CN107855522A - 一种多孔微槽道结构的激光增材制造方法 - Google Patents

一种多孔微槽道结构的激光增材制造方法 Download PDF

Info

Publication number
CN107855522A
CN107855522A CN201711060934.4A CN201711060934A CN107855522A CN 107855522 A CN107855522 A CN 107855522A CN 201711060934 A CN201711060934 A CN 201711060934A CN 107855522 A CN107855522 A CN 107855522A
Authority
CN
China
Prior art keywords
gain material
laser
laser gain
manufacture method
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711060934.4A
Other languages
English (en)
Inventor
柯林达
金诚
姚斐
肖美立
别亚星
艾百运
张小龙
李中权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Space Precision Machinery Research Institute
Original Assignee
Shanghai Space Precision Machinery Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Space Precision Machinery Research Institute filed Critical Shanghai Space Precision Machinery Research Institute
Priority to CN201711060934.4A priority Critical patent/CN107855522A/zh
Publication of CN107855522A publication Critical patent/CN107855522A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种多孔微槽道结构的激光增材制造方法,包括以下步骤:建立三维模型,分层切片,获得激光扫描路径;基材固定,不锈钢/钛合金粉末放入粉末缸;成形室充入氩气,基材上铺设粉末;启动激光增材制造设备,扫描加工;成形缸下降一个层厚的距离,铺粉装置在已加工好的当前层上铺设一层粉末,直至结构加工完毕;对零件退火处理,制得。经本发明制造的多孔微槽道结构成形后组织致密、细小均匀、冶金质量好,打压过程中不发生渗漏,复杂内槽道结构尺寸精度高,且内槽道截面形状和分布局限减小,产品性能高,复杂多孔内槽道结构成形后无需焊接工序,提高了材料利用率,减少了工序,缩短了零件制造周期。

Description

一种多孔微槽道结构的激光增材制造方法
技术领域
本发明属于金属成形技术领域,涉及一种不锈钢/钛合金零件的激光成形,尤其涉及一种复杂多孔微槽道零件的激光增材制造方法。
背景技术
目前国内生产多孔微槽道不锈钢/钛合金结构的一般方法是采用机加工与焊接结合的工艺,即:内部微槽道以及多孔结构采用机加工进行,然后采用焊接完成组合,最终实现复杂多孔微槽道结构的生产制造。
但是,采用这种方法制造存在一些局限性:
(1)微槽道采用机加工,加工的截面尺寸有限,主要以矩形、V形和圆形为主,对于其他复杂截面的微槽道较难实现;
(2)内部的微槽道采用多个平板结构进行焊接而成,难以实现空间三维复杂微槽道的分布,对于产品的性能指标提升具有较大的局限性;
(3)多孔结构的制造,尤其是密布微细多孔机加工的工序复杂,加工比较困难;
(4)此外,由于采用焊接方式组合制造,焊接热影响区内组织粗大,焊接应力集中,易产生裂纹、堵塞等缺陷。
由于上述原因造成传统制造方法生产效率低下,产品合格率低,生产周期长,制造成本高等问题。并且受传统制造工艺的限制,空间三维内部复杂的微槽道以及孔结构难以实现,甚至无法实现,严重制约了该类产品的性能指标提升和功能的拓展。
发明内容
针对现有技术的不足,本发明的目的是提供一种复杂多孔微槽道零件的激光增材制造方法,解决了现有多孔微槽道不锈钢/钛合金零件制造方法存在产品制造周期长,合格率低、三维空间复杂多孔微槽道结构难以制造的问题。
本发明所采用的技术方案是,一种复杂多孔微槽道零件的激光增材制造方法,可用于不锈钢、钛合金零件的激光增材制造,包括以下步骤:
步骤1:根据成形零件建立零件三维模型,并用切分软件对零件三维模型进行分层切片离散处理,获得各层激光的扫描路径;
步骤2:将基材固定在激光成形设备的成型缸工作台上,将不锈钢或钛合金粉末放入粉末缸中;
步骤3:在成形室中充入氩气,启动铺粉装置,在基材上铺设一层不锈钢或钛合金粉末;
步骤4:开启激光增材制造设备,激光束根据当前层激光扫描路径对与铺置的粉末进行选择性扫描,加工出当前层,并对当前层外轮廓进行重复扫描;
步骤5:成形缸下降一个层厚的距离,铺粉装置在已加工好的当前层上铺设一层粉末;
步骤6:重复步骤4~5,直至整个零件加工完毕;
步骤7:打开成形室,去除粉末,取出经步骤6加工完毕的零件,对成形的零件进行退火处理;
进一步,不锈钢粉末化成分符合GB 1220-1984 要求,钛合金粉末化成分符合GB/T3620.2要求,所述不锈钢或钛合金粉末粒度为15~53μm。
步骤3中,氩气纯度不低于99.99%。
优选的,控制成形室内氧气浓度不高于100ppm。
步骤4中,激光增材制造设备的加工工艺参数为:激光功率:200~500W,激光光斑直径:0.08~0.12mm,扫描速度:900~2000mm/s,单层层高:0.02~0.06mm。
优选的,所述铺粉装置为刮板;激光器为光纤激光器。
本发明的有益效果是:
(1)通过采用逐层堆积整体成形的方法,零件成形后无需焊接工序,提高了材料利用率,减少了工序,缩短了零件制造周期,且内槽道截面形状和分布局限减小,产品性能提高;
(2)激光增材成形,内部组织致密、细小均匀,冶金质量好,打压过程中不会发生渗漏;
(3)成形过程中应力集中小,通过采用特定工艺参数保证了零件成形后几乎无变形现象发生,获得的复杂内槽道结构尺寸精度高;
(4)通过使用特定组分含量的不锈钢、钛合金粉末,结合快速成形工艺和传统热处理工艺,获得的零件同时具有高强度、高塑性,综合力学性能与锻件相当。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明一种复杂多孔微槽道不锈钢/钛合金零件的激光增材制造方法,具体实施步骤如下:
步骤1:根据成形零件建立零件三维模型,并用切分软件对零件三维模型进行分层切片离散处理,获得各层成形所需的激光扫描路径;
步骤2:将基材固定在激光增材制造设备的成型缸工作台上,将不锈钢或钛合金粉末放入粉末缸中,其中,不锈钢粉末符合GB/T 1173-1995要求,钛合金粉末化成分符合GB/T3620.2要求,粉末粒度为15~53μm;
步骤3:在成形室中充入氩气,氩气纯度不低于99.99%,并控制成形室内氧气浓度不高于100ppm;启动铺粉装置,在基材上铺设一层粉末;
步骤4:启动激光增材制造设备,激光束根据当前层激光扫描路径对基材上的粉末进行扫描,加工出当前层,并对当前层外轮廓进行重复扫描,其中,激光增材制造设备的加工参数为:激光功率:200~500W,激光光斑直径:0.08~0.12mm,扫描速度:900~2000mm/s,单层层高:0.02-0.06mm;
步骤5:成形缸下降一个层厚的距离,刮板在已加工好的当前层上铺设一层粉末;
步骤6:重复步骤4~5,直至整个零件加工完毕;
步骤7:打开成形室,去除粉末,取出经步骤6加工完毕的零件,对成形的零件进行退火处理,退火工艺为:不锈钢为在1000~1070℃下保温2~5h后炉冷;钛合金为在500~600℃下保温2~3h后炉冷;
步骤8:对成形零件的孔结构和微槽道进行磨力流抛光处理,最终实现多孔微槽道结构的制造。

Claims (9)

1.一种多孔微槽道结构的激光增材制造方法,其特征在于,包括以下步骤,步骤1:根据成形零件建立零件三维模型,并用切分软件对零件三维模型进行分层切片离散处理,获得各层成形所需的激光扫描路径;
步骤2:将基材固定在激光增材制造设备的成型缸工作台上,将不锈钢或钛合金粉末放入粉末缸中;
步骤3:在成形室中充入氩气;启动铺粉装置,在基材上铺设一层粉末;
步骤4:启动激光增材制造设备,激光器的激光束根据当前层激光扫描路径对基材上的粉末进行扫描,加工出当前层,并对当前层外轮廓进行重复扫描;
步骤5:成形缸下降一个层厚的距离,铺粉装置在已加工好的当前层上铺设一层粉末;
步骤6:重复步骤4~5,直至整个结构加工完毕;
步骤7:打开成形室,去除粉末,取出经步骤6加工完毕的结构,对成形的结构进行退火处理。
2.根据权利要求1所述的一种多孔微槽道结构的激光增材制造方法,其特征在于,所述不锈钢或钛合金粉末粒度为15~53μm。
3.根据权利要求1所述的一种多孔微槽道结构的激光增材制造方法,其特征在于,所述步骤2中,氩气纯度≥99.99%。
4.根据权利要求1所述的一种多孔微槽道结构的激光增材制造方法,其特征在于,所述步骤3控制成形室内氧气浓度≤100ppm。
5.根据权利要求1所述的一种多孔微槽道结构的激光增材制造方法,其特征在于,所述步骤4中,激光增材制造设备的加工参数为:激光功率:200~500W,激光光斑直径:0.08~0.12mm,扫描速度:900~2000mm/s,单层层高:0.02-0.06mm。
6.根据权利要求1所述的一种多孔微槽道结构的激光增材制造方法,其特征在于,所述步骤7中,退火工艺为:不锈钢在1000-1070℃下保温2-5h后炉冷;钛合金为在500~600℃下保温2~3h后炉冷。
7.根据权利要求1所述的一种多孔微槽道结构的激光增材制造方法,其特征在于,所述铺粉装置为刮板。
8.根据权利要求1所述的一种多孔微槽道结构的激光增材制造方法,其特征在于,所述激光器为光纤激光器。
9.根据权利要求1所述的一种多孔微槽道结构的激光增材制造方法,其特征在于,对对成形的结构进行退火处理后,再进行磨力流抛光处理。
CN201711060934.4A 2017-11-02 2017-11-02 一种多孔微槽道结构的激光增材制造方法 Pending CN107855522A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711060934.4A CN107855522A (zh) 2017-11-02 2017-11-02 一种多孔微槽道结构的激光增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711060934.4A CN107855522A (zh) 2017-11-02 2017-11-02 一种多孔微槽道结构的激光增材制造方法

Publications (1)

Publication Number Publication Date
CN107855522A true CN107855522A (zh) 2018-03-30

Family

ID=61696575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711060934.4A Pending CN107855522A (zh) 2017-11-02 2017-11-02 一种多孔微槽道结构的激光增材制造方法

Country Status (1)

Country Link
CN (1) CN107855522A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109365818A (zh) * 2018-12-25 2019-02-22 鑫精合激光科技发展(北京)有限公司 一种用于多孔夹层蜂窝件的激光选区融化成形方法及装置
CN110338886A (zh) * 2018-12-24 2019-10-18 广东工业大学 一种带内流道的止血手术刀及其制作方法
CN110421171A (zh) * 2019-05-09 2019-11-08 上海大学 多孔质气悬浮轴承金属瓦的3d打印制备方法
CN111957962A (zh) * 2020-08-13 2020-11-20 飞而康快速制造科技有限责任公司 一种用于钛合金成型的激光选区熔化的增材制造方法及增材制造装置
CN112692302A (zh) * 2020-11-23 2021-04-23 河钢承德钒钛新材料有限公司 3d打印微孔金属曝气头的制造方法
CN113084326A (zh) * 2019-12-23 2021-07-09 宝山钢铁股份有限公司 一种金属基复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2832475A2 (en) * 2013-08-02 2015-02-04 Rolls-Royce plc Method of manufacturing a component
CN105386036A (zh) * 2015-10-28 2016-03-09 西安铂力特激光成形技术有限公司 一种复杂内流道铝合金零件的激光精密成形方法
CN105397086A (zh) * 2015-10-28 2016-03-16 西安铂力特激光成形技术有限公司 一种钛合金空心叶片激光精密成形方法
CN105499575A (zh) * 2015-12-20 2016-04-20 北京工业大学 一种多孔网格结构材料的设计及制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2832475A2 (en) * 2013-08-02 2015-02-04 Rolls-Royce plc Method of manufacturing a component
CN105386036A (zh) * 2015-10-28 2016-03-09 西安铂力特激光成形技术有限公司 一种复杂内流道铝合金零件的激光精密成形方法
CN105397086A (zh) * 2015-10-28 2016-03-16 西安铂力特激光成形技术有限公司 一种钛合金空心叶片激光精密成形方法
CN105499575A (zh) * 2015-12-20 2016-04-20 北京工业大学 一种多孔网格结构材料的设计及制作方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110338886A (zh) * 2018-12-24 2019-10-18 广东工业大学 一种带内流道的止血手术刀及其制作方法
CN109365818A (zh) * 2018-12-25 2019-02-22 鑫精合激光科技发展(北京)有限公司 一种用于多孔夹层蜂窝件的激光选区融化成形方法及装置
CN109365818B (zh) * 2018-12-25 2021-08-13 鑫精合激光科技发展(北京)有限公司 一种用于多孔夹层蜂窝件的激光选区熔化成形方法及装置
CN110421171A (zh) * 2019-05-09 2019-11-08 上海大学 多孔质气悬浮轴承金属瓦的3d打印制备方法
CN113084326A (zh) * 2019-12-23 2021-07-09 宝山钢铁股份有限公司 一种金属基复合材料及其制备方法
CN111957962A (zh) * 2020-08-13 2020-11-20 飞而康快速制造科技有限责任公司 一种用于钛合金成型的激光选区熔化的增材制造方法及增材制造装置
CN111957962B (zh) * 2020-08-13 2021-10-29 飞而康快速制造科技有限责任公司 一种用于钛合金成型的激光选区熔化的增材制造方法及增材制造装置
CN112692302A (zh) * 2020-11-23 2021-04-23 河钢承德钒钛新材料有限公司 3d打印微孔金属曝气头的制造方法

Similar Documents

Publication Publication Date Title
CN107855522A (zh) 一种多孔微槽道结构的激光增材制造方法
US11833615B2 (en) Method for preparing multiple-material variable-rigidity component by efficient collaborative additive manufacturing
WO2021227539A1 (zh) 一种基于激光增材制造高熔点Kelvin结构点阵金属的制备方法
CN108555295B (zh) 一种高熵合金构件的激光立体成形方法
CN109967739B (zh) 一种基于增材制造技术制备梯度结构金属件的方法
CN105397086B (zh) 一种钛合金空心叶片激光精密成形方法
CN107699831B (zh) 基于复合结构设计的包套轧制铸态TiAl合金板材方法
CN102501006B (zh) 超声波焊接制造形状记忆合金-铝金属基复合材料的方法
CN102941343B (zh) 一种钛铝合金复杂零件的快速制造方法
CN105386036A (zh) 一种复杂内流道铝合金零件的激光精密成形方法
CN107626925A (zh) 一种变截面闭室结构的激光增材制造方法
RU2013138729A (ru) Способ изготовления трехмерного изделия
RU2014138802A (ru) Способ производства металлического компонента посредством аддитивного лазерного производства
CN107225244A (zh) 一种调控/降低激光增材制造零件内应力的方法
CN104109860A (zh) 增材制造金属件表面多重激光抛光及强化方法
CN109926584A (zh) 一种增材制造和表面抛光同步加工方法及装置
CN106623927A (zh) 核电燃料组件管座激光增材成型制造方法
CN105057666A (zh) 一种无焊缝金属点阵构件的激光选区熔化成型方法
CN112008079B (zh) 一种原位热处理提高3d打印镍基高温合金力学性能的方法
CN102994804B (zh) 一种制备高疲劳性能多孔Ti-6Al-4V块体材料的方法
CN110976869A (zh) 一种零件增材复合制造装置及方法
CN109396436A (zh) 一种纯钛3d打印增材制造方法
CN113145861B (zh) 一种金属构件增材制造同步锤击形性控制装置与方法
CN103540931A (zh) 一种机械振动辅助感应加热激光表面合金化复合加工方法及装置
CN105648366B (zh) 一种高熵合金控温近等温塑性加工技术

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180330

RJ01 Rejection of invention patent application after publication