(1)中,所述非导电性毛细管为硼酸盐玻璃毛细管。
[25].如段落[23]所述的方法,其特征在于,在所述步骤(1)中,所述非导电性毛细管为PDMS塑料毛细管。
[26].如段落[23]所述的方法,其特征在于,在所述步骤(1)中,所述非导电性毛细管为SU-8光刻胶毛细管。
[27].如段落[21]-[26]中任一段所述的方法,其特征在于,在所述步骤(2)中,控制镀膜机的电流为5-30mA、优选15mA,从而喷镀所述铂层。
[28].如段落[21]-[27]中任一段所述的方法,其特征在于,在所述步骤(2)中,喷镀所述铂层的时间为200-1000秒、优选700秒。
[29].如段落[21]-[28]中任一段所述的方法,其特征在于,在所述步骤(2)中,所述铂层的厚度为20-100nm、优选70nm。
[30].如段落[21]-[29]中任一段所述的方法,其特征在于,在所述步骤(3)中,所述绝缘层为蜡层或阴极电泳漆层。
[31].如段落[30]所述的方法,其特征在于,所述蜡层为Apiezon蜡层。
[32].如段落[21]-[31]中任一段所述的方法,其特征在于,在所述步骤(3)中,以滴涂的方式向所述铂层的外侧涂覆绝缘层。
[33].如段落[21]-[32]中任一段所述的方法,其特征在于,在所述步骤(3)中,所述绝缘层的厚度为20-50nm、优选约30nm。
[34].如段落[21]-[33]中任一段所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的所述环状电极端的开口的外径为290nm-315nm、优选300nm。
[35].如段落[21]-[34]中任一段所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的所述环状电极端的开口的内径为120-145nm、优选130nm。
[36].如段落[21]-[35]中任一段所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的长度为1mm-5cm、优选1mm-10mm、最优选约5mm。
[37].如段落[21]-[36]中任一段所述的方法,其特征在于,在所述步骤(4)中,所述复合毛细管的所述远离环状电极端的开口的外径为0.8mm-1.5mm、优选1mm。
[38].如段落[21]-[37]中任一段所述的方法,其特征在于,在所述步骤(4)中,所述复合毛细管的所述远离环状电极端的开口的内径为0.4mm-0.9mm、优选0.5mm。
[39].如段落[21]-[38]中任一段所述的方法,其特征在于,在所述步骤(4)中,所述导电线选自Pt导线、Ag导线、Au导线、Cu导线、Al导线和/或石墨烯导线。
[40].如段落[21]-[39]中任一段所述的方法,其特征在于,在所述步骤(5)中,所述检测试剂选自葡萄糖氧化酶;鞘磷脂、碱性磷酸酶和胆碱氧化酶的混合物;胆固醇氧化酶;或者胆碱氧化酶。
[41].如段落[21]-[40]中任一段所述的方法,其特征在于,在所述步骤(5)中,将所述检测试剂以大于0毫微微升至小于等于10μl、优选1μl的体积进行单独包装。
[42].段落[1]-[18]中任一段所述的检测试剂盒和段落[19]或[20]所述的分析系统在制备用于单个细胞电化学分析的检测物中的用途。
[43].如段落[42]所述的用途,其特征在于,所述单个细胞电化学分析包括检测单个细胞内的小分子的水平和/或蛋白质的反应性或活性。
[44].如段落[42]或[43]所述的用途,其特征在于,所述单个细胞内的小分子选自葡萄糖、胆固醇、PO4 3-离子、活性氧和/或H2O2
[45].如段落[42]-[44]中任一段所述的用途,其特征在于,所述蛋白质为所述单个细胞内的酶。
[46].如段落[45]所述的用途,其特征在于,所述酶选自鞘磷脂酶、转氨酶。
相比起现有技术公开的利用更加复杂的结构或者需要对检测试剂进行表面官能化来识别分析物的检测装置/技术,本发明所述的检测试剂盒及包含该检测试剂盒的分析系统采用在其一端的端面上具有Pt环状电极的中空的复合毛细管来检测单个细胞内的小分子的水平以及蛋白等的活性,从而提供更加简单的胞内分子检测手段。
附图说明
图1为本发明的示例性的检测试剂盒中的复合毛细管及包含所述复合毛细管的分析系统的示意图。
图2A-图2F分别为本发明的示例性的复合毛细管的制备流程图(图2A);包覆有Pt层的非导电性毛细管的侧视图和主视图的扫描电镜图片(分别为图2B和图2C,扫描速率为100mV/s);进一步包覆有蜡绝缘层的具有Pt层的非导电性毛细管的侧视图和主视图的扫描电镜图片(分别为图2D和图2E,扫描速率为100mV/s);以及具有Pt环状电极的复合毛细管在PBS缓冲液中的伏安法测试结果(图2F)。
图3A-图3F分别表示暴露至10mM PBS(pH 7.4)(曲线a)或者具有0.2mM(曲线b)、1mM(曲线c)或5mM(曲线d)葡萄糖的10mM PBS(pH 7.4)的检测试剂盒的电荷(图3A);扣除在PBS中收集的非法拉第电荷之后,在0.2mM(曲线a)、1mM(曲线b)和5mM(曲线c)葡萄糖中收集的电荷方面的差异(图3B);曝露至0.2mM葡萄糖和不同的电压2秒后的检测试剂盒的电荷方面的差异(图3C);曝露至0.2mM葡萄糖和1V的电压不同时间后的检测试剂盒的电荷方面的差异(图3D);葡萄糖浓度和电荷差异之间的相关性(图3E);以及SMase活性和电荷差异之间的相关性(图3F);其中,所述图中的误差棒表示三重复独立实验的标准差。
图4A-图4F分别表示插入细胞中的复合毛细管的明视场图像(图4A);在复合毛细管插入并施加电压排出检测试剂之前和之后,在细胞(n=10)中观察到的荧光强度(细胞内钙浓度)(图4B);在将复合毛细管插入细胞之前和之后,复合毛细管的电荷(图4C);使用包含葡萄糖氧化酶(轨迹a)和仅PBS(轨迹b)的复合毛细管在扣除于细胞外部收集的非法拉第电荷之后,电荷方面的差异(图4D);在29个HeLa细胞中收集的法拉第电荷(图4E);以及在27个饥饿细胞中收集的法拉第电荷(图4F)。
图5A-图5C分别表示在扣除于细胞外部收集的非法拉第电荷之后,在如下细胞中收集的电极的法拉第电荷:Zn刺激的J774细胞(n=26)(图5A);未刺激的J774细胞(n=20)(图5B);以及Zn刺激的HeLa细胞(图5C)。图5D表示在不同状态下的细胞的统计学分析。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,术语“检测试剂”具有本领域所通常理解的含义,涵盖了本领域技术人员已知的可用于检测靶分析物的任何生化试剂,例如但不限于:葡萄糖氧化酶(优选使用浓度为0.1mg/ml-10mg/ml、最优选0.2mg/ml);鞘磷脂(优选使用浓度为0.1mM-10mM、最优选1mM)、碱性磷酸酶(优选使用浓度为1-20U/mL、最优选5U/mL)和胆碱氧化酶(优选使用浓度为1-20U/mL、最优选5U/mL)的混合物;胆固醇氧化酶;胆碱氧化酶等。
在本发明中,术语“靶分析物”和“分析物”可互换使用,是指细胞内的待检测的各种靶标物质,例如但不限于,细胞内的小分子(诸如葡萄糖、胆固醇等)和蛋白质(例如各种酶,如鞘磷脂酶、转氨酶)等。
在本发明中,术语“约”表示该术语所修饰的参数具有本领域所通常理解的测量误差,例如但不限于涵盖了该参数的±5%、如±2%、±1%范围内的任意值。
在一个实施方式中,本发明涉及一种检测试剂盒,其特征在于,所述检测试剂盒包含:
中空的复合毛细管,其中,所述复合毛细管包含具有空腔的非导电性毛细管、覆盖在所述非导电性毛细管外侧的Pt层以及覆盖在所述Pt层外侧的绝缘层;
插入所述非导电性毛细管的空腔中的导电线,作为第二电极;其中,所述复合毛细管的远离所插入的第二电极的一端的端面未用所述绝缘层包覆,从而在所述端面上形成Pt环状电极(在本发明中,复合毛细管的这一端也简称为“环状电极端”;所述复合毛细管的插入第二电极的一端简称为“远离环状电极端”);以及
检测试剂,其中,在临用前将所述检测试剂加入到所述非导电性毛细管的空腔中,并在检测过程中通过向所述第二电极施加电压将所述检测试剂排出至所述复合毛细管的具有所形成的Pt环状电极的一端的端面上。
对本领域技术人员来说可以理解的是,本发明所述的复合毛细管具有任意形状均可实现本发明的目的。在优选的实施方式中,所述复合毛细管的具有所述Pt环状电极的一端优选处于圆锥体形式,从而能够更加有助于该复合毛细管易于插入细胞中且对细胞带来的伤害进一步减少。
本领域技术人员能够理解的是,所述复合毛细管可具有小于待检测细胞的尺寸的任意尺寸,从而适合用于插入单个细胞中而不影响细胞活力。优选的是,所述复合毛细管的待插入所述第二电极的一端(即,远离环状电极端)的开口的外径为0.8mm-1.5mm、优选1mm;进一步优选所述开口的内径为0.4mm-0.9mm、优选0.5mm。另外优选的是,所述复合毛细管的具有所述Pt环状电极的一端(即,环状电极端)的开口的外径为290nm-315nm、优选300nm;进一步优选所述开口的内径为120-145nm、优选130nm。
此外,优选所述复合毛细管的长度为1mm-5cm、优选1mm-10mm、最优选约5mm。
本领域技术人员能够理解的是,可将任意的非导电性材质的毛细管用于本发明的目的,从而制备复合毛细管。仅作为优选的示例性方式,本发明的非导电性毛细管可列举出玻璃毛细管(例如,硼酸盐玻璃毛细管)、塑料毛细管(例如,PDMS塑料毛细管)和/或光刻胶毛细管(例如,SU-8光刻胶毛细管)等,但适用于制备本发明的非导电性毛细管的材质并不仅限于此。
在本发明中,所述绝缘层可采用本领域已知的能够与待检测的细胞在生物学上兼容的任何绝缘材料制备得到。优选的是,作为形成本发明所述的绝缘层的优选绝缘材料,优选采用蜡()和阴极电泳漆,从而得到蜡层(例如Apiezon蜡层)和阴极电泳漆层。
本发明所述的导电线可以通过能够导电的任意材料制成。能够满足本发明要求的示例性的导电线包括但不限于:Pt导线、Ag导线、Au导线、Cu导线、Al导线和/或石墨烯导线等。
对加入本发明所述的复合毛细管的空腔中的检测试剂的体积并无特定限制,只要能够得出本发明期望的测试结果即可。仅作为优选的实例,加入复合毛细管的管腔中的检测试剂的体积为大于0毫微微升(fl)至小于等于10μl、优选1μl。其中,通过施加电压向复合毛细管的环形电极端的端面排出小于10毫微微升的检测试剂时即可实现对单个细胞内的分析物(小分子和蛋白质)的准确检测。
在优选的实施方式中,仅为了使进入细胞的测试试剂的体积最小化、或者为了分析更小的区域或者为了对细胞活力产生尽可能低的干扰,向第二电极施加的电压为1-10V、优选1-5V、最优选1V,进一步优选向所述第二电极施加电压2-30秒、优选2-15秒、最优选2秒。
在另一实施方式中,本发明涉及包含上述检测试剂盒的分析系统,其特征在于,所述分析系统包含:所述检测试剂盒;连接至所述检测试剂盒中的复合毛细管的Pt层的导电线和与所述导电线的另一侧连接的电量计;以及通过两条另外的导电线分别连接至电量计和所述复合毛细管的第二电极的电源。
其中,所述电量计可为能够对待检测的分析物释放出的电荷量进行测量的任何现有的电荷测量装置。
在另一实施方式中,本发明涉及制备上述检测试剂盒的方法,其特征在于,所述方法包括如下步骤:
(1)提供包含空腔的非导电性毛细管;
(2)向所述非导电性毛细管的外侧喷镀铂层,从而制备得到半成品毛细管;以及
(3)向所述铂层的外侧涂覆绝缘层,其中,保留在所述半成品毛细管的一端的端面上的铂层免于用所述绝缘层进行涂覆,由此在所述端面上形成Pt环状电极,将该端称为环状电极端,从而得到复合毛细管;
(4)向所述复合毛细管的远离所述环状电极端的一端的空腔中插入导电线作为第二电极,其中,将所述复合毛细管的远离所述环状电极端的一端称为远离环状电极端;
(5)将所述步骤(4)中插入导电线的复合毛细管与检测试剂分别单独包装,并组装在一起;
其中,任选所述检测试剂盒进一步包含说明书。
在优选的实施方式中,在步骤(1)中,将所述非导电性毛细管的待在其端面上形成环状电极的一端拉制成圆锥体形状。
在优选的实施方式中,在步骤(2)中,控制镀膜机的电流为5-30mA、优选15mA,从而喷镀所述铂层。进一步优选的是,在步骤(2)中,喷镀所述铂层的时间为200-1000秒、优选700秒。在更进一步优选的实施方式中,在步骤(2)中,所述铂层的厚度为20-100nm、优选约70nm。
在优选的实施方式中,在步骤(3)中,以滴涂的方式向所述铂层的外侧涂覆绝缘层。在进一步优选的实施方式中,所述绝缘层的厚度为20-50nm、优选约30nm。
在优选的实施方式中,所述复合毛细管的环状电极端(即,在其端面上具有所形成的Pt环状电极的一端)的开口的外径为290nm-315nm、优选300nm;进一步优选所述开口的内径为120-145nm、优选130nm。另外优选的是,所述复合毛细管的远离环状电极端(即,待插入所述第二电极的一端)的开口的外径为0.8mm-1.5mm、优选1mm;进一步优选所述开口的内径为0.4mm-0.9mm、优选0.5mm。
在优选的实施方式中,仅为了更加便于使用,将所述检测试剂以大于0毫微微升至小于等于10μl、优选1μl的体积进行单独包装。
在又一实施方式中,本发明涉及上述检测试剂盒和分析系统在制备用于单个细胞电化学分析的检测物中的用途。
在优选的实施方式中,所述单个细胞电化学分析包括检测单个细胞内的小分子的水平和/或蛋白质的反应性或活性。
由于本领域已知能够用于测定细胞内的各种小分子和蛋白质的检测试剂,因此,在采用合适的检测试剂的情况下,本发明的检测试剂盒可检测单个细胞内各种小分子和蛋白质。仅作为示例,本发明所述的单个细胞内的小分子可以为葡萄糖、胆固醇、PO4 3-离子、活性氧和/或H2O2。作为示例,本发明所述的单个细胞内的所述蛋白质可以为单个细胞内的各种酶,例如但不限于,鞘磷脂酶、转氨酶等。
在本发明的示例性的检测试剂盒中,通过将导电线插入到非导电性毛细管中并将检测试剂加入到非导电性毛细管的空腔中,当向所述导电线施加适当的电压时,使得检测试剂能够流出复合毛细管并在管口处与单个细胞中的靶分子或蛋白反应。所得到的副产物过氧化氢在Pt环状电极上进行电化学氧化,收集所产生的电荷。将复合毛细管在不含靶分析物的溶液中进行预处理,确定非法拉第电荷的量,并从所收集的电荷中排除非法拉第电荷,由此对细胞内的靶分析物的活性和浓度进行定量。
本发明所述的检测试剂盒及包含该检测试剂盒的分析系统采用在其一端的端面上具有Pt环状电极的中空的复合毛细管来检测单个细胞内的小分子的水平以及蛋白等的活性,从而提供更加简单且准确的胞内分析物的检测手段。
实施例
实施例1制备中空的复合毛细管
按照下表1中示出的制备条件,根据如下步骤制备得到中空的复合毛细管1-5:
(1)提供具有如下表1中所述尺寸的包含空腔的非导电性毛细管(其中,分别采用硼酸盐玻璃毛细管、PDMS塑料毛细管、硼酸盐玻璃毛细管、SU-8光刻胶毛细管和硼酸盐玻璃毛细管作为非导电性毛细管来制备复合毛细管1-5),其中,将所述非导电性毛细管的待在其端面上形成环状电极的一端拉制成圆锥体;
(2)向所述非导电性毛细管的外侧喷镀铂层,从而制备得到半成品毛细管;以及
(3)向所述半成品毛细管的铂层的外侧涂覆绝缘层,其中,保留在所述半成品毛细管的一端的端面上的铂层免于用绝缘层进行涂覆,由此在所述端面上形成Pt环状电极(该端称为“环状电极端”),从而得到中空的复合毛细管1-5。
表1复合毛细管1-5的制备条件
Figure BDA0001119563550000151
注:O.D.表示外径;I.D.表示内径。
按照如下方法,将所制备的复合毛细管1-5放置入具有5mM亚铁氰化物的100mM的磷酸盐缓冲液中(PBS,pH 7.4)中进行伏安法测试:在涂覆绝缘层之前和以后,将覆盖有Pt层的非导电性毛细管用SEM(Hitachi S-4800Instrument,日本)进行表征。将10kv加速电压施加在Au-包覆样品上,将复合毛细管1-5暴露至具有5mM亚铁氰化物的100mM的磷酸盐缓冲液中(PBS,pH 7.4)中,以表征暴露在所述毛细管的一端的Pt层的区域。分别将Ag/AgCl电极和Pt电极用作参比电极和对电极。电压循环的范围为-0.1v至0.6v,并施加100mv/s的扫描速率以使用电化学工作站(CHI 630E,CH Instruments)收集电流。结果在图2F中示出。
由于实验电流大于理论值,从而确认了所得到的毛细管1-5在它们的一端的端面均具有Pt环状电极。
实施例2制备检测试剂盒
向实施例1中制备的复合毛细管1-5的远离所述环状电极端的一端(该端称为“远离环状电极端”)的空腔中插入导电线(其中,复合毛细管1-5中分别插入Pt导线、Ag导线、Au导线、Cu导线和Pt导线)作为第二电极,并随后分别与放置在安瓿瓶中的10μL处于10mM的磷酸盐缓冲液(PBS,pH 7.4)中的0.1mM、0.2mM、1mM、5mM、10mM的葡萄糖氧化酶组装在一起,得到检测试剂盒1-5。在临用前,将所述放置在安瓿瓶中的检测试剂分别加入所述复合毛细管1-5中。
同时,向实施例1中制备的复合毛细管1-5的远离所述环状电极端的一端(该端称为“远离环状电极端”)的空腔中插入导电线(其中,复合毛细管1-5中分别插入Pt导线、Ag导线、Au导线、Cu导线和Pt导线)作为第二电极,并随后与放置在安瓿瓶中的10μL处于10mMPBS缓冲液(pH 7.4)中的如下5种检测试剂混合物组装在一起,得到检测试剂盒1’-5’:(1)1mM鞘磷脂、5U/ml碱性磷酸酶和5U/ml胆碱氧化酶的混合物(下文称为“混合物1”);(2)0.1mM鞘磷脂、1U/ml碱性磷酸酶和1U/ml胆碱氧化酶的混合物(下文称为“混合物2”);(3)5mM鞘磷脂、10U/ml碱性磷酸酶和10U/ml胆碱氧化酶的混合物(下文称为“混合物3”);(4)10mM鞘磷脂、20U/ml碱性磷酸酶和20U/ml胆碱氧化酶的混合物(下文称为“混合物4”);以及(5)8mM鞘磷脂、15U/ml碱性磷酸酶和15U/ml胆碱氧化酶的混合物(下文称为“混合物5”)。在临用前,将所述放置在安瓿瓶中的检测试剂混合物1-5分别加入所述复合毛细管1-5中。
实施例3制备分析系统
将实施例2中制备的检测试剂盒1-5和1’-5’中的复合毛细管1-5通过与其Pt层连接的Cu导线连接至电量计,再通过另外的两条Cu导线将所述电量计以及所述毛细管中的第二电极分别连接至电源,从而分别制备得到相应的分析系统1-5和分析系统1’-5’(其中,在将分析系统临用于对单个细胞进行检测前,将所述检测试剂盒中的放置在安瓿瓶中的检测试剂或检测试剂混合物按照实施例2中所述分别加入毛细管1-5中)。
效果例
效果例1细胞内的葡萄糖水平的测量
准确分析细胞内的葡萄糖水平对于了解细胞内的生化过程以及对于一些相关疾病(例如癌症)的辅助诊断具有重要意义。本发明人采用实施例3中制备的分析系统1-5(其中,使用葡萄糖氧化酶作为检测试剂)来测量单个细胞内的葡萄糖水平,其中,如下述的反应方案1所示,葡萄糖氧化酶将β-D-葡萄糖氧化为D-葡萄糖酸-1,5-内酯和过氧化氢(过氧化氢的量与细胞内的葡萄糖的量相关)。
反应方案1
Figure BDA0001119563550000171
具体而言,向所述中空的复合毛细管1-5的空腔中分别加入1μL的处于10mM的磷酸盐缓冲液(PBS,pH 7.4)中的0.1mM、0.2mM、1mM、5mM、10mM的葡萄糖氧化酶。使所述复合毛细管1-5的Pt环状电极分别接触待检测的单个HeLa细胞样品(n=29,其中,所述复合毛细管1-5的Pt环状电极分别接触编号为1-6、7-12、13-18、19-24、25-29的样品)。通过电源向插入到所述复合毛细管1-5中的第二电极分别施加1V的电压30秒、1V的电压2秒、2V的电压15秒、5V的电压10秒和10V的电压2秒,从而使加入所述复合毛细管1-5的空腔中的葡萄糖氧化酶排出至所述复合毛细管1-5的具有环状Pt电极的端面上。
检测结果在图4E中示出,其中,所检测的29个样品对应的单个细胞中的葡萄糖浓度分别在下表2中示出(由于1个葡萄糖分子将释放2个电子,同时已知一个细胞的体积为1pL,由此根据电量计测得的电荷量可以推算出葡萄糖的量,并进一步计算得出单个细胞中的葡萄糖浓度)。
表2 HeLa细胞中的葡萄糖浓度检测结果
单个HeLa细胞样品编号 浓度(mM)
1 2.17
2 1.48
3 3.26
4 1.58
5 3.52
6 5.67
7 0.82
8 4.03
9 1.17
10 1.21
11 1.51
12 1.76
13 5.15
14 1.03
15 0.43
16 2.07
17 2.02
18 1.65
19 1.12
20 3.25
21 2.70
22 1.28
23 0.61
24 0.92
25 1.20
26 1.27
27 1.89
28 1.30
29 1.35
效果例2细胞内的鞘磷脂酶的活性的测量
鞘磷脂酶(SMase)是参与鞘脂代谢反应的一种水解酶,现有的研究(例如,HannunYA等,J.Biol.Chem.,2002,277(29):25847-25850)表明SMase的活化是应答细胞应激而产生神经酰胺的重要途径。现有技术中迄今并未实现对单个细胞中的SMase的活性进行分析。
本发明人使用实施例3中制备的分析系统1’-5’(其中,使用鞘磷脂、碱性磷酸酶(ALP)和胆碱氧化酶的混合物作为检测试剂)来测量细胞内的SMase的活性,其中,如下述的反应方案1所示,鞘磷脂依次经过SMase、ALP和胆碱氧化酶的作用,最终产生过氧化氢(过氧化氢的量与细胞内的SMase的活性相关)。
反应方案2
Figure BDA0001119563550000191
鞘磷脂
具体而言,向所述中空的复合毛细管1-5的空腔中分别加入1μL的处于10mM PBS缓冲液中的上述实施例2中的混合物1-5。使所述复合毛细管1-5的Pt环状电极分别接触待检测的单个J774细胞样品(n=26,其中,所述复合毛细管1-5的Pt环状电极分别接触编号为1-6、7-11、12-16、17-21、22-26的样品)(在进行检测前,预先用0.1mM Zn(II)离子对J774细胞进行刺激,使J774细胞的SMase活性上调)。通过电源向插入到所述复合毛细管1-5中的第二电极分别施加1V的电压30秒、10V的电压2秒、1V的电压5秒、5V的电压15秒和8V的电压20秒,从而使加入所述复合毛细管1-5的空腔中的所述检测试剂混合物1-5排出至所述复合毛细管1-5的具有环状Pt电极的端面上。
检测结果在图5A中示出,其中,所检测的26个样品对应的单个细胞中的SMase的活性分别在下表3中示出(由于1个鞘磷脂分子在单位时间内SMase转化将释放2个电子,同时已知一个细胞的体积为1pL,由此根据电量计测得的电荷量可以计算出SMase的活度)。
表3 J774细胞中的SMase活性检测结果
单个J774细胞样品编号 活度(nU)
1 3.46
2 1.35
3 1.04
4 0.64
5 0.66
6 1.26
7 0.68
8 0.85
9 0.81
10 1.52
11 1.16
12 1.41
13 4.58
14 0.14
15 0.56
16 2.68
17 0.54
18 2.26
19 1.53
20 0.46
21 1.11
22 0.76
23 0.28
24 1.2
25 0.73
26 0.76

Claims (68)

1.一种检测试剂盒,其特征在于,所述检测试剂盒包含:
中空的复合毛细管,其中,所述复合毛细管包含具有空腔的非导电性毛细管、覆盖在所述非导电性毛细管外侧的Pt层以及覆盖在所述Pt层外侧的绝缘层;
插入所述非导电性毛细管的空腔中的导电线,作为第二电极;其中,所述复合毛细管的远离所插入的第二电极的一端的端面未用所述绝缘层包覆,从而在所述端面上形成Pt环状电极;以及
检测试剂,其中,在临用前将所述检测试剂加入到所述非导电性毛细管的空腔中,并在检测过程中通过向所述第二电极施加电压将所述检测试剂排出至所述复合毛细管的具有所形成的Pt环状电极的一端的端面上。
2.如权利要求1所述的检测试剂盒,其特征在于,所述复合毛细管的具有所述Pt环状电极的一端处于圆锥体形式。
3.如权利要求1或2所述的检测试剂盒,其特征在于,所述复合毛细管的待插入所述第二电极的一端的开口的外径为0.8mm-1.5mm。
4.如权利要求3所述的检测试剂盒,其特征在于,所述复合毛细管的待插入所述第二电极的一端的开口的外径为1mm。
5.如权利要求1或2所述的检测试剂盒,其特征在于,所述复合毛细管的待插入所述第二电极的一端的开口的内径为0.4mm-0.9mm。
6.如权利要求5所述的检测试剂盒,其特征在于,所述复合毛细管的待插入所述第二电极的一端的开口的内径为0.5mm。
7.如权利要求1或2所述的检测试剂盒,其特征在于,所述复合毛细管的具有所述Pt环状电极的一端的开口的外径为290nm-315nm。
8.如权利要求7所述的检测试剂盒,其特征在于,所述复合毛细管的具有所述Pt环状电极的一端的开口的外径为300nm。
9.如权利要求1或2所述的检测试剂盒,其特征在于,所述复合毛细管的具有所述Pt环状电极的一端的开口的内径为120-145nm。
10.如权利要求9所述的检测试剂盒,其特征在于,所述复合毛细管的具有所述Pt环状电极的一端的开口的内径为130nm。
11.如权利要求1或2所述的检测试剂盒,其特征在于,所述复合毛细管的长度为1mm-5cm。
12.如权利要求11所述的检测试剂盒,其特征在于,所述复合毛细管的长度为1mm-10mm。
13.如权利要求12所述的检测试剂盒,其特征在于,所述复合毛细管的长度为5mm。
14.如权利要求1或2所述的检测试剂盒,其特征在于,所述非导电性毛细管选自玻璃毛细管、塑料毛细管和/或光刻胶毛细管。
15.如权利要求14所述的检测试剂盒,其特征在于,所述非导电性毛细管为硼酸盐玻璃毛细管。
16.如权利要求14所述的检测试剂盒,其特征在于,所述非导电性毛细管为PDMS塑料毛细管。
17.如权利要求14所述的检测试剂盒,其特征在于,所述非导电性毛细管为SU-8光刻胶毛细管。
18.如权利要求1或2所述的检测试剂盒,其特征在于,所述绝缘层为蜡层或阴极电泳漆层。
19.如权利要求18所述的检测试剂盒,其特征在于,所述蜡层为Apiezon蜡层。
20.如权利要求1或2所述的检测试剂盒,其特征在于,所述导电线选自Pt导线、Ag导线、Au导线、Cu导线、Al导线和/或石墨烯导线。
21.如权利要求1或2所述的检测试剂盒,其特征在于,所述检测试剂选自葡萄糖氧化酶;鞘磷脂、碱性磷酸酶和胆碱氧化酶的混合物;胆固醇氧化酶;或者胆碱氧化酶。
22.如权利要求1或2所述的检测试剂盒,其特征在于,在临用前将大于0毫微微升至小于等于10μl的所述检测试剂加入到所述非导电性毛细管的空腔中。
23.如权利要求22所述的检测试剂盒,其特征在于,在临用前将1μl的所述检测试剂加入到所述非导电性毛细管的空腔中。
24.如权利要求1或2所述的检测试剂盒,其特征在于,向所述第二电极施加的电压为1-10V。
25.如权利要求24所述的检测试剂盒,其特征在于,向所述第二电极施加的电压为1-5V。
26.如权利要求25所述的检测试剂盒,其特征在于,向所述第二电极施加的电压为1V。
27.如权利要求1或2所述的检测试剂盒,其特征在于,向所述第二电极施加电压2-30秒。
28.如权利要求27所述的检测试剂盒,其特征在于,向所述第二电极施加电压2-15秒。
29.如权利要求28所述的检测试剂盒,其特征在于,向所述第二电极施加电压2秒。
30.一种包含权利要求1-29中任一项所述的检测试剂盒的分析系统,其特征在于,所述分析系统包含:
所述检测试剂盒;
连接至所述检测试剂盒中的复合毛细管的Pt层的导电线和与所述导电线的另一侧连接的电量计;以及
通过两条另外的导电线分别连接至电量计和所述复合毛细管的第二电极的电源。
31.如权利要求30所述的分析系统,其特征在于,所述导电线选自Pt导线、Ag导线、Au导线、Cu导线、Al导线和/或石墨烯导线。
32.一种制备权利要求1-29中任一项所述的检测试剂盒的方法,其中,所述方法包括如下步骤:
(1)提供包含空腔的非导电性毛细管;
(2)向所述非导电性毛细管的外侧喷镀铂层,从而制备得到半成品毛细管;以及
(3)向所述铂层的外侧涂覆绝缘层,其中,保留在所述半成品毛细管的一端的端面上的铂层免于用所述绝缘层进行涂覆,由此在所述端面上形成Pt环状电极,将该端称为环状电极端,从而得到复合毛细管;
(4)向所述复合毛细管的远离所述环状电极端的一端的空腔中插入Pt导线作为第二电极,其中,将所述复合毛细管的远离所述环状电极端的一端称为远离环状电极端;
(5)将所述步骤(4)中插入导电线的复合毛细管与检测试剂分别单独包装,并组装在一起;
其中,任选所述检测试剂盒进一步包含说明书。
33.如权利要求32所述的方法,其特征在于,在所述步骤(1)中,将所述非导电性毛细管的待在其端面上形成环状电极的一端拉制成圆锥体形状。
34.如权利要求32或33所述的方法,其特征在于,在所述步骤(1)中,所述非导电性毛细管选自玻璃毛细管、塑料毛细管和/或光刻胶毛细管。
35.如权利要求34所述的方法,其特征在于,在所述步骤(1)中,所述非导电性毛细管为硼酸盐玻璃毛细管。
36.如权利要求34所述的方法,其特征在于,在所述步骤(1)中,所述非导电性毛细管为PDMS塑料毛细管。
37.如权利要求34所述的方法,其特征在于,在所述步骤(1)中,所述非导电性毛细管为SU-8光刻胶毛细管。
38.如权利要求32或33所述的方法,其特征在于,在所述步骤(2)中,控制镀膜机的电流为5-30mA,从而喷镀所述铂层。
39.如权利要求38所述的方法,其特征在于,在所述步骤(2)中,控制所述镀膜机的电流为15mA,从而喷镀所述铂层。
40.如权利要求32或33所述的方法,其特征在于,在所述步骤(2)中,喷镀所述铂层的时间为200-1000秒。
41.如权利要求40所述的方法,其特征在于,在所述步骤(2)中,喷镀所述铂层的时间为700秒。
42.如权利要求32或33所述的方法,其特征在于,在所述步骤(2)中,所述铂层的厚度为20-100nm。
43.如权利要求42所述的方法,其特征在于,在所述步骤(2)中,所述铂层的厚度为70nm。
44.如权利要求32或33所述的方法,其特征在于,在所述步骤(3)中,所述绝缘层为蜡层或阴极电泳漆层。
45.如权利要求44所述的方法,其特征在于,所述蜡层为Apiezon蜡层。
46.如权利要求32或33所述的方法,其特征在于,在所述步骤(3)中,以滴涂的方式向所述铂层的外侧涂覆绝缘层。
47.如权利要求32或33所述的方法,其特征在于,在所述步骤(3)中,所述绝缘层的厚度为20-50nm。
48.如权利要求47所述的方法,其特征在于,在所述步骤(3)中,所述绝缘层的厚度为约30nm。
49.如权利要求32或33所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的所述环状电极端的开口的外径为290nm-315nm。
50.如权利要求49所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的所述环状电极端的开口的外径为300nm。
51.如权利要求32或33所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的所述环状电极端的开口的内径为120-145nm。
52.如权利要求51所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的所述环状电极端的开口的内径为130nm。
53.如权利要求32或33所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的长度为1mm-5cm。
54.如权利要求53所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的长度为1mm-10mm。
55.如权利要求54所述的方法,其特征在于,在所述步骤(3)中,所述复合毛细管的长度为5mm。
56.如权利要求32或33所述的方法,其特征在于,在所述步骤(4)中,所述复合毛细管的所述远离环状电极端的开口的外径为0.8mm-1.5mm。
57.如权利要求56所述的方法,其特征在于,在所述步骤(4)中,所述复合毛细管的所述远离环状电极端的开口的外径为1mm。
58.如权利要求32或33所述的方法,其特征在于,在所述步骤(4)中,所述复合毛细管的所述远离环状电极端的开口的内径为0.4mm-0.9mm。
59.如权利要求58所述的方法,其特征在于,在所述步骤(4)中,所述复合毛细管的所述远离环状电极端的开口的内径为0.5mm。
60.如权利要求32或33所述的方法,其特征在于,在所述步骤(4)中,所述导电线选自Pt导线、Ag导线、Au导线、Cu导线、Al导线和/或石墨烯导线。
61.如权利要求32或33所述的方法,其特征在于,在所述步骤(5)中,所述检测试剂选自葡萄糖氧化酶;鞘磷脂、碱性磷酸酶和胆碱氧化酶的混合物;胆固醇氧化酶;或者胆碱氧化酶。
62.如权利要求32或33所述的方法,其特征在于,在所述步骤(5)中,将所述检测试剂以大于0毫微微升至小于等于10μl的体积进行单独包装。
63.如权利要求62所述的方法,其特征在于,在所述步骤(5)中,将所述检测试剂以1μl的体积进行单独包装。
64.权利要求1-29中任一项所述的检测试剂盒或者权利要求30或31所述的分析系统在制备用于单个细胞电化学分析的检测物中的用途。
65.如权利要求64所述的用途,其特征在于,所述单个细胞电化学分析包括检测单个细胞内的小分子的水平和/或蛋白质的反应性或活性。
66.如权利要求64或65所述的用途,其特征在于,所述单个细胞内的小分子选自葡萄糖、胆固醇、PO4 3-离子、活性氧和/或H2O2
67.如权利要求64或65所述的用途,其特征在于,所述蛋白质为所述单个细胞内的酶。
68.如权利要求67所述的用途,其特征在于,所述酶选自鞘磷脂酶、转氨酶。
CN201610847435.9A 2016-09-23 2016-09-23 检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途 Active CN107870188B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610847435.9A CN107870188B (zh) 2016-09-23 2016-09-23 检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途
PCT/CN2017/102648 WO2018054320A1 (zh) 2016-09-23 2017-09-21 检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610847435.9A CN107870188B (zh) 2016-09-23 2016-09-23 检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途

Publications (2)

Publication Number Publication Date
CN107870188A CN107870188A (zh) 2018-04-03
CN107870188B true CN107870188B (zh) 2020-07-14

Family

ID=61690721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610847435.9A Active CN107870188B (zh) 2016-09-23 2016-09-23 检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途

Country Status (2)

Country Link
CN (1) CN107870188B (zh)
WO (1) WO2018054320A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355387B (zh) * 2020-09-01 2024-04-30 南京大学 一种检测组织中单细胞的酶活性的检测系统及其检测方法
CN114441264B (zh) * 2022-01-20 2023-05-30 复旦大学 一种皮升级体积单细胞样品裂解酶解反应器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241097A (zh) * 2007-09-18 2008-08-13 中国科学院上海应用物理研究所 一种采用茎环结构检测探针的电化学dna检测方法及其试剂盒
CN101421616A (zh) * 2006-04-10 2009-04-29 迪埃诺斯维斯股份有限公司 安培计检测优化的小型化生物传感器
CN102590302A (zh) * 2011-01-13 2012-07-18 同济大学 一种制造金纳米阵列超微电极的方法
CN103328963A (zh) * 2010-08-24 2013-09-25 光鼎生物科技股份有限公司 一次性生物分析试剂盒和使用其进行生物分析的仪器
CN103675060A (zh) * 2013-12-05 2014-03-26 南京大学 一种微电极阵列及其在检测单细胞表面活化胆固醇上的应用
CN104379261A (zh) * 2012-04-16 2015-02-25 昆南诺股份有限公司 用于生物分子检测的纳米毛细管装置、流体网络结构和其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355216B2 (en) * 2002-12-09 2008-04-08 The Regents Of The University Of California Fluidic nanotubes and devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101421616A (zh) * 2006-04-10 2009-04-29 迪埃诺斯维斯股份有限公司 安培计检测优化的小型化生物传感器
CN101241097A (zh) * 2007-09-18 2008-08-13 中国科学院上海应用物理研究所 一种采用茎环结构检测探针的电化学dna检测方法及其试剂盒
CN103328963A (zh) * 2010-08-24 2013-09-25 光鼎生物科技股份有限公司 一次性生物分析试剂盒和使用其进行生物分析的仪器
CN102590302A (zh) * 2011-01-13 2012-07-18 同济大学 一种制造金纳米阵列超微电极的方法
CN104379261A (zh) * 2012-04-16 2015-02-25 昆南诺股份有限公司 用于生物分子检测的纳米毛细管装置、流体网络结构和其制造方法
CN103675060A (zh) * 2013-12-05 2014-03-26 南京大学 一种微电极阵列及其在检测单细胞表面活化胆固醇上的应用

Also Published As

Publication number Publication date
CN107870188A (zh) 2018-04-03
WO2018054320A1 (zh) 2018-03-29

Similar Documents

Publication Publication Date Title
Mazloum-Ardakani et al. New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode
Inoue et al. LSI-based amperometric sensor for bio-imaging and multi-point biosensing
Wu et al. A novel molecularly imprinted electrochemiluminescence sensor for isoniazid detection
CN110337586A (zh) 用于检测至少一种流体样品中的至少一种分析物的分析物检测器
EP2437052A1 (en) Biosensor and usage thereof
KR20170118766A (ko) 단일-세포 세포내 나노-ph 프로브
Senel et al. Lab-in-a-pencil graphite: A 3D-printed microfluidic sensing platform for real-time measurement of antipsychotic clozapine level
WO2016009228A1 (en) Multi-probe microstructured arrays
Mariani et al. Micro-and nano-devices for electrochemical sensing
CN107870188B (zh) 检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途
Muratova et al. Voltammetric vs. potentiometric sensing of dopamine: advantages and disadvantages, novel cell designs, fundamental limitations and promising options
US20180338712A1 (en) Mutli-probe microstructured arrays
Han et al. Development of multi-well-based electrochemical dissolved oxygen sensor array
Li et al. Electrochemistry in nanoscopic volumes
Zhang et al. Amperometric monitoring of vesicular dopamine release using a gold nanocone electrode
Chen et al. Development of micropillar array electrodes for highly sensitive detection of biomarkers
Marinesco Micro-and nano-electrodes for neurotransmitter monitoring
CN110057897A (zh) 电泳沉积碳纳米管修饰碳纤维电极及其在活体抗坏血酸的检测中的应用
Castro et al. Silicone glue-based graphite ink incorporated on paper platform as an affordable approach to construct stable electrochemical sensors
Budai Carbon fiber-based microelectrodes and microbiosensors
Hatami et al. Nanoscale Electrochemical Sensors for Intracellular Measurements at the Single Cell
Levent et al. Simultaneous electrochemical evaluation of ascorbic acid, epinephrine and uric acid at disposable pencil graphite electrode: highly sensitive determination in pharmaceuticals and biological liquids by differential pulse voltammetry
Ly Implementation of a biocircuit implants for neurotransmitter release during neuro-stimulation
D’Souza et al. Rapid electrochemical monitoring of tyrosine by poly (Riboflavin) modified carbon nanotube paste electrode as a sensitive sensor and its applications in pharmaceutical samples
CN108614022A (zh) 一种碳纸-金纳米颗粒复合电极检测nadh的电化学方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180403

Assignee: JIANGSU RAYME BIOTECHNOLOGY Co.,Ltd.

Assignor: NANJING University

Contract record no.: X2020980004074

Denomination of invention: Detection kit and preparation method thereof, analysis system including detection kit, and application thereof

Granted publication date: 20200714

License type: Exclusive License

Record date: 20200715

EE01 Entry into force of recordation of patent licensing contract