CN107863083A - The driving method and drive device of a kind of display device - Google Patents

The driving method and drive device of a kind of display device Download PDF

Info

Publication number
CN107863083A
CN107863083A CN201711381859.1A CN201711381859A CN107863083A CN 107863083 A CN107863083 A CN 107863083A CN 201711381859 A CN201711381859 A CN 201711381859A CN 107863083 A CN107863083 A CN 107863083A
Authority
CN
China
Prior art keywords
value
sub
pixel
gamma value
blue subpixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711381859.1A
Other languages
Chinese (zh)
Other versions
CN107863083B (en
Inventor
何怀亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HKC Co Ltd
Original Assignee
HKC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HKC Co Ltd filed Critical HKC Co Ltd
Priority to CN201711381859.1A priority Critical patent/CN107863083B/en
Publication of CN107863083A publication Critical patent/CN107863083A/en
Priority to PCT/CN2018/096026 priority patent/WO2019119791A1/en
Application granted granted Critical
Publication of CN107863083B publication Critical patent/CN107863083B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve

Abstract

A kind of driving method of display device, including:Obtain chromaticity coordinate of the sub-pixel in RGB color domain space corresponding to each pixel cell in predeterminable area;According to chromaticity coordinate of the sub-pixel in RGB color domain space, the data feature values of each multiple chromaticity coordinates of the sub-pixel in RGB color domain space in predeterminable area are calculated respectively;The data feature values of chromaticity coordinate of the sub-pixel in RGB color domain space are converted to the chromaticity coordinate in LCH color gamut spaces;If the saturation degree and form and aspect in LCH color gamut spaces in chromaticity coordinate meet the 3rd preparatory condition, the gamma value of sub-pixel Green sub-pixel in predeterminable area and the gamma value of blue subpixels are tuned up according to the 3rd preparatory condition.The gamma value change of the green sub-pixels and blue subpixels in sub-pixel after adjustment causes the brightness ratio of green sub-pixels and blue subpixels under big visual angle to decline relative to red sub-pixel greatly, the vividness of form and aspect under the big visual angle of red sub-pixel can be just lifted, so as to play a part of adjusting colour cast.

Description

The driving method and drive device of a kind of display device
Technical field
The application belongs to display technology field, more particularly to the driving method and drive device of a kind of display device.
Background technology
Because liquid crystal display (Liquid Crystal Display, LCD) screen has energy-conserving and environment-protective, light etc. excellent Gesture, it is widely used at present in field of display, because the lcd screen of straight-down negative has higher contrast and faster Response speed, obtain the generally accreditation of in the market.
But the lcd screen of straight-down negative have big visual angle color offset phenomenon than it is more serious the shortcomings that, and this shortcoming is straight The design of down type LCD screen it is intrinsic, i.e., the design structure of directly-down type LCD screen in itself causes the phenomenon of colour cast under big visual angle It can not be completely eliminated.
The content of the invention
In view of this, the embodiment of the present application provides the driving method and drive device of a kind of display device, to improve mesh Color offset phenomenon under the preceding big visual angle of display device.
The embodiment of the present application provides a kind of driving method of display device, including:
Obtain chromaticity coordinate of the sub-pixel in RGB color domain space corresponding to each pixel cell in predeterminable area;
According to chromaticity coordinate of the sub-pixel in RGB color domain space, calculate respectively in the predeterminable area per height The data feature values of multiple chromaticity coordinates of the pixel in RGB color domain space;
The data feature values of chromaticity coordinate of the sub-pixel in RGB color domain space are converted to the color in LCH color gamut spaces Spend coordinate;
If the saturation degree and form and aspect in LCH color gamut spaces in chromaticity coordinate meet the 3rd preparatory condition, according to described Three preparatory conditions adjust the gamma of the gamma value of sub-pixel Green sub-pixel and blue subpixels in the predeterminable area respectively Value, to cause the gamma value of the green sub-pixels after adjustment more than the gamma value of the green sub-pixels before adjustment, the indigo plant after adjustment The gamma value of sub-pixels is more than the gamma value of the blue subpixels before adjustment.
The embodiment of the present application additionally provides a kind of drive device of display device, including:
Acquisition module, for obtaining in predeterminable area each sub-pixel corresponding to pixel cell in RGB color domain space Chromaticity coordinate;
Data feature values computing module, for the chromaticity coordinate according to the sub-pixel in RGB color domain space, count respectively Calculate the data feature values of multiple chromaticity coordinates of each sub-pixel in RGB color domain space in the predeterminable area;
Modular converter, the data feature values for the chromaticity coordinate by sub-pixel in RGB color domain space are converted to LCH colors Chromaticity coordinate in domain space;
Processing module, if meeting the 3rd preparatory condition, basis for the C in the chromaticity coordinate in LCH color gamut spaces and H 3rd preparatory condition adjusts the gamma value and blue subpixels of sub-pixel Green sub-pixel in the predeterminable area respectively Gamma value, with cause adjustment after green sub-pixels gamma value be more than adjustment before green sub-pixels gamma value, adjustment The gamma value of blue subpixels afterwards is more than the gamma value of the blue subpixels before adjustment.
The embodiment of the present application additionally provides a kind of driving method of display device, including:
Obtain chromaticity coordinate of the sub-pixel in RGB color domain space corresponding to each pixel cell in predeterminable area;
According to chromaticity coordinate of the sub-pixel in RGB color domain space, calculate respectively in the predeterminable area per height The data feature values of multiple chromaticity coordinates of the pixel in RGB color domain space;
The data feature values of chromaticity coordinate of the sub-pixel in RGB color domain space are converted in LCH color gamut spaces Chromaticity coordinate;
If the saturation degree and form and aspect in the LCH color gamut spaces in chromaticity coordinate meet the 3rd preparatory condition, according to institute State the 3rd preparatory condition and adjust the gamma value of sub-pixel Green sub-pixel and blue subpixels in the predeterminable area respectively Gamma value, with cause adjustment after green sub-pixels gamma value be more than adjustment before green sub-pixels gamma value, after adjustment Blue subpixels gamma value be more than adjustment before blue subpixels gamma value;
Initial gamma value using the gamma value of the green sub-pixels before adjustment as green sub-pixels, green after adjustment Target gamma value of the gamma value of pixel as green sub-pixels, using the gamma value of the blue subpixels before adjustment as blue son The initial gamma value of pixel, the target gamma value of the gamma values of the blue subpixels after adjustment as blue subpixels;
Obtain the target gamma of brightness value corresponding to the initial gamma value of the green sub-pixels and the green sub-pixels Brightness value corresponding to value;
According to brightness value corresponding to the initial gamma value of the green sub-pixels and the target gamma of the green sub-pixels Brightness value corresponding to value calculates the backlight object brightness for obtaining and backlight sub-pixel Green sub-pixel being corresponded in the predeterminable area Signal value;
Obtain the target gamma of brightness value corresponding to the initial gamma value of the blue subpixels and the blue subpixels Brightness value corresponding to value;
According to the target gamma of brightness value corresponding to the initial gamma value of the blue subpixels and the blue subpixels Brightness value corresponding to value calculates the backlight object brightness for obtaining and blue subpixels in backlight sub-pixel being corresponded in the predeterminable area Signal value;
If the saturation degree and form and aspect in the LCH color gamut spaces in chromaticity coordinate meet the 3rd preparatory condition, according to institute State the 3rd preparatory condition and adjust the gamma value of sub-pixel Green sub-pixel and blue subpixels in the predeterminable area respectively Gamma value includes:
If H ∈ (345 °, 360 °], and C ∈ [CTL1, CTH1], then γ ' G=γ G1, γ ' B=γ B1
If H ∈ (330 °, 345 °], and C ∈ [CTL2, CTH2], then γ ' G=γ G2, γ ' B=γ B2
If H ∈ (315 °, 330 °], and C ∈ [CTL3, CTH3], then γ ' G=γ G3, γ ' B=γ B3
If H ∈ (0 °, 15 °], and C ∈ [CTL4, CTH4], then γ ' G=γ G4, γ ' B=γ B4
If H ∈ (15 °, 30 °], and C ∈ [CTL5, CTH5], then γ ' G=γ G5, γ ' B=γ B5
If H ∈ (30 °, 45 °], and C ∈ [CTL6, CTH6], then γ ' G=γ G6, γ ' B=γ B6
The H represents form and aspect of the predeterminable area in LCH color gamut spaces;The C represents predeterminable area in LCH color gamut spaces In saturation degree, 0≤CTLiThe < C of < 100,0THi≤ 100, CTHi≥CTLi, i=1,2,3,4,5,6;After γ ' the G represent adjustment Green sub-pixels gamma value, γ ' the B represent the gamma value of the blue subpixels after adjustment.
The embodiment of the present application additionally provides a kind of terminal device, including memory, processor and is stored in the storage In device and the computer program that can run on the processor, this Shen is realized described in the computing device during computer program Please embodiment first aspect provide methods described the step of.
The embodiment of the present application additionally provides a kind of computer-readable recording medium, the computer-readable recording medium storage There is computer program, the computer program realizes that the embodiment of the present application first aspect carries when being executed by one or more processors The step of methods described of confession.
The embodiment of the present application by first obtain each sub-pixel corresponding to pixel cell in predeterminable area (red sub-pixel, Green sub-pixels, blue subpixels, or, R, G, B) chromaticity coordinate in RGB color domain space, the colourity in rgb space sits Mark can be represented with GTG, due to that can have the grey decision-making of a red sub-pixel, a sub- picture of green in each pixel cell The grey decision-making of element, the grey decision-making of a blue subpixels, is counted respectively according to the GTG of the sub-pixel of each pixel cell of acquisition The data feature values of multiple grey decision-makings corresponding to each sub-pixel are calculated, the data feature values of the GTG of sub-pixel are converted to Chromaticity coordinate in LCH color gamut spaces;If the saturation degree and form and aspect in LCH color gamut spaces in chromaticity coordinate meet the 3rd default article Part, the 3rd preparatory condition refer to the value range of saturation degree and form and aspect when color offset phenomenon is serious under big visual angle, then by sub-pixel In green sub-pixels and the input gamma signals of blue subpixels tune up, so tune up green sub-pixels and blue subpixels After gamma value, the brightness ratio of green sub-pixels and blue subpixels under big visual angle can decline relative to red sub-pixel, red Sub-pixels can be more bright-coloured relative to the green sub-pixels after adjustment and blue subpixels, shows so as to improve the colour cast under big visual angle As.
Brief description of the drawings
, below will be to embodiment or description of the prior art in order to illustrate more clearly of the technical scheme in the embodiment of the present application In the required accompanying drawing used be briefly described, it should be apparent that, drawings in the following description are only some of the application Embodiment, for those of ordinary skill in the art, without having to pay creative labor, can also be according to these Accompanying drawing obtains other accompanying drawings.
Fig. 1 is the big visual angle of the various representational colour systems of liquid crystal display and faces the inclined change of role;
Fig. 2 is the implementation process schematic diagram of the driving method for the display device that the embodiment of the application one provides;
Fig. 3 is the implementation process schematic diagram of the driving method for the display device that another embodiment of the application provides;
Fig. 4 is visual angle chromatic aberration situation of 60 ° of horizontal view angles under the conditions of red colour system different blended color;
Fig. 5 is the implementation process schematic diagram of the driving method for the display device that another embodiment of the application provides;
Fig. 6 is the implementation process schematic diagram of the driving method for the display device that another embodiment of the application provides;
Fig. 7 is the implementation process schematic diagram of the driving method for the display device that another embodiment of the application provides;
Fig. 8 is CIE LCH color gamut space systems;
Fig. 9 is the implementation process schematic diagram of the driving method for the display device that another embodiment of the application provides;
Figure 10 is the schematic block diagram of the drive device for the display device that the embodiment of the application one provides;
Figure 11 is the schematic block diagram for the terminal device that the embodiment of the application one provides.
Embodiment
In describing below, in order to illustrate rather than in order to limit, it is proposed that such as tool of particular system structure, technology etc Body details, thoroughly to understand the embodiment of the present application.However, it will be clear to one skilled in the art that there is no these specific The application can also be realized in the other embodiments of details.In other situations, omit to well-known system, device, electricity Road and the detailed description of method, in case unnecessary details hinders the description of the present application.
In order to subsequently be easy to describe, we represent red sub-pixel with R, green sub-pixels are represented with G, blue subpixels Represented with B, the saturation degree in LCH color gamut spaces represents that form and aspect are represented with H with C.
Fig. 1 be the various representational colour systems of liquid crystal display big visual angle and face the inclined change of role, by Fig. 1 we It was found that color offset phenomenon is more serious than other colour systems under partially red, green, the big visual angle of the colour system of blue color phase, therefore, we can be with Improve the overall color offset phenomenon under big visual angle by solving the colour cast defect of R, G, B form and aspect in display.
Liquid crystal display panel is made up of multiple pixel cells, and each pixel cell just represents a signal of video signal, Wherein each pixel cell is made up of three liquid crystal cells lattice again, wherein having red (R), green below each cell respectively (G), blue (B) filter (or directly using sub-pixel R, G, B as backlight), so passes through the light of different units lattice Can shows different colours on screen.Three cells in each pixel cell have single drive signal, lead to The proportioning that single drive signal can adjusts multiple sub-pixels is crossed, so that each pixel cell can show not Same color.
In order to illustrate technical scheme described herein, illustrated below by specific embodiment.
Fig. 2 is a kind of implementation process schematic diagram of the driving method for display device that the application one embodiment provides, such as This method may comprise steps of shown in figure:
Step S201, obtain the GTG of sub-pixel corresponding to each pixel cell in predeterminable area.
In one embodiment, because liquid crystal display panel is made up of many pixel cells, if individually regulation The colour cast efficiency of each pixel cell can be very low, so liquid crystal display panel first can be divided into multiple subregions by us, often It is made up of inside individual subregion multiple pixel cells, partition size can voluntarily be set according to actual conditions.For example, display is drawn It is divided into multiple subregions (L rows, H row), each subregion can be used as a zonule, then display is the equal of small by L × H Region composition.We choose one of zonule and are located at Nth row m column, the N as predeterminable area, this zonule Span be:1≤N≤L, the span of the M are:1≤M≤H.If that is, display surface by display Plate is divided into 5 rows 8 and arranged, then L=5, H=8, then predeterminable area represents that N span is with (N, M):1≤N≤5, M Span be:1≤M≤8, N and M represent integer.Assuming that the predeterminable area that we choose is the 3rd row the 6th row, then pre- Region if (N, M) can is represented with (3,6).Certainly, different expression predeterminable areas can also be developed out according to the above Mode.If one of subregion can be arranged by i, the pixel cell of j rows forms, then the subregion just has i × j pixel Unit, we illustrate the method for the embodiment of the present application exemplified by the colour cast in a subregion by adjusting.
The predeterminable area is exactly one of subregion, by multiple pixel cells inside the subregion, while each pixel list Member is all made up of three sub-pixels (R, G, B), and each sub-pixel can have the chromaticity coordinate in corresponding RGB color domain space, example Such as, the grey decision-making chromaticity coordinate used in RGB color domain space, the GTG are represented by most secretly to the layer of different brightness most bright Secondary rank, 256 luminance levels can be shown, can specifically be represented with 0-255 numerical value.We first obtain each pixel cell In each sub-pixel corresponding to grey decision-making.
Step S202, according to the GTG of the sub-pixel, calculate respectively in the predeterminable area corresponding to each sub-pixel The data feature values of multiple GTGs.
In one embodiment, in color of each sub-pixel in RGB color domain space in obtaining each pixel cell After spending coordinate (grey decision-making), we can obtain each sub-pixel (such as sub-pixel corresponding to red color phase) again in each pixel Grey decision-making in unit, so each sub-pixel just obtain i × j grey decision-making.The data feature values are can be used for characterizing The value of one group of data, or the value of data analysis feature can be portrayed.In one embodiment, can be made using average value For the data feature values of one group of data, that is, the average value of multiple GTGs corresponding to each sub-pixel is obtained, average value can be with Including arithmetic mean number, addend average, geometric mean.It should be noted that data feature values can also include variance or Person removes arithmetic average after abnormal luma data etc., is not limited herein.
Step S203, if the data feature values of multiple GTGs meet first corresponding to each sub-pixel in the predeterminable area Preparatory condition, then G gamma value and B gal in sub-pixel are adjusted in the predeterminable area according to first preparatory condition respectively Horse value, to cause G that the gamma value of the G after adjustment is more than before adjustment gamma value, before the gamma value of the B after adjustment is more than adjustment B gamma value.
In one embodiment, first preparatory condition refers to that the data feature values of GTG corresponding to each sub-pixel exist Color offset phenomenon is serious when under the conditions of being somebody's turn to do.So, when color offset phenomenon is serious, we can be by adjusting the parameters of sub-pixel To improve the color offset phenomenon of liquid crystal display panel under big visual angle.Such as the input gamma signal of regulation sub-pixel, the input gal Horse signal specifically represents that the gamma value is actually a kind of relation value for exporting and inputting, and can pass through formula with gamma value Output=inputγ, input represent input signal, output represent output signal, gamma value γ is power exponent, also by As gamma.Change output signal in the case where not changing input signal by adjusting gamma value can, or not Change gamma value can in the case of changing input signal and realize equivalent regulation input signal.Popular says, does not change display The video source data that device receives, the image for the video for being presented to user by adjusting gamma value changes, or makes The image for obtaining the video that user sees is changed, and these changes show brightness, color etc..
In order to further obtain the parameter of sub-pixel for needing to adjust, R, G, B GTG under more positive visual angle and big visual angle Relation, so that positive visual angle (0 °) colour mixture GTG is R160, G50, B50 as an example, corresponding positive visual angle RX, GY, BZ and full GTG R255, G255, B255 ratio are respectively 37%, 3%, 3% colour mixture, and under big visual angle (60 °) RX, GY, BZ and full GTG R255, G255, B255 ratio are respectively 54%, 23%, 28% colour mixture, it is seen that RX, GY, BZ ratio of positive visual angle colour mixture and big visual angle colour mixture Example is entirely different, that is to say, that R of the same grey decision-making (input parameter signal) under big visual angle than revealing in positive visual angle following table Brightness ratio between G, R and B becomes big, and in other words, blue color phase and green hue are compared to red color phase under big visual angle Ratio can not ignore, the red color phase for causing red color phase under big visual angle to be not so good as under positive visual angle is obvious, so big visual angle Under there have been color offset phenomenon.It is in practice, different visual angles, different it should be noted that the example is only used for illustrating Colour mixture condition, the color offset phenomenon finally shown are possible to and different.
Contrasted more than, we can be by adjusting G and B gamma value so that G after regulation G and B gamma value and B equivalent GTG diminishes, and just compare R GTG of G and B equivalent GTG diminishes under so big visual angle.Red color phase is with regard to energy It is enough to display again.So that G and B equivalent GTG, which diminishes, just needs the gamma value for tuning up G and B.Due to output=inputγ, We assume that input signal is exactly grey decision-making, after gamma value changes, the gray scale variation that shows, this GTG phase showed It is not gray scale variation caused by the change of input signal by this citing to explain equivalent GTG when in equivalent GTG, And it is due to adjust gamma value so that the output signal showed or the brightness value changes showed.
The embodiment of the present application is by obtaining the data feature values of multiple GTGs corresponding to sub-pixel, if more corresponding to sub-pixel The color offset phenomenon under big visual angle can be presented in the data feature values of individual GTG, then tunes up G and B gamma value, gamma value tunes up Afterwards, G and B equivalent GTG will diminish, and the gap of the data feature values of the GTG of G and B equivalent GTG and R will become big, So R color seems just more bright-coloured, then the color offset phenomenon under big visual angle will be obviously improved.
Fig. 3 is a kind of implementation process schematic diagram of the driving method for display device that another embodiment of the application provides, such as This method shown in figure can also comprise the following steps after step S203:
Step S301, the initial gamma value using the gamma value of the G before adjustment as G, the gamma value of the G after adjustment is as G Target gamma value, the initial gamma value using the gamma value of the B before adjustment as B, the mesh of the gamma value of the B after adjustment as B Mark gamma value.
In one embodiment, after the gamma value for distinguishing the numerical value and adjustment G before adjusting G gamma value for convenience Numerical value, the initial gamma value using the gamma value of the G before adjustment as G, the target gamma of the gamma value of the G after adjustment as G Value, the initial gamma value using the gamma value of the B before adjustment as B, the target gamma value of the gamma value of the B after adjustment as B.
Step S302, obtain bright corresponding to brightness value corresponding to the initial gamma value of the G and the G target gamma value Angle value.
In one embodiment, although the color offset phenomenon under the big visual angle of gamma value by adjusting G and B improves, But due to adjustment gamma value after brightness also have corresponding influence, so, under positive visual angle G and B brightness change, G and B color, which just changes, under so positive visual angle knows clearly so that the color combined by sub-pixel R, G, B also there occurs Change, thus we need obtain G initial gamma value corresponding to brightness value corresponding to brightness value and G target gamma value, look into See brightness has changed how many, in order to recover the brightness value under positive visual angle, original color will not be caused because of adjustment G gamma value Performance is affected.
As another embodiment of the application, we can obtain brightness corresponding to G initial gamma value in the following manner Brightness value corresponding to value and G target gamma value.
Brightness value corresponding to the initial gamma value of the G is obtained by below equation:
Brightness value corresponding to the target gamma value of the G is obtained by below equation:
The LN,MG represents brightness value corresponding to the initial gamma value of the G, the L'N,MG represents the target gal of the G Brightness value corresponding to horse value;The LG (255) represents brightness value when G GTG is 255, gGRepresent each picture in predeterminable area The data feature values of the GTG of G in plain unit;γ G represent G initial gamma value, and γ ' the G represent G target gamma value;
In one embodiment, because G target gamma value is more than G initial gamma value, and gGIt is≤255 value, institute With L'N,MG is relative to LN,MG be actually it is dimmed, that is, G gamma value tune up after, G brightness is dimmed.Need to illustrate , it is only that a kind of of brightness value corresponding to brightness value corresponding to G initial gamma value and G target gamma value obtains above Mode, in actual applications, it can also be obtained according to other manner.
Step S303, it is bright according to corresponding to brightness value corresponding to the initial gamma value of the G and the G target gamma value Angle value calculates the backlight object brightness signal value for obtaining and G in backlight sub-pixel being corresponded in the predeterminable area.
In one embodiment, the presentation of brightness is driven by the luminance signal inputted, and the change of brightness value is also required to The size for adjusting brightness signal value is realized.So we can according to corresponding to G initial gamma value brightness value and the G Brightness value corresponding to target gamma value and current backlight illumination signal value obtain backlight object brightness signal value to calculate, the back of the body Optical target brightness signal value enables to be presented before the luminance recovery that the G under positive visual angle shows to the gamma value for adjusting G Brightness.
In one embodiment, brightness value corresponding to the initial gamma value according to the G and the G target gamma Brightness value corresponding to value calculates the backlight object brightness signal value bag for obtaining and G in backlight sub-pixel being corresponded in the predeterminable area Include:
Pass through formulaCalculate and backlight sub-pixel Green is corresponded in the predeterminable area The backlight object brightness signal value of sub-pixel;
The A'N,MG represents to correspond to the backlight object brightness signal value of G in backlight sub-pixel, A in predeterminable areaN,MG is represented The current backlight illumination signal values of G in backlight sub-pixel are corresponded in predeterminable area;The LN,MG represents son in the predeterminable area Brightness value, the L' corresponding to G initial gamma value in pixelN,MG represents the target of G in three sub-pixels in the predeterminable area Brightness value corresponding to gamma value, the N, M represent line number and columns of the predeterminable area in multiple regions of division respectively.
If brightness value corresponding to brightness value and G target gamma value corresponding to G initial gamma value is used in step S302 Mode obtain, then G backlight object brightness signal value is obtained by below equation:
Step S304, obtain bright corresponding to brightness value corresponding to the initial gamma value of the B and the B target gamma value Angle value.
The step is similar with step S302, and it is brightness value corresponding to G initial gamma value that simply step S302, which is obtained, With the target gamma value of the G corresponding to brightness value, the step be obtain the B initial gamma value corresponding to brightness value and Brightness value corresponding to the target gamma value of the B.Computational methods are identical, will not be repeated here.
As another embodiment, brightness value and the B target gamma corresponding to the initial gamma value for obtaining the B Brightness value includes corresponding to value:
Brightness value corresponding to the initial gamma value of the B is obtained by below equation:
Brightness value corresponding to the target gamma value of the B is obtained by below equation:
The LN,MB represents brightness value corresponding to the initial gamma value of the B, the L'N,MB represents the target gal of the B Brightness value corresponding to horse value;The LB (255) represents brightness value when B GTG is 255, gBRepresent each picture in predeterminable area The data feature values of the GTG of B in plain unit;γ B represent B initial gamma value, and γ ' the B represent B target gamma value.
Step S305, it is bright according to corresponding to brightness value corresponding to the initial gamma value of the B and the B target gamma value Angle value calculates the backlight object brightness signal value for obtaining and B in backlight sub-pixel being corresponded in the predeterminable area.
The step is similar with step S303, and what is simply calculated in step S303 is G backlight object brightness signal value, What the step calculated is B backlight object brightness signal value.It will not be repeated here.
As the another embodiment of the application, brightness value and the B mesh corresponding to the initial gamma value according to the B Brightness value corresponding to mark gamma value calculates the backlight object brightness signal for obtaining and B in backlight sub-pixel being corresponded in the predeterminable area Value includes:
Pass through formulaCalculate and blueness in backlight sub-pixel is corresponded in the predeterminable area The backlight object brightness signal value of sub-pixel;
The A'N,MB represents to correspond to the backlight object brightness signal value of B in backlight sub-pixel, A in predeterminable areaN,MB is represented The current backlight illumination signal values of B in backlight sub-pixel, the L are corresponded in predeterminable areaN,MB represents son in the predeterminable area Brightness value, the L' corresponding to B initial gamma value in pixelN,MB represents the target gal of B in sub-pixel in the predeterminable area Brightness value corresponding to horse value, the N, M represent line number and columns of the predeterminable area in multiple regions of division respectively.
Similarly, B backlight object brightness signal value is obtained by below equation:
In the embodiment of the present application, because R, G, B have single driving respectively, so three is independent.According to the backlight for calculating G The process of object brightness signal value, the various parameters for G various parameters being replaced with accordingly B can be obtained by B backlight mesh Mark brightness signal value.Specifically first still first calculating B backlight object brightness signal value exists calculating G backlight object brightness signal value This is not limited, and can also calculate G backlight object brightness signal value and B backlight object brightness signal value simultaneously.
Fig. 4 is visual angle chromatic aberration situation of 60 degree of horizontal view angles under the conditions of red colour system different blended color, abscissa be G and B GTG, ordinate are colour cast, and as described in Figure, when R (red) GTG is 255, G (green), B (blueness) GTG are between 0- Between 255, as G, B grayscale signal reduce, the colour cast of R form and aspect is more serious.When red GTG is 200, G, B GTG are between 0 ~180 GTGs, with writing, G, B grayscale signal are lower, and the colour cast of red color phase is more serious.When red GTG is 160, G, B GTG Between 0~160 GTG, with writing, G, B grayscale signal are lower, and the colour cast of red color phase is more serious.When red GTG is 100, G, B GTG is between 0~100 GTG, and with writing, G, B grayscale signal are lower, and the colour cast of red color phase is more serious.
By Fig. 4 we can find out red colour cast it is more serious when, the GTG of sub-pixel respectively where scope, by the model Enclose as the first preparatory condition, that is to say, that the data feature values of multiple GTGs corresponding to each sub-pixel meet the first default bar During part, show that color offset phenomenon is than more serious under big visual angle, by Fig. 4 it can also be seen that when R GTG immobilizes, G and B GTG it is small to a certain extent, at this moment R is relatively more bright-coloured, at the same colour cast it is also relatively small (utilize Fig. 4 in every curve Far Left Part).So we can be improved under big visual angle by adjusting the gamma value of the G in sub-pixel and B gamma value Color offset phenomenon.
As the another embodiment of the application, if in the predeterminable area each multiple GTGs corresponding to sub-pixel number Meet the first preparatory condition according to characteristic value, then three sub-pixels in the predeterminable area are adjusted according to first preparatory condition respectively Middle G gamma value and B gamma value include:
If gR∈ (200,255], and gG∈ [0,200], and gB∈ [0,200], then γ ' G=γ G1, γ ' B=γ B1
If gR∈ (150,200], and gG∈ [0,180], and gB∈ [0,180], then γ ' G=γ G2, γ ' B=γ B2
If gR∈ (100,150], and gG∈ [0,150], and gB∈ [0,150], then γ ' G=γ G3, γ ' B=γ B3
If gR∈ (50,100], and gG∈ [0,100], and gB∈ [0,100], then γ ' G=γ G4, γ ' B=γ B4
If gR∈ [0,50], and gG∈ [0,50], and gB∈ [0,50], then γ ' G=γ G5, γ ' B=γ B5
The gRRepresent the data feature values of R multiple GTGs in predeterminable area;The gGG's is more in expression predeterminable area The data feature values of individual GTG, the gBThe data feature values of B multiple GTGs in predeterminable area are represented, γ ' the G represent to adjust The gamma value of G after whole, γ ' the B represent the gamma value of the B after adjustment.For different preparatory conditions, γ ' G and γ ' B's Value is different, γ G1、γG2... represent different gamma values.
In actual applications, can also be set according to the grey-scale range of sub-pixel when colour cast is serious under big visual angle different pre- If condition, corresponding different preparatory condition sets different target gamma values, as long as corresponding each target gamma value is not It is to need to be determined according to the grey decision-making of R, G, B in preparatory condition, certain target gamma value is also more than initial gamma value can It can be empirical value, after adjusting target gamma value, color offset phenomenon can be improved, set different target gamma values to improve colour cast The degree of phenomenon is different.
The embodiment of the present application passes through the colour cast situation under more positive visual angle and big visual angle under the conditions of red colour system different blended color Multiple first preparatory conditions are set, and target gamma value is respectively provided with for each first preparatory condition, due to the described first default bar Part cover substantially color offset phenomenon it is more serious in the case of sub-pixel grey decision-making scope, as long as so grey decision-making of sub-pixel Data feature values meet the first preparatory condition, just according to first preparatory condition adjust G and B gamma value can just improve Color offset phenomenon under big visual angle.
Fig. 5 is a kind of implementation process schematic diagram of the driving method for display device that the application one embodiment provides, should The difference of embodiment and embodiment illustrated in fig. 2 is:The gamma value for R of embodiment adjustment, embodiment illustrated in fig. 2 adjustment For G and B gamma value, this method may comprise steps of as shown in the figure:
Step S501, obtain the GTG of sub-pixel corresponding to each pixel cell in predeterminable area.
Step S502, according to the GTG of the sub-pixel, calculate respectively in the predeterminable area corresponding to each sub-pixel The data feature values of multiple GTGs.
Step S503, if the data feature values of multiple GTGs meet second corresponding to each sub-pixel in the predeterminable area Preparatory condition, then the gamma value of R in sub-pixel in the predeterminable area is adjusted according to second preparatory condition, to adjust The gamma value of R afterwards is more than the gamma value of the R before adjustment, the data characteristics of GTG of the equivalent GTG more than G of the R after adjustment Value, and the data feature values of GTG of the equivalent GTG of the R after adjustment more than B.
In order to obtain the parameter for needing to adjust from another point of view, we continue to illustrate 60 ° of horizontal view angles in red colour system with Fig. 4 Visual angle chromatic aberration situation under the conditions of different blended color, as shown in figure 4, when the corresponding phase of identical red color phase (red GTG is identical) With G, B grayscale signal, can be found that aberration (colour cast) is smaller during colour mixture R signal lower (GTG of red color phase), for example, working as R is 200 grayscale signals, and G, B colour mixture grayscale signal are that the aberration of 100 GTGs is 0.015, when R is 160 grayscale signals, G, B colour mixture Grayscale signal is that the aberration of 100 GTGs is 0.01, and when R is 100 grayscale signals, G, B colour mixture grayscale signal are the aberration of 100 GTGs For 0.003.Therefore the embodiment of the present application can be by reducing (reduction grey decision-making) by R grayscale signals so that Red grayscale signals connect Nearly G, B colour mixture grayscale signal, that is to say, that R grey decision-making is reduced to the grey decision-making close to G, B, by it can be seen from the figure that when R, G, when B grayscale signal is close (part for utilizing every curve rightmost in Fig. 4), for example, when being all 200, or R is 200, G, when B is close to 200, color offset phenomenon is very small, because at this moment integral color can be inclined to neutral black-white-gray rank color, thus The color offset phenomenon under big visual angle can be improved.But R equivalent GTG unconfined can not reduce, R equivalent GTG still will The data characteristics of GTG more than G, the data feature values of the GTG more than B, because by figure as can be seen that R GTG is necessary GTG more than G and B could cause the colour cast imagination to improve.So after R gamma value tunes up, R equivalent GTG can diminish, but It is the data characteristics that the equivalent GTG of the R after adjusting is greater than G GTG, and the equivalent GTG of the R after adjustment is greater than G ash The data characteristics of rank.
The embodiment of the present application is by obtaining the data feature values of multiple GTGs corresponding to sub-pixel, if more corresponding to sub-pixel The color offset phenomenon under big visual angle can be presented in the data feature values of individual GTG, then tunes up R gamma value, after gamma value tunes up, R's Brightness or equivalent GTG will diminish, when R equivalent GTG become with G and B very close to when, also just present the color of partial neutral Coloured silk, overall color offset phenomenon will improve.
As the another embodiment of the application, if the gamma value for R of adjustment, after step S503, as shown in fig. 6, also Including:
Step S601, the initial gamma value using the gamma value of the R before adjustment as R, the gamma value of the R after adjustment is as R Target gamma value.
Step S602, obtain bright corresponding to brightness value corresponding to the initial gamma value of the R and the R target gamma value Angle value.
Step S603, it is bright according to corresponding to brightness value corresponding to the initial gamma value of the R and the R target gamma value Angle value calculates the backlight object brightness signal value for obtaining and R in backlight sub-pixel being corresponded in the predeterminable area.
The step is similar with step S301-S303, is simply that G angle describes in step S301-S303, the step It is R angle description.Content is identical with computational methods, and G simply is changed into R, will not be repeated here.
In one embodiment, although the color offset phenomenon under the big visual angle of gamma value by adjusting R improves, Due to adjustment gamma value after brightness also have corresponding influence, so, under positive visual angle R brightness change, so just R color, which just changes, under visual angle is known clearly so that the color combined by R, G, B is also changed, so we need Brightness value corresponding to obtaining brightness value corresponding to R initial gamma value and R target gamma value, it is more to check that brightness has changed It is few, in order to recover the brightness value under positive visual angle, because of adjustment R gamma value the performance of original color will not be affected.
It is corresponding that we can obtain brightness value and R target gamma value corresponding to R initial gamma value in the following manner Brightness value.
Brightness value corresponding to the initial gamma value of the R is obtained by below equation:
Brightness value corresponding to the target gamma value of the R is obtained by below equation:
The LN,MR represents brightness value corresponding to the initial gamma value of the R, the L'N,MR represents the target gal of the R Brightness value corresponding to horse value;The LR (255) represents brightness value when R GTG is 255, gRRepresent each picture in predeterminable area The data feature values of the GTG of R in plain unit;γ R represent R initial gamma value, and γ ' the R represent R target gamma value.
In one embodiment, because R target gamma value is more than R initial gamma value, and gRIt is≤255 value, institute With L'N,MR is relative to LN,MR be actually it is dimmed, that is, R gamma value tune up after, R brightness is dimmed.Need to illustrate , it is only that a kind of of brightness value corresponding to brightness value corresponding to R initial gamma value and R target gamma value obtains above Mode, in actual applications, it can also be obtained according to other manner.
In one embodiment, we can according to corresponding to R initial gamma value brightness value and the R target gamma Brightness value corresponding to value and current brightness signal value obtain backlight object brightness signal value to calculate, backlight object brightness letter Number value enables to the brightness presented before the luminance recovery that R shows to the gamma value for adjusting R.
Brightness value corresponding to brightness value and the R target gamma value corresponding to the initial gamma value according to the R Calculate and obtain the backlight object brightness signal value that R in backlight sub-pixel is corresponded in the predeterminable area and be:
Pass through formulaCalculate and red in backlight sub-pixel is corresponded in the predeterminable area The backlight object brightness signal value of sub-pixel;
The A'N,MR represents to correspond to the backlight object brightness signal value of R in backlight sub-pixel, A in predeterminable areaN,MR is represented The current backlight illumination signal values of R in backlight sub-pixel are corresponded in predeterminable area;The LN,MR represents son in the predeterminable area Brightness value, the L' corresponding to R initial gamma value in pixelN,MRepresent the target gamma of R in sub-pixel in the predeterminable area Brightness value corresponding to value, the N, M represent line number and columns of the predeterminable area in multiple regions of division respectively.
R backlight object brightness signal value is obtained by below equation:
As the another embodiment of the application, if in the predeterminable area each multiple GTGs corresponding to sub-pixel number Meet the second preparatory condition according to characteristic value, then according to R in sub-pixel in second preparatory condition adjustment predeterminable area Gamma value includes:
If gR∈ (200,255], and gG∈ [0,200], and gB∈ [0,200], then γ ' R=γ R1, and
If gR∈ (150,200], and gG∈ [0,180], and gB∈ [0,180], then γ ' R=γ R2, and
If gR∈ (100,150], and gG∈ [0,150], and gB∈ [0,150], then γ ' R=γ R3, and
If gR∈ (50,100], and gG∈ [0,100], and gB∈ [0,100], then γ ' R=γ R4, and
If gR∈ [0,50], and gG∈ [0,50], and gB∈ [0,50], then γ ' R=γ R5, and
The gRRepresent the data feature values of R multiple GTGs in predeterminable area;The gGG's is more in expression predeterminable area The data feature values of individual GTG, the gBThe data feature values of B multiple GTGs in predeterminable area are represented, γ ' the R represent to adjust The gamma value of R after whole,After expression is adjusted to target gamma value, R equivalent GTG, i=1,2,3, 4,5。
We by further analysis chart 4 obtain color offset phenomenon it is serious when R, G, B GTG the second preparatory condition.Such as figure Described, when R (red) GTG is 255, G (green), B (blueness) GTG are between 0-255, as G, B grayscale signal drop Low, the colour cast of R form and aspect is more serious.When red GTG is 200, G, B GTG are between 0~180 GTG, with work G, B grayscale signal Lower, the colour cast of red color phase is more serious.When red GTG is 160, G, B GTG are between 0~160 GTG, with work G, B GTG Signal is lower, and the colour cast of red color phase is more serious.When red GTG is 100, G, B GTG are between 0~100 GTG, with work G, B Grayscale signal is lower, and the colour cast of red color phase is more serious.
By Fig. 4 we can find out red colour cast it is more serious when, the GTG of sub-pixel respectively where scope, by the model Enclose as the second preparatory condition, that is to say, that the data feature values of multiple GTGs corresponding to each sub-pixel meet the second default bar During part, show that color offset phenomenon is than more serious under big visual angle, we change can by adjusting the gamma value of the R in sub-pixel The color offset phenomenon being apt under big visual angle.
The embodiment of the present application passes through the colour cast situation under more positive visual angle and big visual angle under the conditions of red colour system different blended color Multiple second preparatory conditions are set, and target gamma value is respectively provided with for each second preparatory condition, due to the described second default bar Part cover substantially color offset phenomenon it is more serious in the case of sub-pixel grey decision-making scope, as long as so grey decision-making of sub-pixel Data feature values meet preparatory condition, just according to second preparatory condition adjust R gamma value can just improve big visual angle Under color offset phenomenon.
Fig. 7 is a kind of implementation process schematic diagram of the driving method for display device that the application one embodiment provides, such as This method may comprise steps of shown in figure:
Step S701, obtain colourity of the sub-pixel in RGB color domain space corresponding to each pixel cell in predeterminable area Coordinate.
Step S702, according to chromaticity coordinate of the sub-pixel in RGB color domain space, the predeterminable area is calculated respectively The data feature values of interior each multiple chromaticity coordinates of the sub-pixel in RGB color domain space.
Step S703, the data feature values of chromaticity coordinate of the sub-pixel in RGB color domain space are converted into LCH colour gamuts sky Between in chromaticity coordinate.
Step S704, if the C and H in LCH color gamut spaces in chromaticity coordinate meet the 3rd preparatory condition, according to described Three preparatory conditions adjust in the predeterminable area G gamma value and B gamma value in sub-pixel respectively, to cause the G after adjustment Gamma value be more than the gamma value of the G before adjustment, the gamma value of the B after adjustment is more than the gamma value of the B before adjustment.
In one embodiment, RGB color domain space is most commonly used in computer graphical, because color monitor makes Required color is produced with RGB.So the structure and design of system are simplified from RGB color domain space.It is additionally, since RGB Color gamut space has used many years, it is possible to utilizes most of existing software program module.However, RGB color domain space exists When handling " reality " image, its efficiency is not very high.Produce the random color in RGB color cube, all R, G, B must have identical bandwidth.This, which just directly results in each R, G, B, needs pixel depth and display resolution identical Frame memory.Moreover, piece image is handled in RGB color domain space generally nor most effective way.For example, we Change brightness or the colourity of pixel, we must read all RGB color values from frame buffer, then calculate Brightness or colourity, then they are changed accordingly, calculate new rgb value, write back frame buffer.If system accesses Be the image directly stored with brightness and colourity, some processing steps will be faster.Due to these and other, Many video standards use brightness and two colour difference signals.So " reality " image is handled for convenience, may in practical application Can use other color gamut spaces, such as the LCH color gamut spaces that the embodiment of the present application provides, thus we by sub-pixel in RGB color The data feature values of chromaticity coordinate in domain space are converted to the chromaticity coordinate in LCH color gamut spaces.
Fig. 8 is CIE LCH color gamut space systems, and the chromaticity coordinate in LCH color gamut spaces is represented with L, C, H respectively.L、C、H Numerical value can be transformed by chromaticity coordinate R, G, B in RGB color domain space, for example, L=f (R, G, B), C=f (R, G, B), H=f (R, G, B).L represents brightness;H represents form and aspect, that is, color, and span is 0 ° -360 °, defines 0 ° as red, 90 ° are yellow, and 180 ° are green, and 270 ° are blueness;C represents the purity of form and aspect, or saturation degree, that is, the bright-coloured journey of color Degree, span 0-100,100 represent most brilliant in colors, and in actual applications, C also represent LCD display display height Press the presentation of signal.
In one embodiment, the 3rd preparatory condition refers to C in LCH color gamut spaces in chromaticity coordinate and H at this Under the conditions of when color offset phenomenon it is serious.So, when color offset phenomenon is serious, we can be by adjusting RGB sub-pixels in display screen Parameters improve the color offset phenomenon of liquid crystal display panel under big visual angle.Identical with above-mentioned analysis, we can pass through tune Save G and B gamma value so that the equivalent GTG of G and B after regulation G and B gamma value diminish, G and B under so big visual angle Just compare R GTG of equivalent GTG diminishes.Red color phase can just display again.Grey decision-making in RGB color domain space Change may result in brightness, form and aspect, vividness change in LCH color gamut spaces.
The embodiment of the present application is by obtaining the data feature values of multiple GTGs corresponding to sub-pixel, by RGB color domain space Grey decision-making be converted into chromaticity coordinate in LCH color gamut spaces so that the applicable occasion of this method is wider, if LCH color gamut spaces The color offset phenomenon under big visual angle can be presented in middle chromaticity coordinate, then tunes up G and B gamma value, after gamma value tunes up, G and B's Equivalent GTG will diminish, and the gap of the data feature values of the GTG of G and B equivalent GTG and R will become big, and R color is seen Get up just more bright-coloured, the color offset phenomenon under so so big visual angle will be obviously improved.
After the gamma value for adjusting G and B, it is possible to according to the method for embodiment illustrated in fig. 3, calculate and obtain the predeterminable area B backlight object brightness signal value and G backlight object brightness signal value in interior corresponding backlight sub-pixel.
Accordingly, if C and H in LCH color gamut spaces in chromaticity coordinate meet the 3rd preparatory condition, according to the described 3rd Preparatory condition adjusts in the predeterminable area that G gamma value and B gamma value include in sub-pixel respectively:
If H ∈ (345 °, 360 °], and C ∈ [CTL1, CTH1], then γ ' G=γ G1, γ ' B=γ B1
If H ∈ (330 °, 345 °], and C ∈ [CTL2, CTH2], then γ ' G=γ G2, γ ' B=γ B2
If H ∈ (315 °, 330 °], and C ∈ [CTL3, CTH3], then γ ' G=γ G3, γ ' B=γ B3
If H ∈ (0 °, 15 °], and C ∈ [CTL4, CTH4], then γ ' G=γ G4, γ ' B=γ B4
If H ∈ (15 °, 30 °], and C ∈ [CTL5, CTH5], then γ ' G=γ G5, γ ' B=γ B5
If H ∈ (30 °, 45 °], and C ∈ [CTL6, CTH6], then γ ' G=γ G6, γ ' B=γ B6
The H represents form and aspect of the predeterminable area in LCH color gamut spaces;The C represents predeterminable area in LCH color gamut spaces In excitation, 0≤CTLiThe < C of < 100,0THi≤ 100, CTHi≥CTLi, i=1,2,3,4,5,6;After γ ' the G represent adjustment G gamma value, γ ' the B represent the gamma value of the B after adjustment.
In one embodiment, we find out color offset phenomenon it is serious when, C and H in LCH color gamut spaces respectively where model Enclose, using the scope as the 3rd preparatory condition, that is to say, that C and H value meets the 3rd preparatory condition or in the 3rd default model When enclosing interior, illustrate that color offset phenomenon is than more serious under big visual angle, we can be by adjusting the gamma value and B of the G in sub-pixel Gamma value is improving the color offset phenomenon under big visual angle.
In actual applications, different default bars can also be set according to the scope of C and H when colour cast is serious under big visual angle Part, corresponding different preparatory condition set different target gamma values, as long as corresponding each target gamma value is not to be more than Initial gamma value can, be need determined according to C in preparatory condition and H value, certainly, target gamma value can also be through Value is tested, after adjusting target gamma value, color offset phenomenon can be improved, set different target gamma values to improve the journey of color offset phenomenon Degree is different.The embodiment of the present application is actually that G and B GTG are small to a certain extent, at this moment R phases using when R GTG is fixed It is more bright-coloured to meeting, while the colour cast imagination is also relatively small.So we can be by tuning up old improvement by G and B gamma value Color offset phenomenon under big visual angle.
The embodiment of the present application sets multiple 3rd preparatory conditions, Mei Ge according to color offset phenomenon L and C when serious scope Under three preparatory conditions, corresponding different target gamma value, as long as so H and C meet the 3rd preparatory condition, just according to the described 3rd Preparatory condition regulation G and B gamma value can just improve the color offset phenomenon under big visual angle.
Fig. 9 is a kind of implementation process schematic diagram of the driving method for display device that the application one embodiment provides, such as This method may comprise steps of shown in figure:
Step S901, obtain colourity of the sub-pixel in RGB color domain space corresponding to each pixel cell in predeterminable area Coordinate.
Step S902, according to chromaticity coordinate of the sub-pixel in RGB color domain space, the predeterminable area is calculated respectively The data feature values of interior each multiple chromaticity coordinates of the sub-pixel in RGB color domain space.
Step S903, the data feature values of chromaticity coordinate of the sub-pixel in RGB color domain space are converted into LCH colour gamuts sky Between in chromaticity coordinate.
Step S904, if the C and H in LCH color gamut spaces in chromaticity coordinate meet the 4th preparatory condition, according to described Four preparatory conditions adjust the gamma value of R in sub-pixel in the predeterminable area, to cause the gamma value of the R after adjustment to be more than adjustment Preceding R gamma value, the data feature values of GTG of the equivalent GTG more than G of the R after adjustment, and the equivalent ash of the R after adjustment The data feature values of GTG of the rank more than B.
In one embodiment, the 4th preparatory condition refers to C in LCH color gamut spaces in chromaticity coordinate and H at this Under the conditions of when color offset phenomenon it is serious.So, when color offset phenomenon is serious, we can be by adjusting RGB sub-pixels in display screen Parameters improve the color offset phenomenon of liquid crystal display panel under big visual angle.
After the gamma value for adjusting R, it is possible to according to the method for embodiment illustrated in fig. 6, calculate and obtain in the predeterminable area R backlight object brightness signal value in corresponding backlight sub-pixel.
As the another embodiment of the application, if the C and H in LCH color gamut spaces in chromaticity coordinate meet the 4th preparatory condition, The gamma value of R in sub-pixel in the predeterminable area is then adjusted according to the 4th preparatory condition to be included:
If H ∈ (345 °, 360 °], and C ∈ [CTL1, CTH1], then γ ' R=γ R1, and
If H ∈ (330 °, 345 °], and C ∈ [CTL2, CTH2], then γ ' R=γ R2, and
If H ∈ (315 °, 330 °], and C ∈ [CTL3, CTH3], then γ ' R=γ R3, and
If H ∈ (0 °, 15 °], and C ∈ [CTL4, CTH4], then γ ' R=γ R4, and
If H ∈ (15 °, 30 °], and C ∈ [CTL5, CTH5], then γ ' R=γ R5, and
If H ∈ (30 °, 45 °], and C ∈ [CTL6, CTH6], then γ ' R=γ R6, and
The H represents form and aspect of the predeterminable area in LCH color gamut spaces;The C represents predeterminable area in LCH color gamut spaces In form and aspect saturation degree, 0≤CTLiThe < C of < 100,0THi≤ 100, CTHi≥CTLi, i=1,2,3,4,5,6;γ ' the R are represented The gamma value of R after adjustment,R equivalent GTG after expression adjustment R gamma value, i=1,2,3,4, 5。
It should be noted that adjusting the method for colour cast in the embodiment of the present application, a kind of is to tune up G and B gamma value causes G Smaller while being that the GTG of the Far Left G and B of every curve in Fig. 4 tends to 0 (application) become with B equivalent GTG, it is a kind of It is to tune up R gamma value (application is that the equivalent GTG of the rightmost R of every curve in Fig. 4 becomes so that R equivalent GTG diminishes When equal with G and B GTG);So the applicable elements of two kinds of situations are different, the first preparatory condition and the are thus derived Two preparatory conditions.Simultaneously as the applicable elements of different color gamut spaces are different, although under LCH color gamut spaces, can also pass through tune The gamma value for saving G and B or the gamma value for adjusting R realize the effect of regulation colour cast, but applicable elements have respectively become LCH colors Applicable elements under domain space, thus derive the 3rd preparatory condition and the 4th preparatory condition.It should be noted that can be with According to the curve given in Fig. 4 in RGB color domain space under derive other applicable elements, adjusted according to different applicable elements R, G, B gamma value;It is also possible to the transformational relation in other color gamut spaces and RGB color domain space, is derived other Applicable elements, R, G, B gamma value are adjusted according to different applicable elements.
It should be understood that the size of the sequence number of each step is not meant to the priority of execution sequence, each process in above-described embodiment Execution sequence should determine that the implementation process without tackling the embodiment of the present application forms any limit with its function and internal logic It is fixed.
Figure 10 is the schematic block diagram of the drive device for the display device that the embodiment of the application one provides, for convenience of description, The part related to the embodiment of the present application is only shown.
The drive device 10 of the display device can be the software list being built in terminal device (display, TV etc.) Member, hardware cell or the unit of soft or hard combination, can also be integrated into the terminal device as independent suspension member.
The drive device 10 of the display device includes:
Acquisition module 101, for obtaining in predeterminable area each sub-pixel corresponding to pixel cell in RGB color domain space Chromaticity coordinate;
Data feature values computing module 102, for the chromaticity coordinate according to the sub-pixel in RGB color domain space, divide The data feature values of multiple chromaticity coordinates of each sub-pixel in RGB color domain space in the predeterminable area are not calculated;
Modular converter 103, the data feature values for the chromaticity coordinate by sub-pixel in RGB color domain space are converted to Chromaticity coordinate in LCH color gamut spaces;
Processing module 104, if meeting the 3rd preparatory condition, root for the C in chromaticity coordinate in LCH color gamut spaces and H G gamma value and B gamma value in sub-pixel are adjusted in the predeterminable area respectively according to the 3rd preparatory condition, to adjust The gamma value of G after whole is more than the gamma value of the G before adjustment, and the gamma value of the B after adjustment is more than the gamma value of the B before adjustment.
Optionally, in addition to:
The brightness value acquisition module 105 of green sub-pixels, for the initial gamma using the gamma value of the G before adjustment as G Value, the target gamma value of the gamma value of the G after adjustment as G, and obtain brightness value corresponding to the initial gamma value of the G and institute State brightness value corresponding to G target gamma value;
The object brightness signal value determining module 106 of green sub-pixels, for corresponding to the initial gamma value according to the G Brightness value corresponding to brightness value and the G target gamma value, which calculates to obtain in the predeterminable area, corresponds to G in backlight sub-pixel Backlight object brightness signal value;
The brightness value acquisition module 107 of blue subpixels, for the initial gamma using the gamma value of the B before adjustment as B Value, the target gamma value of the gamma value of the B after adjustment as B, and obtain brightness value corresponding to the initial gamma value of the B and institute State brightness value corresponding to B target gamma value;
The object brightness signal value determining module 108 of blue subpixels, for corresponding to the initial gamma value according to the B Brightness value corresponding to brightness value and the B target gamma value, which calculates to obtain in the predeterminable area, corresponds to B in backlight sub-pixel Backlight object brightness signal value.
Optionally, the backlight object brightness signal value determining module 106 of green sub-pixels is used for:
Pass through formulaCalculate and backlight sub-pixel Green is corresponded in the predeterminable area The backlight object brightness signal value of sub-pixel;
The A'N,MG represents to correspond to the backlight object brightness signal value of G in backlight sub-pixel, A in predeterminable areaN,MG is represented The current backlight illumination signal values of G in backlight sub-pixel are corresponded in predeterminable area;The LN,MG represents son in the predeterminable area Brightness value, the L' corresponding to G initial gamma value in pixelN,MG represents the target gal of G in sub-pixel in the predeterminable area Brightness value corresponding to horse value, the N, M represent line number and columns of the predeterminable area in multiple regions of division respectively;
The object brightness signal value determining module 108 of blue subpixels is used for:
Pass through formulaCalculate and blueness in backlight sub-pixel is corresponded in the predeterminable area The backlight object brightness signal value of sub-pixel;
The A'N,MB represents to correspond to the backlight object brightness signal value of B in backlight sub-pixel, A in predeterminable areaN,MB is represented The current backlight illumination signal values of B in backlight sub-pixel, the L are corresponded in predeterminable areaN,MB represents son in the predeterminable area Brightness value, the L' corresponding to B initial gamma value in pixelN,MB represents the target gal of B in sub-pixel in the predeterminable area Brightness value corresponding to horse value, the N, M represent line number and columns of the predeterminable area in multiple regions of division respectively.
Optionally, the brightness value acquisition module 105 of the green sub-pixels includes:
The initial luma values acquiring unit 1051 of green sub-pixels, for obtaining the initial gal of the G by below equation Brightness value corresponding to horse value:
The target brightness value acquiring unit 1052 of green sub-pixels, for obtaining the target gal of the G by below equation Brightness value corresponding to horse value:
The LN,MG represents brightness value corresponding to the initial gamma value of the G, the L'N,MG represents the target gal of the G Brightness value corresponding to horse value;The LG (255) represents brightness value when G GTG is 255, gGRepresent each picture in predeterminable area The data feature values of the GTG of G in plain unit;γ G represent G initial gamma value, and γ ' the G represent G target gamma value;
The brightness value acquisition module 107 of the blue subpixels includes:
The initial luma values acquiring unit 1071 of blue subpixels, for obtaining the initial gal of the B by below equation Brightness value corresponding to horse value:
The target brightness value acquiring unit 1072 of blue subpixels, for obtaining the target gal of the B by below equation Brightness value corresponding to horse value:
The LN,MB represents brightness value corresponding to the initial gamma value of the B, the L'N,MB represents the target gal of the B Brightness value corresponding to horse value;The LB (255) represents brightness value when B GTG is 255, gBRepresent each picture in predeterminable area The data feature values of the GTG of B in plain unit;γ B represent B initial gamma value, and γ ' the B represent B target gamma value.
Optionally, the processing module 104 is used for:
If H ∈ (345 °, 360 °], and C ∈ [CTL1, CTH1], then γ ' G=γ G1, γ ' B=γ B1
If H ∈ (330 °, 345 °], and C ∈ [CTL2, CTH2], then γ ' G=γ G2, γ ' B=γ B2
If H ∈ (315 °, 330 °], and C ∈ [CTL3, CTH3], then γ ' G=γ G3, γ ' B=γ B3
If H ∈ (0 °, 15 °], and C ∈ [CTL4, CTH4], then γ ' G=γ G4, γ ' B=γ B4
If H ∈ (15 °, 30 °], and C ∈ [CTL5, CTH5], then γ ' G=γ G5, γ ' B=γ B5
If H ∈ (30 °, 45 °], and C ∈ [CTL6, CTH6], then γ ' G=γ G6, γ ' B=γ B6
The H represents form and aspect of the predeterminable area in LCH color gamut spaces;The C represents predeterminable area in LCH color gamut spaces In excitation, 0≤CTLiThe < C of < 100,0THi≤ 100, CTHi≥CTLi, i=1,2,3,4,5,6;After γ ' the G represent adjustment G gamma value, γ ' the B represent the gamma value of the B after adjustment.
Optionally, the data feature values include:Arithmetic mean number, addend average, geometric mean, variance.
It is apparent to those skilled in the art that for convenience of description and succinctly, only with above-mentioned each work( Can module, unit division progress for example, in practical application, can be as needed and by above-mentioned function distribution by different Functional module or unit are completed, will the display device drive device internal structure be divided into different functional modules or Unit, to complete all or part of function described above.
Figure 11 is the schematic block diagram for the terminal device that the embodiment of the application one provides.As shown in figure 11, the end of the embodiment End equipment 11 includes:One or more processors 110, memory 111 and it is stored in the memory 111 and can be described The computer program 112 run on processor 110.The processor 110 is realized above-mentioned each when performing the computer program 112 Step in the driving method embodiment of individual display device, such as the step S701 to S704 shown in Fig. 7.Or the processing Device 110 realizes the function of each module in the drive device embodiment of above-mentioned display device, example when performing the computer program 112 The function of module 101 to 104 as shown in Figure 10.If terminal device is display, it should also include display panel.
Exemplary, the computer program 112 can be divided into one or more module/units, it is one or Multiple module/the units of person are stored in the memory 111, and are performed by the processor 110, to complete the application.Institute It can be the series of computation machine programmed instruction section that can complete specific function to state one or more module/units, the instruction segment For describing implementation procedure of the computer program 112 in the terminal device 11.For example, the computer program 112 Acquisition module, data feature values computing module, modular converter, processing module can be divided into.
The acquisition module, for obtaining in predeterminable area each sub-pixel corresponding to pixel cell in RGB color domain space In chromaticity coordinate;
The data feature values computing module, for the chromaticity coordinate according to the sub-pixel in RGB color domain space, divide The data feature values of multiple chromaticity coordinates of each sub-pixel in RGB color domain space in the predeterminable area are not calculated;
The modular converter, the data feature values for the chromaticity coordinate by the sub-pixel in RGB color domain space turn The chromaticity coordinate being changed in LCH color gamut spaces;
The processing module, if meeting for the saturation degree in the chromaticity coordinate in the LCH color gamut spaces and form and aspect Three preparatory conditions, then adjust the gal of sub-pixel Green sub-pixel in the predeterminable area respectively according to the 3rd preparatory condition The gamma value of horse value and blue subpixels, to cause the gamma value of the green sub-pixels after adjustment more than the green sub- picture before adjustment The gamma value of element, the gamma value of the blue subpixels after adjustment are more than the gamma value of the blue subpixels before adjustment.
Other modules or unit can refer to the description of each module or unit in the drive device of display device, herein no longer Repeat.
The terminal device includes but are not limited to processor 110, memory 111.It will be understood by those skilled in the art that Figure 11 is only the example of terminal device 11, does not form the restriction to terminal device 11, can be included more more or more than illustrating Few part, either combines some parts or different parts, for example, the terminal device can also include input equipment, Output equipment, network access equipment, bus etc..
The memory 111 can be the internal storage unit of the terminal device 11, such as the hard disk of terminal device 11 Or internal memory.The memory 111 can also be the External memory equipment of the terminal device 11, such as on the terminal device 11 The plug-in type hard disk of outfit, intelligent memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) Card, flash card (Flash Card) etc..Further, the memory 111 can also be both interior including the terminal device 11 Portion's memory cell also includes External memory equipment.The memory 111 is used to store the computer program and the terminal Other programs and data needed for equipment.The memory 111, which can be also used for temporarily storing, have been exported or will be defeated The data gone out.
Embodiment described above is only to illustrate the technical scheme of the application, rather than its limitations;Although with reference to foregoing reality Example is applied the application is described in detail, it will be understood by those within the art that:It still can be to foregoing each Technical scheme described in embodiment is modified, or carries out equivalent substitution to which part technical characteristic;And these are changed Or replace, the essence of appropriate technical solution is departed from the spirit and scope of each embodiment technical scheme of the application, all should Within the protection domain of the application.

Claims (10)

  1. A kind of 1. driving method of display device, it is characterised in that including:
    Obtain chromaticity coordinate of the sub-pixel in RGB color domain space corresponding to each pixel cell in predeterminable area;
    According to chromaticity coordinate of the sub-pixel in RGB color domain space, each sub-pixel in the predeterminable area is calculated respectively The data feature values of multiple chromaticity coordinates in RGB color domain space;
    The data feature values of chromaticity coordinate of the sub-pixel in RGB color domain space are converted to the color in LCH color gamut spaces Spend coordinate;
    If the saturation degree and form and aspect in the LCH color gamut spaces in chromaticity coordinate meet the 3rd preparatory condition, according to described Three preparatory conditions adjust the gamma of the gamma value of sub-pixel Green sub-pixel and blue subpixels in the predeterminable area respectively Value, to cause the gamma value of the green sub-pixels after adjustment more than the gamma value of the green sub-pixels before adjustment, the indigo plant after adjustment The gamma value of sub-pixels is more than the gamma value of the blue subpixels before adjustment.
  2. 2. the driving method of display device as claimed in claim 1, it is characterised in that described according to the 3rd preparatory condition Adjust respectively in the predeterminable area after the gamma value of sub-pixel Green sub-pixel and the gamma value of blue subpixels, bag Include:
    Initial gamma value using the gamma value of the green sub-pixels before adjustment as green sub-pixels, the green sub-pixels after adjustment Target gamma value of the gamma value as green sub-pixels, using the gamma value of the blue subpixels before adjustment as blue subpixels Initial gamma value, the target gamma value of the gamma values of the blue subpixels after adjustment as blue subpixels;
    Obtain brightness value corresponding to the initial gamma value of the green sub-pixels and the target gamma value pair of the green sub-pixels The brightness value answered;
    According to brightness value corresponding to the initial gamma value of the green sub-pixels and the target gamma value pair of the green sub-pixels The brightness value answered calculates the backlight object brightness signal for obtaining and backlight sub-pixel Green sub-pixel being corresponded in the predeterminable area Value;
    Obtain the target gamma value pair of brightness value corresponding to the initial gamma value of the blue subpixels and the blue subpixels The brightness value answered;
    According to brightness value corresponding to the initial gamma value of the blue subpixels and the target gamma value pair of the blue subpixels The brightness value answered calculates the backlight object brightness signal for obtaining and blue subpixels in backlight sub-pixel being corresponded in the predeterminable area Value.
  3. 3. the driving method of display device as claimed in claim 2, it is characterised in that described according to the green sub-pixels It is described pre- that brightness value corresponding to brightness value corresponding to initial gamma value and the target gamma value of the green sub-pixels calculates acquisition Include if corresponding to the backlight object brightness signal value of backlight sub-pixel Green sub-pixel in region:
    Pass through formulaCalculate and backlight sub-pixel Green picture is corresponded in the predeterminable area The backlight object brightness signal value of element;
    The A'N,MG represents to correspond to the backlight object brightness signal value of backlight sub-pixel Green sub-pixel, A in predeterminable areaN, MG represents to correspond to the current backlight illumination signal value of backlight sub-pixel Green sub-pixel in predeterminable area;The LN,MG represents institute State brightness value, the L' corresponding to the initial gamma value of sub-pixel Green sub-pixel in predeterminable areaN,MG represents described default Brightness value, the N, M represent the predeterminable area respectively corresponding to the target gamma value of sub-pixel Green sub-pixel in region Line number and columns in multiple regions of division;
    The target gamma of brightness value and the blue subpixels corresponding to the initial gamma value according to the blue subpixels Brightness value corresponding to value calculates the backlight object brightness for obtaining and blue subpixels in backlight sub-pixel being corresponded in the predeterminable area Signal value includes:
    Pass through formulaCalculate and the sub- picture of blueness in backlight sub-pixel is corresponded in the predeterminable area The backlight object brightness signal value of element;
    The A'N,MB represents to correspond to the backlight object brightness signal value of blue subpixels in backlight sub-pixel, A in predeterminable areaN, MB represents to correspond to the current backlight illumination signal value of blue subpixels in backlight sub-pixel, the L in predeterminable areaN,MB represents institute State brightness value corresponding to the initial gamma value of blue subpixels in sub-pixel in predeterminable area, the L'N,MB represents described default Brightness value, the N, M represent the predeterminable area respectively corresponding to the target gamma value of blue subpixels in sub-pixel in region Line number and columns in multiple regions of division.
  4. 4. the driving method of display device as claimed in claim 3, it is characterised in that the acquisition green sub-pixels Brightness value corresponding to brightness value corresponding to initial gamma value and the target gamma value of the green sub-pixels includes:
    Brightness value corresponding to the initial gamma value of the green sub-pixels is obtained by below equation:
    Brightness value corresponding to the target gamma value of the green sub-pixels is obtained by below equation:
    The LN,MG represents brightness value corresponding to the initial gamma value of the green sub-pixels, the L'N,MG represents the green Brightness value corresponding to the target gamma value of sub-pixel;The LG (255) represents the brightness when GTG of green sub-pixels is 255 Value, gGRepresent the data feature values of the GTG of the green sub-pixels in predeterminable area in each pixel cell;γ G represent green The initial gamma value of pixel, γ ' the G represent the target gamma value of green sub-pixels;
    The target gamma of brightness value and the blue subpixels corresponding to the initial gamma value for obtaining the blue subpixels Brightness value includes corresponding to value:
    Brightness value corresponding to the initial gamma value of the blue subpixels is obtained by below equation:
    Brightness value corresponding to the target gamma value of the blue subpixels is obtained by below equation:
    The LN,MB represents brightness value corresponding to the initial gamma value of the blue subpixels, the L'N,MB represents the blueness Brightness value corresponding to the target gamma value of sub-pixel;The LB (255) represents the brightness when GTG of blue subpixels is 255 Value, gBRepresent the data feature values of the GTG of the blue subpixels in predeterminable area in each pixel cell;γ B represent blueness The initial gamma value of pixel, γ ' the B represent the target gamma value of blue subpixels.
  5. 5. the driving method of display device as claimed in claim 1, it is characterised in that if colourity in the LCH color gamut spaces Saturation degree and form and aspect in coordinate meet the 3rd preparatory condition, then adjust the preset areas respectively according to the 3rd preparatory condition The gamma value of sub-pixel Green sub-pixel and the gamma value of blue subpixels include in domain:
    If H ∈ (345 °, 360 °], and C ∈ [CTL1, CTH1], then γ ' G=γ G1, γ ' B=γ B1
    If H ∈ (330 °, 345 °], and C ∈ [CTL2, CTH2], then γ ' G=γ G2, γ ' B=γ B2
    If H ∈ (315 °, 330 °], and C ∈ [CTL3, CTH3], then γ ' G=γ G3, γ ' B=γ B3
    If H ∈ (0 °, 15 °], and C ∈ [CTL4, CTH4], then γ ' G=γ G4, γ ' B=γ B4
    If H ∈ (15 °, 30 °], and C ∈ [CTL5, CTH5], then γ ' G=γ G5, γ ' B=γ B5
    If H ∈ (30 °, 45 °], and C ∈ [CTL6, CTH6], then γ ' G=γ G6, γ ' B=γ B6
    The H represents form and aspect of the predeterminable area in LCH color gamut spaces;The C represents predeterminable area in LCH color gamut spaces Saturation degree, 0≤CTLiThe < C of < 100,0THi≤ 100, CTHi≥CTLi, i=1,2,3,4,5,6;γ ' the G represent green after adjusting The gamma value of sub-pixels, γ ' the B represent the gamma value of the blue subpixels after adjustment.
  6. 6. the driving method of the display device as described in any one of claim 1 to 5, it is characterised in that the data feature values Including:Arithmetic mean number, addend average, geometric mean, variance.
  7. A kind of 7. drive device of display device, it is characterised in that including:
    Acquisition module, for obtaining each colourity of the sub-pixel in RGB color domain space corresponding to pixel cell in predeterminable area Coordinate;
    Data feature values computing module, for the chromaticity coordinate according to the sub-pixel in RGB color domain space, institute is calculated respectively State the data feature values of multiple chromaticity coordinates of each sub-pixel in RGB color domain space in predeterminable area;
    Modular converter, the data feature values for the chromaticity coordinate by the sub-pixel in RGB color domain space are converted to LCH colors Chromaticity coordinate in domain space;
    Processing module, if meeting the 3rd default article for the saturation degree in the chromaticity coordinate in the LCH color gamut spaces and form and aspect Part, then adjust the gamma value and indigo plant of sub-pixel Green sub-pixel in the predeterminable area respectively according to the 3rd preparatory condition The gamma value of sub-pixels, to cause the gamma value of the green sub-pixels after adjustment more than the gamma of the green sub-pixels before adjustment Value, the gamma value of the blue subpixels after adjustment are more than the gamma value of the blue subpixels before adjustment.
  8. 8. the drive device of display device as claimed in claim 7, it is characterised in that also include:
    The brightness value acquisition module of green sub-pixels, for using the gamma value of the green sub-pixels before adjustment as green sub-pixels Initial gamma value, the target gamma value of the gamma values of the green sub-pixels after adjustment as green sub-pixels, and described in obtaining Brightness value corresponding to brightness value corresponding to the initial gamma value of green sub-pixels and the target gamma value of the green sub-pixels;
    The backlight object brightness signal value determining module of green sub-pixels, for the initial gamma value according to the green sub-pixels Brightness value corresponding to corresponding brightness value and the target gamma value of the green sub-pixels calculates right in the acquisition predeterminable area Answer the backlight object brightness signal value of backlight sub-pixel Green sub-pixel;
    The brightness value acquisition module of blue subpixels, for using the gamma value of the blue subpixels before adjustment as blue subpixels Initial gamma value, the target gamma value of the gamma values of the blue subpixels after adjustment as blue subpixels, and described in obtaining Brightness value corresponding to the target gamma value of brightness value and the blue subpixels corresponding to the initial gamma value of blue subpixels;
    The backlight object brightness signal value determining module of blue subpixels, for the initial gamma value according to the blue subpixels Brightness value corresponding to the target gamma value of corresponding brightness value and the blue subpixels calculates right in the acquisition predeterminable area Answer the backlight object brightness signal value of blue subpixels in backlight sub-pixel.
  9. 9. the drive device of display device as claimed in claim 8, it is characterised in that the backlight target of the green sub-pixels Brightness signal value determining module is used for:
    Pass through formulaCalculate and backlight sub-pixel Green picture is corresponded in the predeterminable area The backlight object brightness signal value of element;
    The A'N,MG represents to correspond to the backlight object brightness signal value of backlight sub-pixel Green sub-pixel, A in predeterminable areaN, MG represents to correspond to the current backlight illumination signal value of backlight sub-pixel Green sub-pixel in predeterminable area;The LN,MG represents institute State brightness value, the L' corresponding to the initial gamma value of sub-pixel Green sub-pixel in predeterminable areaN,MG represents described default Brightness value, the N, M represent the predeterminable area respectively corresponding to the target gamma value of sub-pixel Green sub-pixel in region Line number and columns in multiple regions of division;
    The backlight object brightness signal value determining module of the blue subpixels is used for:
    Pass through formulaCalculate and the sub- picture of blueness in backlight sub-pixel is corresponded in the predeterminable area The backlight object brightness signal value of element;
    The A'N,MB represents to correspond to the backlight object brightness signal value of blue subpixels in backlight sub-pixel, A in predeterminable areaN, MB represents to correspond to the current backlight illumination signal value of blue subpixels in backlight sub-pixel, the L in predeterminable areaN,MB represents institute State brightness value corresponding to the initial gamma value of blue subpixels in sub-pixel in predeterminable area, the L'N,MB represents described default Brightness value, the N, M represent the predeterminable area respectively corresponding to the target gamma value of blue subpixels in sub-pixel in region Line number and columns in multiple regions of division.
  10. A kind of 10. driving method of display device, it is characterised in that including:
    Obtain chromaticity coordinate of the sub-pixel in RGB color domain space corresponding to each pixel cell in predeterminable area;
    According to chromaticity coordinate of the sub-pixel in RGB color domain space, each sub-pixel in the predeterminable area is calculated respectively The data feature values of multiple chromaticity coordinates in RGB color domain space;
    The data feature values of chromaticity coordinate of the sub-pixel in RGB color domain space are converted to the color in LCH color gamut spaces Spend coordinate;
    If the saturation degree and form and aspect in the LCH color gamut spaces in chromaticity coordinate meet the 3rd preparatory condition, according to described Three preparatory conditions adjust the gamma of the gamma value of sub-pixel Green sub-pixel and blue subpixels in the predeterminable area respectively Value, to cause the gamma value of the green sub-pixels after adjustment more than the gamma value of the green sub-pixels before adjustment, the indigo plant after adjustment The gamma value of sub-pixels is more than the gamma value of the blue subpixels before adjustment;
    Initial gamma value using the gamma value of the green sub-pixels before adjustment as green sub-pixels, the green sub-pixels after adjustment Target gamma value of the gamma value as green sub-pixels, using the gamma value of the blue subpixels before adjustment as blue subpixels Initial gamma value, the target gamma value of the gamma values of the blue subpixels after adjustment as blue subpixels;
    Obtain brightness value corresponding to the initial gamma value of the green sub-pixels and the target gamma value pair of the green sub-pixels The brightness value answered;
    According to brightness value corresponding to the initial gamma value of the green sub-pixels and the target gamma value pair of the green sub-pixels The brightness value answered calculates the backlight object brightness signal for obtaining and backlight sub-pixel Green sub-pixel being corresponded in the predeterminable area Value;
    Obtain the target gamma value pair of brightness value corresponding to the initial gamma value of the blue subpixels and the blue subpixels The brightness value answered;
    According to brightness value corresponding to the initial gamma value of the blue subpixels and the target gamma value pair of the blue subpixels The brightness value answered calculates the backlight object brightness signal for obtaining and blue subpixels in backlight sub-pixel being corresponded in the predeterminable area Value;
    If the saturation degree and form and aspect in the LCH color gamut spaces in chromaticity coordinate meet the 3rd preparatory condition, according to described Three preparatory conditions adjust the gamma of the gamma value of sub-pixel Green sub-pixel and blue subpixels in the predeterminable area respectively Value includes:
    If H ∈ (345 °, 360 °], and C ∈ [CTL1, CTH1], then γ ' G=γ G1, γ ' B=γ B1
    If H ∈ (330 °, 345 °], and C ∈ [CTL2, CTH2], then γ ' G=γ G2, γ ' B=γ B2
    If H ∈ (315 °, 330 °], and C ∈ [CTL3, CTH3], then γ ' G=γ G3, γ ' B=γ B3
    If H ∈ (0 °, 15 °], and C ∈ [CTL4, CTH4], then γ ' G=γ G4, γ ' B=γ B4
    If H ∈ (15 °, 30 °], and C ∈ [CTL5, CTH5], then γ ' G=γ G5, γ ' B=γ B5
    If H ∈ (30 °, 45 °], and C ∈ [CTL6, CTH6], then γ ' G=γ G6, γ ' B=γ B6
    The H represents form and aspect of the predeterminable area in LCH color gamut spaces;The C represents predeterminable area in LCH color gamut spaces Saturation degree, 0≤CTLiThe < C of < 100,0THi≤ 100, CTHi≥CTLi, i=1,2,3,4,5,6;γ ' the G represent green after adjusting The gamma value of sub-pixels, γ ' the B represent the gamma value of the blue subpixels after adjustment.
CN201711381859.1A 2017-12-20 2017-12-20 Driving method and driving device of display device Active CN107863083B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711381859.1A CN107863083B (en) 2017-12-20 2017-12-20 Driving method and driving device of display device
PCT/CN2018/096026 WO2019119791A1 (en) 2017-12-20 2018-07-17 Driving method and driving apparatus for display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711381859.1A CN107863083B (en) 2017-12-20 2017-12-20 Driving method and driving device of display device

Publications (2)

Publication Number Publication Date
CN107863083A true CN107863083A (en) 2018-03-30
CN107863083B CN107863083B (en) 2019-12-13

Family

ID=61707184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711381859.1A Active CN107863083B (en) 2017-12-20 2017-12-20 Driving method and driving device of display device

Country Status (2)

Country Link
CN (1) CN107863083B (en)
WO (1) WO2019119791A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695828A (en) * 2019-03-07 2019-04-30 厦门通士达照明有限公司 The method for improving excitation purity when making LED lamp
WO2019119792A1 (en) * 2017-12-20 2019-06-27 惠科股份有限公司 Driving method and device for display device
WO2019119794A1 (en) * 2017-12-20 2019-06-27 惠科股份有限公司 Driving method and driving apparatus for display apparatus
WO2019119791A1 (en) * 2017-12-20 2019-06-27 惠科股份有限公司 Driving method and driving apparatus for display apparatus
WO2019119793A1 (en) * 2017-12-20 2019-06-27 惠科股份有限公司 Driving method and driving device for display device
CN109949744A (en) * 2019-04-17 2019-06-28 京东方科技集团股份有限公司 Gamma electric voltage bearing calibration and device
WO2020103242A1 (en) * 2018-11-20 2020-05-28 惠科股份有限公司 Array substrate and display panel
CN111816114A (en) * 2020-08-17 2020-10-23 京东方科技集团股份有限公司 Display panel dimming device and dimming method, display panel and driving method thereof
CN114170975A (en) * 2021-12-08 2022-03-11 Tcl华星光电技术有限公司 Display brightness adjusting method and device, display device and storage medium
CN114801737A (en) * 2022-04-18 2022-07-29 黑龙江天有为电子股份有限公司 Color matching method of automobile instrument panel and manufacturing method of backlight piece

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100002010A1 (en) * 2008-07-03 2010-01-07 Wintek Corporation Color correction method and color correcting integrated chip
WO2015035744A1 (en) * 2013-09-12 2015-03-19 深圳市华星光电技术有限公司 Image processing method
TW201525982A (en) * 2013-12-23 2015-07-01 Au Optronics Corp Method for controlling display
CN104966492A (en) * 2015-06-03 2015-10-07 友达光电股份有限公司 Driving method of display device
CN105513559A (en) * 2016-02-05 2016-04-20 青岛海信电器股份有限公司 Image processing method and display device
EP3211632A1 (en) * 2014-10-23 2017-08-30 Boe Technology Group Co. Ltd. Image display control method and device for woled display device, and display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100514429C (en) * 2004-11-03 2009-07-15 中华映管股份有限公司 Dynamic tone compensation circuit
WO2013022007A1 (en) * 2011-08-11 2013-02-14 シャープ株式会社 Display device
CN102611897B (en) * 2012-03-04 2015-01-07 侯克杰 Method and system for carrying out vision perception high-fidelity transformation on color digital image
CN104021767B (en) * 2013-03-01 2016-12-28 刘鸿达 Gamma curve method of adjustment and its gal code voltage generator and display device
CN106981275B (en) * 2017-05-10 2018-03-27 惠科股份有限公司 Display panel pixel driving method and display device
CN107437402B (en) * 2017-06-07 2019-09-06 微鲸科技有限公司 Method for controlling backlight thereof, device and display equipment
CN108053797B (en) * 2017-12-20 2019-12-13 惠科股份有限公司 driving method and driving device of display device
CN107863083B (en) * 2017-12-20 2019-12-13 惠科股份有限公司 Driving method and driving device of display device
CN107978289B (en) * 2017-12-20 2020-02-21 惠科股份有限公司 Driving method and driving device of display device
CN107863084B (en) * 2017-12-20 2019-12-13 惠科股份有限公司 Driving method and driving device of display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100002010A1 (en) * 2008-07-03 2010-01-07 Wintek Corporation Color correction method and color correcting integrated chip
WO2015035744A1 (en) * 2013-09-12 2015-03-19 深圳市华星光电技术有限公司 Image processing method
TW201525982A (en) * 2013-12-23 2015-07-01 Au Optronics Corp Method for controlling display
EP3211632A1 (en) * 2014-10-23 2017-08-30 Boe Technology Group Co. Ltd. Image display control method and device for woled display device, and display device
CN104966492A (en) * 2015-06-03 2015-10-07 友达光电股份有限公司 Driving method of display device
CN105513559A (en) * 2016-02-05 2016-04-20 青岛海信电器股份有限公司 Image processing method and display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019119793A1 (en) * 2017-12-20 2019-06-27 惠科股份有限公司 Driving method and driving device for display device
WO2019119792A1 (en) * 2017-12-20 2019-06-27 惠科股份有限公司 Driving method and device for display device
WO2019119794A1 (en) * 2017-12-20 2019-06-27 惠科股份有限公司 Driving method and driving apparatus for display apparatus
WO2019119791A1 (en) * 2017-12-20 2019-06-27 惠科股份有限公司 Driving method and driving apparatus for display apparatus
WO2020103242A1 (en) * 2018-11-20 2020-05-28 惠科股份有限公司 Array substrate and display panel
US11295684B2 (en) 2018-11-20 2022-04-05 HKC Corporation Limited Pixel driving method, pixel driving apparatus and computer device
CN109695828A (en) * 2019-03-07 2019-04-30 厦门通士达照明有限公司 The method for improving excitation purity when making LED lamp
CN109949744A (en) * 2019-04-17 2019-06-28 京东方科技集团股份有限公司 Gamma electric voltage bearing calibration and device
CN111816114A (en) * 2020-08-17 2020-10-23 京东方科技集团股份有限公司 Display panel dimming device and dimming method, display panel and driving method thereof
CN111816114B (en) * 2020-08-17 2023-09-29 京东方科技集团股份有限公司 Display panel dimming device and dimming method, display panel and driving method thereof
CN114170975A (en) * 2021-12-08 2022-03-11 Tcl华星光电技术有限公司 Display brightness adjusting method and device, display device and storage medium
CN114801737A (en) * 2022-04-18 2022-07-29 黑龙江天有为电子股份有限公司 Color matching method of automobile instrument panel and manufacturing method of backlight piece
CN114801737B (en) * 2022-04-18 2022-11-04 黑龙江天有为电子股份有限公司 Color matching method of automobile instrument panel and manufacturing method of backlight piece

Also Published As

Publication number Publication date
WO2019119791A1 (en) 2019-06-27
CN107863083B (en) 2019-12-13

Similar Documents

Publication Publication Date Title
CN107863083A (en) The driving method and drive device of a kind of display device
CN108053797A (en) The driving method and driving device of a kind of display device
CN107978289A (en) The driving method and driving device of a kind of display device
CN107863084A (en) The driving method and drive device of a kind of display device
RU2660628C1 (en) Liquid crystal panel and control method for such panel
JP4705917B2 (en) Method and apparatus for converting from a source color space to a target color space
WO2018113615A1 (en) Liquid crystal display device and driving method therefor
WO2018113248A1 (en) Display device and method for driving display panel thereof
CN104981861B (en) Signal conversion device and method
CN100409281C (en) Method and apparatus for displaying image and computer-readable recording medium for storing computer program
JP5593920B2 (en) Liquid crystal display
CN106782375A (en) Liquid crystal display device and its driving method
CN108053796B (en) Display panel driving method and display device
WO2020103242A1 (en) Array substrate and display panel
CN106328089B (en) pixel driving method
CN108122546B (en) Display apparatus and image processing method thereof
CN109461400B (en) Sub-pixel rendering method and device for converting RGB (red, green and blue) image into RGBW (red, green and blue) image
WO2020103244A1 (en) Pixel drive method, pixel drive apparatus, and computer device
CN109256105B (en) Chrominance adjustment system, method and display panel driver
US20190206344A1 (en) Liquid crystal display panel driving method, driving device and display apparatus
CN106409266A (en) Sub-pixel rendering and rendering device
CN107967899A (en) Driving method, driving device and the display device of display device
CN110277076B (en) Color mapping method and device, display equipment and medium
CN102892009A (en) Image processing device, display device, and image processing method
CN109461419B (en) Display data processing method and system and display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant