CN107847747A - 确认感测心房事件以在心脏医疗设备与医疗设备系统中的再同步治疗期间进行起搏 - Google Patents

确认感测心房事件以在心脏医疗设备与医疗设备系统中的再同步治疗期间进行起搏 Download PDF

Info

Publication number
CN107847747A
CN107847747A CN201680041946.XA CN201680041946A CN107847747A CN 107847747 A CN107847747 A CN 107847747A CN 201680041946 A CN201680041946 A CN 201680041946A CN 107847747 A CN107847747 A CN 107847747A
Authority
CN
China
Prior art keywords
signal
ripples
heart
sensor device
apparatus system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680041946.XA
Other languages
English (en)
Other versions
CN107847747B (zh
Inventor
S·戈什
杜娟
S·E·格林哈特
M·T·海明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN107847747A publication Critical patent/CN107847747A/zh
Application granted granted Critical
Publication of CN107847747B publication Critical patent/CN107847747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3682Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions with a variable atrioventricular delay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/35Detecting specific parameters of the electrocardiograph cycle by template matching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36507Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by gradient or slope of the heart potential
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种用于控制刺激脉冲的递送的医疗设备和系统,其包括:感测设备,所述感测设备用于感测信号并响应于所感测到的信号发射触发信号;递送设备,所述递送设备用于接收所述触发信号并响应于所发射的触发信号向患者递送治疗;以及处理器,所述处理器定位在所述感测设备内,所述处理器被配置成,确定所述所感测到的信号是否超过可能的P波阈值,将所述所感测到的信号的一部分与P波模板进行比较,所述P波模板包括具有比所述P波的宽度小的长度的感测窗口,响应于所述比较,确认P波信号的发生,响应于确认P波信号的发生发射所述触发信号,并且响应于确认没有P波信号的发生抑制发射信号的递送。

Description

确认感测心房事件以在心脏医疗设备与医疗设备系统中的再 同步治疗期间进行起搏
技术领域
本公开涉及心脏起搏方法和系统,并且更具体地,涉及心脏医疗设备系统中的心脏再同步治疗。
背景技术
植入式起搏器和心脏复律除颤器(ICD)可用于将电刺激治疗(诸如,心动过缓起搏、心脏再同步治疗(CRT)、抗心动过速起搏以及心脏复律/除颤电击)递送到患者的心脏。医疗设备技术进步已经导致越来越小的植入式设备。最近,已经引入无引线心脏内起搏器,其可被直接植入到心脏腔室内。经静脉、心脏内引线的消除具有若干优势。例如,由于与从皮下起搏器袋经静脉地延伸到心脏中的引线相关联的感染而导致的并发症可被消除。诸如“旋弄综合征”、引线破裂或引线到起搏器的不良连接之类的其他并发症在使用无引线、心脏内起搏器时被消除。
然而,在控制心脏内起搏器与其他心脏腔室中出现的起搏事件或感测事件同步地递送起搏脉冲中出现了新的挑战。心脏再同步治疗(CRT)是包括在一心脏腔室中在另一心脏腔室中的感测事件或起搏事件之后的预定时间间期处递送起搏脉冲的起搏治疗的示例。CRT是针对一个或多个心脏腔室被电起搏以恢复或改善心脏腔室同步的心脏衰竭患者的治疗。预期改善的心脏腔室同步减轻心脏衰竭的症状。然而,从CRT中获得积极临床效益可取决于若干治疗控制参数,诸如,用于控制起搏脉冲递送的定时间期,例如,房室(AV)间期和/或心室间(VV)间期。AV间期控制心室起搏脉冲相对于固有或起搏的在前心房去极化的时序。VV间期控制一个心室中的起搏脉冲相对于另一心室中的起搏或固有感测事件的时序。起搏可被递送到右心室(RV)中和/或左心室(LV)中以恢复心室同步。
利用心脏起搏治疗和心脏起搏设备的心脏再同步通过向两个心室或向一个心室递送起搏刺激来进行操作,获得或多或少同时的机械收缩和自心室的血液喷射的期望结果。理论上,递送到心室的每个起搏脉冲刺激诱发来自心室的响应。为了确保期望的诱发响应发生,期望对心室起搏的递送进行定时,以便在P波之后的时间点处被递送,从而导致起搏治疗的递送与患者的心动周期的R波的发生一致。作为结果,感测P波的能力在确定用于心脏再同步治疗(CRT)的心室起搏治疗的定时中是重要的因素。此外,当利用皮下设备或远场信号时,心动周期的R波和T波常常仅稍大于P波或具有与P波可比拟的振幅,从而使得将P波从R波和T波区分开变得更加困难。因此,需要的是区分心动周期的P波以用于在CRT治疗期间对心室起搏的递送进行定时的改进的方法。
附图说明
图1是示出可用于感测患者中的心脏电信号并将治疗提供给患者的心脏的植入式医疗设备(IMD)系统的概念图。
图2是描绘图1的植入式医疗设备系统的替代配置的患者的解剖的截面图。
图3是被包括在图1和图2中所示的植入式医疗设备系统的一个实施例中的电子电路的功能框图。
图4是根据本公开的实施例的治疗递送设备的示例配置的功能框图。
图5是根据本公开的实施例的用于感测心房事件以用于对植入式医疗设备系统中的治疗的递送进行定时的方法的流程图。
图6是根据本公开的实施例的感测心房事件以用于对植入式医疗设备系统中的治疗的递送进行定时的示意图。
图7是根据本公开的实施例的用于感测心房事件以用于对植入式医疗设备系统中的治疗的递送进行定时的方法的流程图。
具体实施方式
在以下详细描述中,对示例实施例作出参考以利用从反映不同心脏腔室的电活动的皮下信号或远场信号感测心房活动来实现递送心房同步起搏的方法。应当理解,可使用其他实施例而不背离本发明的范围。例如,本文中在双心室或多电极/多部位心脏再同步治疗(CRT)递送的情境下详细公开了本发明。
参照图1-7描述了示例性方法、设备和系统。对本领域技术人员将会是显而易见的是,来自一个实施例的元件或过程可与其他实施例的元件或过程结合使用,并且使用本文中所陈述的特征的组合的这种方法、设备和系统的可能实施例不限于附图中所示和/或本文所描述的特定实施例。此外,将认识到,本文中所描述的实施例可包括并不一定按比例示出的许多元件。
图1是示出可用于感测患者中的心脏电信号并将治疗提供给患者的心脏的植入式医疗设备(IMD)系统的概念图。如图1中所示,用于确认感测的心房事件以用于起搏和再同步治疗的植入式医疗设备(IMD)系统10可包括治疗递送设备100(诸如心脏内起搏器)以及心脏感测设备14(诸如,耦合到血管外引线16的皮下心脏除颤器,诸如皮下地植入在患者12的左侧上的皮下设备)。例如在共同转让的美国申请专利No.14/695,004中描述了这种医疗设备系统10,本文通过引用将其整体结合于此。虽然皮下设备被示出皮下地植入在患者12的左侧上,但是应当理解,感测设备14和引线16可被植入在其他位置处,例如,诸如患者12的右侧。心脏感测设备14包括除颤引线16,该除颤引线具有沿着引线16的近端定位的除颤电极24(该除颤电极24可以是细长的线圈电极)、一对感测电极28和30(被示作环电极,但是可利用其他电极配置)、以及触发信号发射装置18。触发信号发射装置18包括由心脏感测设备14控制的换能器以发射由治疗递送设备100接收的触发信号,以使得治疗递送设备100递送一个或多个起搏脉冲。
连接到心脏感测设备14的除颤引线16从心脏感测设备14朝向患者12的胸骨22和剑突20居中地延伸。在剑突20附近的位置处,除颤引线16弯曲或转弯并且在胸骨22以上(superior)基本上平行于胸骨22皮下地延伸。除颤引线16可被植入成使得引线16在胸骨22上方或横向地偏移到胸骨22的主体的左侧或右侧,并且可被皮下地植入在例如皮肤与肋骨或胸骨之间。除颤引线16可被植入在相对于胸骨22的其他位置或角度处,或进一步向上地或内部地进行定位,取决于心脏感测设备14的位置、电极24、28和30以及触发信号发射设备18沿着引线16的定位、起搏器100的位置、或其他因素。在其他实例中,引线16可植入在其他血管外位置。在一个示例中,引线16可被至少部分地植入在胸骨下位置中或在胸廓32内、在胸腔内、和在心包膜内或外面,不一定与心脏26直接接触。
除颤引线16沿着胸骨22放置,使得除颤电极24和第二电极(诸如心脏感测设备14的壳体15的一部分或者置于第二引线上的电极)之间的治疗向量基本上横跨心脏26的一个心室或两个心室。在一个示例中,治疗向量可被视为从除颤电极24上的一点延伸到心脏感测设备14的壳体15(有时被称为“罐(can)电极”)上的一点的线。在另一示例中,除颤引线16可沿着胸骨22放置,使得除颤电极24和心脏感测设备14的壳体15(或者其他电极)之间的治疗向量基本上横跨心脏26的心房。在这种情况中,系统10可被用于提供心房治疗,诸如,用于治疗心房纤颤的治疗。
触发信号发射设备18被定位成建立触发信号传输路径,该传输路径不过度地减弱从发射设备18传输到被包括在心脏内治疗递送设备100中的接收器或检测器的触发信号。例如,可选择发射设备18的位置使得发射设备18和治疗递送设备100之间的直接路径尽可能地避免对正被使用的触发信号的类型高度反射、散射或吸收的组织。当引线16被定位在胸廓外时,发射设备18可被定位成低于剑突20、大约如所示的位置中。发射设备18相对于治疗递送设备100进行定位,以建立有效的触发信号传输路径,该路径可以是考虑了触发信号特性和周围组织或中间组织对于正被使用的触发信号的类型的传输或衰减特性的直接或间接的路径。
除颤引线16可包括在引线16的远端处的或朝向该远端的附连特征29。附连特征29可以是对帮助引线16的植入和/或将引线16固定到期望的植入位置有用的环状物、链接物、或其他附连特征。在一些实例中,除颤引线16可包括除附连特征29之外的或代替附连特征29的固定机构。例如,除颤引线16可包括位于电极30近侧或在发射设备18附近的被配置成将引线16固定在剑突20或下胸骨位置附近的缝合套或其他固定机构(未示出)。该固定机构(例如,缝合套或其他机构)可与引线成一体或者可在植入之前由使用者添加。固定机构可用于将发射设备18稳定地定位成低于在剑突20、沿着肋间隙或其他期望的位置,以防止发射设备18的旋转或移位,该旋转或移位可由于由身体组织而引起的干扰或衰减而造成触发信号错误引导或触发信号损失。
虽然心脏感测设备14被示为植入在患者12的腋中线附近,但心脏感测设备14也可被植入在患者12上的其他皮下位置处,比如朝向腋后线在躯干上更后面的位置处、朝向腋前线在躯干上更前面的位置处、在胸部区域中、或者在患者12的其他位置处。在心脏感测设备14被胸部植入的实例中,引线16会跟随不同的路径,例如,横跨上胸部区域并沿着胸骨22向下。当心脏感测设备14被植入在胸部区域中时,系统10可包括第二引线,该第二引线包括除颤电极以及可选地触发信号发射设备,第二引线沿着患者的左侧延伸使得第二引线的除颤电极沿着患者的左侧定位以用作用于对心脏26除颤的治疗向量的阳极或阴极。
心脏感测设备14包括壳体15,该壳体15形成保护在心脏感测设备14内的部件的气密密封。心脏感测设备14的壳体15可由导电材料形成,所述导电材料诸如钛或者其他生物相容性导电材料或者导电和非导电材料的组合。壳体15可围封一个或多个部件,该一个或多个部件包括处理器、存储器、发射器、接收器、传感器、感测电路、治疗电路以及其他适当部件(在本文中常常被称为模块)。在一些实例中,壳体15用作电极(有时被称为壳体电极或罐电极),其与电极24、28以及30中的一个结合使用,以将治疗递送至心脏26或者感测心脏26的电活动。
心脏感测设备14可包括连接器组件13(有时被称作连接器块或连接器头部),以用于接收引线16的近侧连接器(未示出)。连接器组件13包括电馈通件(feedthrough),通过这些电馈通件,在除颤引线16内的导体与被包括在壳体15内的电子部件之间进行电连接。取决于心脏感测设备14的预期植入位置,除了发射设备18由引线16携载之外或替代发射设备18由引线16携载,触发信号发射设备还可被包括在连接器组件13中和/或壳体15中以用于将触发信号发送到治疗递送设备100。
引线16包括在引线16的近端处的连接器,比如DF4连接器、分叉连接器(例如,DF-1/IS-1连接器)、或者其他类型的连接器。在引线16的近端处的连接器可包括与在心脏感测设备14的连接器组件13内的端口耦合的端子引脚。除颤引线16的引线体17可由非导电材料(包括硅树脂、聚氨酯、含氟聚合物、它们的混合物、以及其他适当的材料)形成,并被成形为形成一个或多个导体在其内延伸的一个或多个内腔。然而,这些技术不限于此类构造。
除颤引线16包括在细长引线体17内从除颤引线16的近端上的连接器延伸到相应电极24、28和30和发射设备18的细长电导体(未示出)。虽然除颤引线16被示出为包括三个电极24、28和30,但除颤引线16可包括更多或更少的电极。当除颤引线16的近端处的连接器被连接到连接器组件13时,相应的导体经由连接器组件13(包括相关联的馈通件)中的连接电耦合到心脏感测设备14的电路,诸如,治疗递送模块、感测模块或触发信号驱动信号电路。
这些电导体将来自在心脏感测设备14内的治疗模块的电刺激脉冲发送到电极24、28和30中的一个或多个电极,并且将来自电极24、28和30中的一个或多个电极的所感测的电信号发送到心脏感测设备14内的感测模块。从近侧引线连接器延伸到发射设备18的电导体将电控制信号传导到发射设备18,以使发射设备18在适当的时间处发射触发信号,以用于使心脏内治疗递送设备100向心脏26递送一个或多个起搏脉冲。
心脏感测设备14可经由一个或多个感测向量感测心脏26的电活动,该一个或多个感测向量包括电极28和30以及壳体15的组合。例如,心脏感测设备14可获得使用电极28与30之间、电极28与导电壳体15之间、电极30与导电壳体15之间、或它们的任意组合之间的感测向量感测的心脏电信号。在一些实例中,心脏感测设备14可甚至使用包括除颤电极24的感测向量(诸如,在除颤电极24与电极28和30中的一个之间的感测向量、或在除颤电极24和心脏感测设备14的壳体15之间的感测向量)来感测心脏电信号。
心脏感测设备14响应于感测的心脏电信号(例如其可包括P波和R波)确定对起搏治疗的需要,并控制发射设备18基于该确定发射触发信号。可根据编程的单腔室、双腔室或多腔室心动过缓或CRT控制参数或其他心脏起搏治疗参数来确定对起搏脉冲的需要。心脏感测设备14还可分析感测到的电信号以检测快速性心律失常(诸如,室性心动过速或心室纤颤),并且响应于检测到快速性心律失常可产生并向心脏26递送电刺激治疗。例如,心脏感测设备14可经由包括除颤引线16的除颤电极24以及壳体15的治疗向量递送一个或多个除颤电击。
电极24、28、30和壳体50可用于感测ECG信号以用于控制由心脏感测设备14递送的R波同步电击的定时并用于控制由治疗递送设备100递送的起搏脉冲的定时。在一些实例中,可由心脏感测设备14在除颤电击的递送之前或之后递送一个或多个起搏治疗,诸如,抗心动过速起搏(ATP)或电击后起搏。在这些实例中,心脏感测设备14可经由包括电极24、28、30和/或壳体15的治疗向量产生并递送起搏脉冲。替代地,心脏感测设备14使得触发信号发射设备18发射触发信号以使治疗递送设备100在适当的时间处(当需要ATP后电极后起搏以及当需要心动过缓起搏治疗或CRT起搏治疗时)将起搏脉冲递送到心脏26。
在图1中示出的示例心脏感测设备14本质上是示例性的,并且不应当被认为是对本公开中所描述的触发治疗递送系统和相关联技术中使用的感测设备的限制。例如,心脏感测设备14可在感测ECG信号之外仅包括电击治疗能力而没有起搏治疗能力。在其他示例中,心脏感测设备14可被耦合到不止一条引线以用于感测ECG信号和/或将触发信号发送到治疗递送设备100。在又其他示例中,感测设备可替代心脏感测设备14,该感测设备是没有复律/除颤能力的单腔室或双腔室皮下起搏器或者没有治疗递送能力的仅感测的设备。这些感测设备中的任一者可被耦合到基于壳体的电极和/或由经静脉、心脏内或血管外、心外的引线携载的电极,以用于感测心脏电信号并确定触发治疗递送设备100递送治疗的适当时间。在另一实施例中,感测设备可以是皮下植入的无引线设备,例如,诸如在共同转让的属于Carnet等人的美国专利申请No.14/695,004、属于Cinbis等人的美国专利申请的No.14/695,013(两者通过引用整体结合于此)中的无引线皮下传感器设备。
治疗递送设备100可以是被适配用于完全植入在心脏腔室内(例如,完全在心脏26的RV内、完全在心脏26的LV内、完全在心脏26的右心房(RA)内或完全在心脏26的左心房(LA)内)的经导管的心脏内起搏器。在图1的示例中,治疗递送设备100被定位成邻近LV的内壁以提供左心室起搏。在其他示例中,治疗递送设备100被定位成邻近右心室的内壁以提供右心室起搏。在其他示例中,治疗递送设备100可被定位在心脏26外面或心脏26内的任何其他位置处,包括心外膜位置。例如,治疗递送设备100可被定位在右心房或左心房的外面或之内,以例如提供相应的右心房或左心房起搏。在其他实施例中,治疗递送设备100可实现为用于将电刺激治疗递送到另一身体位置处的治疗递送设备。治疗递送设备100在图1中被示作无引线设备。然而,预想到在其他实施例中,治疗递送设备100可被耦合到从治疗递送设备100延伸的引线,以将治疗递送电极定位在与治疗递送设备100间隔开的位置处。
取决于植入位置,治疗递送设备100可被配置成将电刺激治疗递送到除了心肌之外的目标治疗部位(多个)。例如,治疗递送设备100可提供房室结刺激、脂肪垫刺激、迷走神经刺激或其它类型的神经刺激。在其他示例中,系统10可包括多个起搏器100,以例如将电刺激治疗递送到心脏26的多个部位处,诸如,在多个心脏腔室内以用于多腔室起搏治疗。
治疗递送设备100能够产生经由治疗递送设备100的外壳上的一个或多个电极被递送到心脏26电刺激脉冲。治疗递送设备100包括接收换能器以用于接收由发射设备18发射的触发信号。响应于检测到触发信号,治疗递送设备100递送一个或多个起搏脉冲。
在一个实施例中,治疗递送设备100包括脉冲发生器,该脉冲发生器被配置成当从发射设备18接收到触发信号时递送一个或多个起搏脉冲。由心脏感测设备14执行心脏信号感测。心脏感测设备14通过引线16感测ECG信号并经由在心脏感测设备14的控制下由发射设备18发射的触发信号控制由治疗递送设备100递送的起搏。
因为治疗递送设备100可能不具有感测能力或者具有有限的感测能力,因此,治疗递送设备100可能对发生在相同心脏腔室中的固有事件(诸如,固有R波)以及对发生在其他心脏腔室中的起搏或固有事件是“看不见的(blinded)”。CRT的递送、双腔室起搏、或其他多腔室起搏治疗可能需要在另一心脏腔室中的事件(感测事件或起搏事件)之后以预定时间间期递送起搏脉冲。如此,发射设备18响应于由心脏感测设备14感测到的ECG信号将触发信号提供给治疗递送设备100,以使得由治疗递送设备100以期望的时间间期相对于其他心脏腔室事件来递送起搏脉冲。与心脏感测设备14(用于感测生理信号并作出治疗递送决策)结合的治疗递送设备100(用于生成起搏脉冲)提供了递送可能需要与在相同或不同心脏腔室中发生的心脏事件同步或协调的各种治疗所要求的功能,而不需要植入在分开的植入部位处的治疗递送设备100和心脏感测设备14之间的物理连接。
图1进一步描绘了经由通信链路42与心脏感测设备14无线通信的编程器40。在一些示例中,编程器40包括手持式计算设备、计算机工作站、或联网的计算设备。编程器40包括向用户呈现信息并从用户处接收输入的用户界面。应当注意,用户也可经由联网的计算设备与编程器40远程地交互。
用户(诸如,医师、技师、外科医生、电生理学医生、其它护理者或患者)可与编程器40交互以与心脏感测设备14通信。例如,用户可与编程器40交互以从心脏感测设备14检索生理或诊断信息。用户还可与编程器40交互以对心脏感测设备14进行编程,例如选择心脏感测设备14的操作参数的值,操作参数包括用于控制触发信号发射设备18以用于控制治疗递送设备100的参数。用户可使用编程器40从心脏感测设备14检索关于心脏26的心律、随着时间的心律趋势或心律不齐事件的信息。
如所指示的,心脏感测设备14和编程器40经由无线通信进行通信。通信技术的示例可包括低频或射频(RF)遥测,但也可使用其他技术。在某些示例中,编程器40可包括编程头,该编程头被放置成邻近在心脏感测设备14植入部位附近的患者身体,从而改善心脏感测设备14与编程器40之间通信的质量或安全性。
图1中所示的实施例是IMD系统10的示例配置并且不应当被认为是对本文所描述的技术的限制。在其他实施例中,心脏感测设备14可被耦合到延伸到右心室(RV)中以用于将RV感测和起搏电极以及除颤线圈电极定位在RV内的经静脉、心脏内引线。在共同转让的美国专利No.5,545,186(Olson等人)中大体公开了可适配成携载发射设备18的RV引线的示例。在此示例中,发射设备18可被定位成比在引线16上所示的位置更远,使得发射设备18被定位在RV中、与LV中的治疗递送设备100相对。发射设备18可随后被启动以从RV发射触发信号到LV中的治疗递送设备100,以协调LV起搏脉冲相对于右心房事件或右心室事件的定时。预期到可构想基于引线的发射设备18的许多配置,并且发射设备18可沿着引线体17被定位在比引线16上所示的相对更近侧或更远侧位置处,以将发射设备18定位在相对于治疗递送设备100的期望位置处。
图2是描绘图1的植入式医疗设备系统的替代配置的患者的解剖的截面图。发射设备18被示出在胸骨下位置中在引线16(在图2的截面图中不可见)上。替代被定位在胸骨上(suprasternally)、低于剑突,发射设备18可被定位在胸骨下并且通过将引线16的远端推进到胸骨下位置而被定位成相对更向上。发射设备18可被配置用于方向性的触发信号发射,其中发射设备18取向成通常朝向治疗递送设备100的植入位置例如沿着由箭头72所代表的到治疗递送设备100的信号路径引导触发信号。
引线16可被放置在胸骨下面或下方在纵隔膜中,更具体地,在前纵膈中。前纵隔由胸膜从侧面界定、由心包膜从后面界定并且由胸骨从前面界定。引线16可被至少部分地植入在其他的心包外位置(即,围绕但不一定直接接触心脏26外表面的区域中的位置)中。这些其他的心包外位置可包括在纵隔中但自胸骨22偏移、在上纵隔中、在中纵隔中、在后纵隔中、在剑突下或下剑突区域中、在心脏的顶端附近、或者不直接接触心脏26且不是皮下的其他位置。在其他实施例中,引线16可在心包膜内延伸并与心脏26直接接触。在这些示例植入位置中的任一个中,引线16可被定位成最佳地定位触发信号发射设备18,以用于将触发信号可靠地发送到治疗递送设备100。
图3是被包括在图1和图2中所示的植入式医疗设备系统的一个实施例中的电子电路的功能框图。如图3中所示,ICD 14包括处理与控制模块80(也被称作“控制模块”)、存储器82、治疗递送模块84、电感测模块86、遥测模块88、以及心脏信号分析器90。电源98向ICD14的电路(包括模块80、82、84、86、88以及90中的每一个)提供功率。电源98可包括一个或多个能量存储设备,诸如一个或多个可再充电或非可再充电电池。
图3中所示的功能框图表示可被包括在ICD 14中的功能并可包括实现能够产生归属于本文的ICD 14的功能的模拟和/或数字电路的任何分立和/或集成的电子电路部件。例如,这些模块可包括模拟电路,例如,放大电路、滤波电路、和/或其他信号调节电路。这些模块也可以包括数字电路,例如,模拟到数字转换器、组合的或顺序的逻辑电路、集成电路、存储器设备等。存储器82可包括任何易失性、非易失性、磁或电非瞬态计算机可读存储介质,例如,随机存取存储器(RAM)、只读存储器(ROM)、非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪存、或任何其它存储器设备。此外,存储器82可包括存储指令的非瞬态计算机可读介质,当这些指令被一个或多个处理电路执行时,这些指令使得控制模块80或其他ICD执行归属于ICD 14的各种功能。存储指令的非瞬态计算机可读介质可包括以上列出的介质中的任一个,其中唯一例外是瞬态传播信号。将主要由IMD系统设备中采用的特定系统架构确定用于实现本文中所公开的功能的软件、硬件和/或固件的特定形式。鉴于本文的公开内容,在任何现代IMD系统的情境中提供实现所述功能的软件、硬件和/或固件在本领域技术人员的能力范围内。
归属于本文的模块的功能可具体实施为一个或多个处理器、硬件、固件、软件、或其任何组合。将不同特征描绘为模块旨在强调不同的功能方面,并且不一定隐含此类模块必须通过分开的硬件或软件部件实现。相反,与一个或多个模块相关联的功能可由单独的硬件或软件部件执行,或者集成在共同的硬件或软件部件内。例如,可在执行存储在存储器82中的指令的处理和控制模块80中实施由心脏信号分析器90执行以用于确定对由ICD 14和/或治疗递送设备100递送的治疗的需要的心律失常检测操作。
处理和控制模块80与治疗递送模块84、心脏信号分析器90和电感测模块86通信,以用于感测心脏电活动、检测心律并响应于所感测的信号而生成心脏治疗。治疗递送模块84与电感测模块86被电耦合到由引线16携载的电极24、28与30(例如,在图1中示出)以及壳体15,该壳体15的至少一部分也用作公共电极或接地电极。
电感测模块86被耦合到电极28和30,以便监测患者心脏的电活动。电感测模块86可任选地被耦合到电极24和15,并且可能够选择性地监测从可用电极24、28、30和15中选择的一个或多个感测向量。例如,感测模块86可包括用于选择电极24、28、30和壳体15中的哪些被耦合至被包括在感测模块86中的感测放大器的开关电路。开关电路可包括开关阵列、开关矩阵、多工器、或适于选择性地将感测放大器耦合至所选择的电极的任何其他类型的开关设备。可选择电极28和30之间的感测向量用于感测ECG信号,但是应当认识到,在一些实施例中,可选择利用线圈电极24和/或壳体电极15的感测向量,例如从电极28到壳体15或电极30和壳体15。
由感测模块86的输入接收一个或多个ECG信号。感测模块86包括一个或多个感测放大器或用于从ECG信号(多个)感测心脏事件(例如,P波或R波)的其他心脏事件检测电路。感测模块86响应于感测到心脏事件将感测事件信号传递给心脏信号分析器90。例如,当ECG信号跨过相应的P波感测阈值和R波感测阈值(其可各自是自动调整的感测阈值)时,P波感测事件信号和R波感测事件信号被传递到心脏信号分析器90。通常通过定时电路92内的起搏逸搏间期定时器期满来确定心动过缓或心搏停止。响应于起搏逸搏间期期满,控制信号95被传递到触发信号发射设备18。起搏逸搏间期根据触发信号或感测事件信号重新启动。
本文中呈现的示例性示例中的控制信号95可被称为起搏控制信号,因为它使得治疗递送设备100向心脏腔室递送起搏脉冲。在其他示例中,可由心脏信号分析器90产生控制信号95以使得由治疗递送设备100(或另一治疗递送设备)递送其他类型的治疗脉冲。例如,可产生控制信号95以使得治疗递送设备100或另一治疗递送设备递送ATP脉冲、迷走神经刺激脉冲、或其他类型的电刺激脉冲。
当发射设备18以有线连接被耦合到ICD 14时,控制信号95是沿着引线16或60(或携载发射设备18的另一引线)被传递到发射设备18的电信号。控制信号95替代地是经由遥测模块88发送到发射设备18的无线遥测信号。发射设备18可由引线来携载,但是被配置成从遥测模块88无线地接收控制信号95。替代地,发射设备18不是基于引线的发射设备并从遥测模块88无线地接收控制信号95,例如作为RF遥测信号。应当理解,在一些实施例中,驱动信号电路34可被包括在ICD 14的壳体15内并被耦合到位于壳体15外部的换能器36。
触发信号发射设备18包括接收控制信号95(作为有线电信号或来自遥测模块88的无线信号)的驱动信号电路34。驱动信号电路34将电信号传递给换能器以使得换能器36能够发射触发信号。在各个示例中换能器36可以是光学换能器或声学换能器。在其他示例中,驱动信号电路34被耦合到天线以用于将触发信号发射为RF信号。
由治疗递送设备100接收并检测触发信号,从而使治疗递送设备100向患者的心脏递送一个或多个起搏脉冲。在一些示例中,根据预定的频率、振幅、持续时间和在控制信号95的控制下不是有意地被发送设备18改变的其他特性来生成触发信号。换言之,触发信号仅信号通知(signal)治疗递送设备100递送治疗,而没有关于有多少起搏脉冲、脉冲振幅或脉冲宽度或其他起搏脉冲控制参数是多少的任何信息。治疗递送设备100被编程成当触发信号被检测到时根据预定义的脉冲控制参数来递送预定数量的起搏脉冲。
替代地,控制信号95可包括编码的起搏脉冲控制信息。由驱动电路34产生的控制信号95可使得换能器36根据频率、持续时间、振幅或触发信号的其他有意变化的特性来发射触发信号以包括起搏脉冲控制参数信息。如以下所描述的,由换能器36发射的触发信号的参数可以由控制信号95和驱动电路34可控制地改变,以使治疗递送设备100调整诸如起搏脉冲宽度、脉冲数量等起搏脉冲控制参数。在信号95和驱动电路34的控制下可被改变的触发信号参数包括(而不限于)触发信号振幅、信号频率、脉冲宽度、脉冲数量和脉冲间间期。
换能器36可被实现为被配置成例如当从电路34接收到驱动信号时发射声或光的一个或多个换能器。换能器36可包括陶瓷压电晶体、聚合物压电晶体、电容式微机加工超声换能器(CMUT)、压电微机加工式超声换能器(PMUT)或其他超声换能器、发光二极管(LED)、垂直腔表面发射激光器(VCSEL)或在所选光波长处具有高量子效率的其他光源中的一个或多个的任意组合。换能器36可包括布置在阵列中和/或配置成从发射设备18在多方向上发射信号的多个换能器,以促进由治疗递送设备100接收触发信号,而不管发射设备18和治疗递送设备100相对于彼此的移位、旋转、或相对取向的其他变化。该多个换能器可以是由驱动电路选择的,使得在接收换能器的起搏器处产生最佳信噪比的换能器中的单个或组合被选择。
在一个示例中,换能器36可包括由驱动信号电路34激活以发射相长干涉的声波以提高声学信号传输的效率的多个声学换能器。发射设备18被示作单个设备,但是可被实现为不止一个发射设备,使得触发信号的发送分布在两个或更多个发射设备上。当使用两个或更多个发射设备时,发射设备18可包括一个或多个基于引线的发射设备、一个或多个无引线发射设备、和/或并入ICD 14中的一个或多个发射设备。两个或更多个发射设备可同步地激活以产生在治疗递送设备100的接收器处叠加的超声波以增加传输效率和/或改善信号接收。可独立地被脉冲驱动(pulse)以发射声波的换能器的相控阵列可用于朝向治疗递送设备100中的预期的接收换能器聚焦声学信号。当包括多个治疗递送设备100或其他治疗递送设备时,包括在换能器36中的换能器的相控阵列可由驱动信号电路34控制,以用编程的时间关系来脉冲地驱动换能器将触发信号聚焦在预期的治疗递送设备的接收器上。
换能器36可包括具有不同特性的多个换能器以用于发射不同频率的声、光或RF信号。可由驱动电路34选择不同的换能器,以实现不同频率的触发信号的发送。例如,不同频率或振幅、频率、脉冲数量等的不同模式可被发射以用于触发治疗递送设备100的不同响应或者用于在多个起搏器被植入时触发不同的心脏内起搏器。如以上所指示的,不同的触发信号可用于使治疗递送设备100根据不同的起搏脉冲控制参数(诸如,不同的脉冲形状、脉冲振幅、脉冲宽度、脉冲速率或脉冲数量)来递送起搏脉冲。
换能器36被配置成,以在沿着换能器36和治疗递送设备100之间的路径被身体组织衰减之后可由治疗递送设备100的接收换能器检测到的振幅和频率来发射触发信号。在一个示例中,换能器36被配置成在大约40kHz到超过1MHz的范围中发射声。可以利用大于大约1000nm的波长发射光触发信号。可从天线以400MHz和3GHz之间的频率辐射RF信号。部分地基于沿着信号路径遇到的身体组织的类型和厚度来选择触发信号的频率。
定时电路92可根据存储在存储器82中的起搏算法和定时间期来产生控制信号95以触发治疗递送设备100提供心动过缓起搏、抗心动过速起搏、心脏再同步治疗、AV结刺激、或其他起搏治疗。可在由ICD 14递送复律-除颤电击之后、当心脏恢复返回到电击后正常功能时,暂时地由治疗递送设备100递送心动过缓起搏,以维持心脏输出。
心脏信号分析器90包括快速性心律失常检测器94,以用于检测并区分室上性心动过速(SVT)、室性心动过速(VT)以及心室纤颤(VF)。在共同转让的美国专利No.7,904,153(Greenhut等人)中大体公开了感测和处理皮下ECG信号的一些方面,该专利通过引用以其整体结合于此。对来自感测模块86的R波感测事件信号的定时可被快速性心律失常检测器94用来测量R-R间期,以用于对在不同检测区中的RR间期进行计数或确定心率或其他基于速率的测量,以用于检测室性快速性心律失常。电感测模块86可附加地或替代地将数字化的ECG信号提供给心脏信号分析器90以用于检测快速性心律失常。可适用于与被触发的治疗递送设备100一起使用的ICD的示例以及可被快速性心律失常检测器94执行以用于检测、区分并治疗快速性心律失常的操作被大体公开在美国专利No.7,742,812(Ghanem等人),美国专利No.8,160,684(Ghanem等人),美国专利No.5,354,316(Keimel);美国专利No.6,393,316(Gillberg等人),美国专利No.5,545,186(Olson等人),以及美国专利No.5,855,593(Olson等人)中,这些专利中的所有通过引用整体结合于此。
检测算法对于危及生命的VT与VF的存在或不存在是高度敏感和有特效的。治疗递送模块84包括HV治疗递送模块,该HV治疗递送模块包括一个或多个HV输出电容器。当检测到恶性心动过速时,HV电容器被HV充电电路充电至预编程的电压水平。当从治疗递送模块84检测到HV电容器已经达到递送编程的电击能量所要求的电压的反馈信号时,控制模块80施加信号以触发HV电容器的放电。以此方式,控制模块80控制治疗递送模块84的高电压输出电路的操作,以使用线圈电极24与壳体电极15来递送高能量复律/除颤电击。
应当注意到,所实现的心律失常检测算法可不仅利用ECG信号分析方法还可利用补充传感器96(诸如,组织颜色、组织氧合、呼吸、患者活动、心音等等),以有助于通过处理和控制模块80作出施加或阻止治疗的决定。传感器96还可用于确定由治疗递送设备100进行起搏的需要和定时。例如,活动传感器信号或其他速率响应的传感器信号(诸如,每分钟通气量信号)可用于确定满足患者的代谢需求的起搏速率。定时电路92产生控制信号95以使发射设备18产生触发信号,该触发信号使治疗递送设备100基于速率响应信号以适当速率递送起搏脉冲。传感器96可包括由从ICD 14延伸的引线携载的或在壳体15和/或连接器块13内或沿着壳体15和/或连接器块13的一个或多个传感器。
遥测模块88包括收发器和天线以用于与另一设备(诸如,外部编程器40以及发射设备18,当其被配置成无线地接收控制信号95时)通信。在控制模块80的控制下,遥测模块88可从编程器40或另一外部设备接收下行链路遥测并将上行链路遥测发送到编程器40或另一外部设备。遥测模块88可将控制信号无线地传输到发射设备18,例如作为RF信号。
图4是根据本公开的实施例的治疗递送设备的示例配置的功能框图。如图4中所示,治疗递送设备100包脉冲发生器202、任选的感测模块(未示出)、控制模块206、存储器210、触发信号接收器212以及电源214。脉冲发生器202产生电刺激脉冲,该电刺激脉冲经由电极162和164被递送到心脏组织。控制模块206响应于从接收器212接收到触发检测(TD)信号216控制脉冲发生器202递送刺激脉冲。在其他实施例中,脉冲发生器202可被配置成直接通过从接收器212接收到的输入信号来启动以递送刺激脉冲。例如,响应于由接收器212产生的触发检测信号216的开关可启动脉冲发生器202以经由电极162和164将刺激脉冲递送到目标组织。
脉冲发生器202包括一个或多个电容器以及充电电路以将电容器(多个)充电到起搏脉冲电压。当控制模块206等待来自接收器212的触发检测信号216时,起搏电容器可被充电到起搏脉冲电压。当检测到触发信号时,电容器被耦合到起搏电极162、164以对电容器电压进行放电并借此递送起搏脉冲。替代地,触发信号的检测启动起搏电容器充电并且当达到预定的起搏脉冲电压时递送该脉冲。在美国专利No.8,532,785(Crutchfield)中大体公开的起搏电路(特此通过引用将该专利整体结合于此)可在治疗递送设备100中被实施,以用于在控制模块206的控制下将起搏电容器充电到预定的对起搏脉冲振幅并递送起搏脉冲。
替代地,脉冲发生器202可包括开关,该开关将电源214连接到起搏电极162和164以递送起搏脉冲。由触发检测信号216或由来自控制模块206的控制信号来打开开关,并且电源214将能量递送到脉冲发生器以用于产生起搏脉冲。
如以下所描述的,控制模块206可从触发检测信号216确定起搏脉冲控制参数并使用所确定的起搏脉冲控制参数控制脉冲发生器202以根据所确定的控制参数递送一个或多个起搏脉冲。例如,触发信号的脉冲宽度或其他方面可由控制模块206确定并用于设置起搏脉冲的脉冲宽度(或另一方面)。
接收器212通过耦合构件180接收触发信号。接收器212包括一个或多个接收换能器,该一个或多个接收换能器可直接沿着耦合构件180的内表面安装,以例如用于接收声波或光。触发信号导致接收换能器产生电压信号,该电压信号被传递到包括在接收器212(或控制模块206)中的比较器,以用于与触发信号检测阈值进行比较。如果由接收换能器产生的电压信号大于检测阈值,则触发检测信号216被传递到控制模块206,或直接被传递到脉冲发生器202,以导致起搏脉冲递送。
在一些实施例中,接收器212被配置成仅检测发射设备产生的触发信号。例如,接收器212可被“调谐”成检测在声学或光学信号感测的正常生理范围之外的特定信号频率或带宽的声学或光学信号。在一些示例中,接收器212不被配置成感测并处理用于确定生理事件、状况或状态的任何生理声学信号或光学信号。
控制模块206根据可被存储在存储器210中的治疗递送控制参数(诸如,脉冲振幅、脉冲宽度、脉冲数量等)控制脉冲发生器202递送起搏脉冲。在一些示例中,脉冲发生器202当接收到触发检测信号216(直接从接收器212或经由控制模块206)时立即被启动以递送起搏脉冲。替代地,可在预定时间延迟之后递送起搏脉冲。
接收器212可包括多个接收换能器以用于感测触发信号。由多个换能器产生的电压信号可被加和以例如用于与触发信号检测阈值进行比较。在一些实施例中,可包括响应于不同频率带宽的多个接收换能器。提供对不同信号频率的检测可使得不同的触发信号被传输,以使得治疗递送设备100执行不同的起搏功能和/或改善触发信号检测。
电源214根据需要将电力提供给起搏器100的其他模块与部件中的每一个。控制模块206可执行电力控制操作以在各种部件或模块被上电以执行各种起搏器功能时进行控制。电源214可包括一个或多个能量存储设备,诸如一个或多个可再充电或非可再充电电池。
由图4中所示的框图表示的电路可包括任何分立的和/或集成的电子电路部件,其实现能够产生归于本文中的治疗递送设备100的功能的模拟和/或数字电路。归属于本文中的治疗递送设备100的功能可实现为一个或多个处理器、硬件、固件、软件、或他们的任意组合。控制模块206可包括微处理器、控制器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、状态机或等效的分立或集成逻辑电路中的任意一个或多个。将治疗递送设备100的不同特征描绘为分立的模块或部件旨在强调不同的功能方面,并且不一定隐含此类模块必须通过分开的硬件或软件部件实现。相反,与一个或多个模块相关联的功能可由分开的硬件或软件部件执行,或者被集成在公用或单独的硬件或软件部件内,其可包括组合的或顺序的逻辑电路、状态机、存储器设备等。
存储器210可以包括计算机可读指令,这些指令在由控制模块206执行时,使控制模块206执行贯穿本公开归属于治疗递送设备100的各种功能。可在存储器210内对计算机可读指令进行编码。存储器210可包括任何非瞬态计算机可读存储介质,该计算机可读存储介质包括任何易失性、非易失性、磁的、光的、或电的介质,诸如随机存取存储器(RAM)、只读存储器(ROM)、非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪存存储器、或其他数字介质(其中唯一例外是瞬态传播信号)。存储器210存储间期、计数器或由控制模块206使用的其他数据,以控制由脉冲发生器202响应于检测到由接收器212接收到的触发信号而递送起搏脉冲。
图5是根据本公开的实施例的用于感测心房事件以用于对植入式医疗设备系统中的治疗的递送进行定时的方法的流程图。根据一个实施例,为了确定是否正在发生P波事件,使用已知的模板生成方案从平均P波形态生成的模板可被使用,该平均P波形态是从预定的患者人群确定的。在另一实施例中,因为P波形态可根据不同的患者变化,所以P波模板可由植入医师基于患者的确定的P波形态并使用已知的模板生成方案在植入时生成,或者可由植入设备自动地生成。
图6是根据本公开的实施例的感测心房事件以用于对植入式医疗设备系统中的治疗的递送进行定时的示意图。如图6中所示,感测设备14感测心脏信号112以监测信号112(包括识别P波102、R波103、以及T波105)并确定心脏事件的发生。在心脏再同步起搏治疗的递送期间,为了确保心室起搏刺激与心房活动同步地递送以维持房室同步,并且确保所递送的起搏治疗导致来自心室的适当的诱发响应,起搏治疗的递送通常被定时偏离(timeoff)感测的P波102。在心脏再同步起搏治疗的递送期间,感测的房室(SAV)延迟(其是感测的心房事件和起搏的心室事件之间的时间周期)通常标称地设置为100ms,从而必须发生P波102的确认以便对起搏治疗的递送进行定时的时间的量必须在P波102的感测的100ms之内发生。然而,通常P波的持续时间超过100ms,使得对治疗的递送的定时成为问题。因此,如图6中所示,根据本公开的实施例,为了减少确认P波102的发生所需要的时间,生成P波模板110,该P波模板110具有P波窗口104,该窗口104的长度105小于感测的心脏信号112的P波102的宽度106。例如,P波窗口104的长度105可根据特定患者趋势被设置成P波102的宽度106的预定百分比,例如,诸如50%,该预定百分比仍然使得P波102的基本形态特性被识别。应当理解,虽然SAV延迟通常被设置成100ms,但是可利用其它值,取决于特定患者要求,并且该其他值可在大约80-300ms的范围内。此外,P波模板可被周期性地更新以处理P波形态/特征随着时间的变化。
如图5和图6中所示,如以上所描述的,在由医师在植入期间或由植入的设备在植入后生成对应于期望的P波敏感度(例如,诸如50%)的P波模板110,框200。感测设备14感患者的心脏信号112并基于感测到的心脏信号112确定是否感测到可能的P波事件,即心脏事件还未被确认为P波事件,框202。对可能的P波事件被感测到的确定的基础基于将在感测的时间点周围的信号的预指定的时间窗口与模板进行比较。为了比较,可使用特定的信号特征(像振幅、斜率、极性),或者可使用全局模板匹配测量(像相关系数或小波匹配分数)。例如,如果在窗口化的(windowed)信号与P波模板之间的相关系数超过某一振幅阈值(例如,0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95),则感测到的信号被确定为可能的P波事件。此外,根据一个实施例,可使用对振幅不敏感的匹配方案(例如,诸如,相关波形分析(CWA))与对振幅敏感的匹配方案(诸如,区域差异(DOA))结合来执行模板匹配。例如,应用振幅不敏感的模板匹配(CWA),并且如果确定了匹配,则随后应用振幅敏感的模板匹配方案(DOA)。如果使用振幅敏感的匹配方案再次确定了匹配,则认为波形匹配模板,并且如果使用振幅敏感的匹配方案没有再次确定匹配,则不认为波形匹配模板。
一旦确定可能的P波事件已经发生(框202中的是),则感测设备14启动心室起搏递送定时器,框204,并使用生成的P波模板110窗口化感测的信号112,框206,以确定心脏信号112是否匹配P波模板110,框208。例如可通过基于采样的信号与存储的P波模板110的逐点比较计算相关系数来确定P波模板匹配。可如在颁发给Duffin的美国专利No.5,193,550中所大体描述地执行相关系数的计算,该专利通过引用整体结合于此。
如果确定没有发生P波匹配(框208中的否),则可能的P波不被确认为P波,并且中止(abort)起搏治疗的递送,框210。作为结果,重置治疗递送定时器,框212,并且感测设备14等待下一个感测到的可能的P波事件发生,框202。如果确定发生了P波匹配(框208中的是),则可能的P波被确认为P波,框214,并且感测设备14发射触发信号,该触发信号由治疗递送设备100接收,然后启动起搏治疗的递送,框216,其中利用确认的感测到的P波102以供对所递送的治疗进行定时。
图7是根据本公开的实施例的用于感测心房事件以用于对植入式医疗设备系统中的治疗的递送进行定时的方法的流程图。在一些情况下,心脏信号的T波部分可被错误地识别为该信号的P波部分。因此,根据另一实施例,使用已知的T波模板生成方案生成的T波模板用于识别T波的发生。例如,如图7中所示,如以上所描述的,在由医师在植入期间或由植入的设备在植入后生成对应于期望的P波敏感度(例如,诸如50%)的P波模板110,框300。感测设备14感测心脏信号并使用已知的T波模板匹配方案确定是否发生T波,框302。例如,可例如通过基于采样的信号与存储的T波模板的逐点比较计算相关系数来确定T波模板匹配。可使用其他已知的T波匹配方案,例如,诸如,在Cao等人的美国专利No.7,831,304中描述的,或在Zhou等人的美国专利公开No 2006/0116592中描述的,这两个专利文献通过引用整体结合于此。
一旦确定发生T波匹配(框302中的是),感测设备14就基于感测到的心脏信号112确定是否感测到可能的P波事件,框304,如以上所描述的。感测设备14在T波的感测之后继续确定是否感测到可能的P波(框304)达一预定时间周期,例如,诸如200ms和500ms之间。因此,在框304中是否呈现可能的P波事件的确定期间,该设备监测是否做出关于预定时间周期是否已经期满的确定,框307,从而如果设备14不能确定在T波的感测之后在预定的时间周期之内已经感测到可能的P波事件(框307中的是),则可能的P波不被确认为P波,并且中止起搏治疗的递送,框312。作为结果,重置治疗递送定时器,框314,并且感测设备14等待下一个T波被感测,框302。一旦感测设备14确定可能的P波事件已经发生(框304中的是),感测设备14就启动心室起搏递送定时器,框306,并使用生成的P波模板110窗口化感测的心脏信号112,框308,以确定该信号是否匹配P波模板110,框310,如上所述。
如果确定没有发生P波匹配(框310中的否),则可能的P波不被确认为P波,并且中止(abort)起搏治疗的递送,框312。作为结果,重置治疗递送定时器,框314,并且感测设备14等待下一个T波被感测,框302。如果确定发生了P波匹配(框310中的是),则可能的P波被确认为P波,框316,并且感测设备14向治疗递送设备100发射触发信号,然后经由治疗递送设备100启动起搏治疗的递送,框318,其中利用确认的感测到的P波以供对所递送的治疗进行定时。
本公开中所描述的技术(包括归因于IMD、编程器、或各构成部件的那些技术)可以至少部分地以硬件、软件、固件或它们的任意组合来实现。例如,这些技术的各方面可在一个或多个处理器内实现,所述一个或多个处理器包括一个或多个微处理器、DSP、ASIC、FPGA、或任何其他等效的集成或分立逻辑电路,以及具体化在编程器中的此类组件(诸如,医生或患者的编程器、刺激器、图像处理设备或其他设备)的任何组合。术语“模块”、“处理器”或“处理电路”一般可指独立的或结合其他逻辑电路的任何前述逻辑电路、或任何其他等效电路。
此类硬件、软件和/或固件可在相同的设备内或在分开的设备内实现以支持本公开所描述的各种操作和功能。另外,所述单元、模块或组件中的任一者可一起被实现,或可被单独地实现为分立但可互操作的逻辑器件。将不同的特征描绘为模块或单元旨在强调不同的功能方面,并且不一定暗示此类模块或单元必须由分开的硬件或软件组件来实现。相反,与一个或多个模块或单元相关联的功能可由分开的硬件或软件组件来执行,或可集成在共同或分开的硬件或软件组件内。
当在软件中实现时,归因于本公开中描述的系统、装置和技术的功能可具体化为计算机可读介质(诸如,RAM、ROM、NVRAM、EEPROM、闪存、磁数据存储介质、光数据存储介质,等等)上的指令。可由一个或多个处理器执行这些指令以支持本公开中所描述的功能的一个或多个方面。
已经参照说明性实施例提供了本公开,并且本公开不旨在以限制的意思进行解释。如先前所述,本领域技术人员将会认识到,其他各种说明性应用都可以使用本文所描述的技术以利用本文所描述的装置和方法的有益特性。说明性实施例的各种修改以及本公开的附加实施例在参照本说明书时将会是显而易见的。

Claims (11)

1.一种用于控制刺激脉冲的递送的医疗设备系统,包括:
感测设备,所述感测设备用于感测心脏信号并用于响应于所感测到的心脏信号发射触发信号;
递送设备,所述递送设备用于接收所述触发信号并响应于发射的触发信号向所述患者递送脉冲;
处理器,所述处理器定位在所述感测设备内,所述处理器被配置成,确定所述所感测到的心脏信号是否超过可能的P波阈值,将所述所感测到的心脏信号的一部分与P波模板进行比较,所述P波模板包括具有比所述P波的宽度小的长度的感测窗口,响应于所述比较,确认P波信号的发生,响应于确认P波信号的所述发生发射所述触发信号,并且响应于确认没有P波信号的所述发生抑制所述发射信号的递送。
2.如权利要求1所述的医疗设备系统,其特征在于,所述感测设备包括能够被皮下地植入在患者体内的皮下设备,并且所述递送设备包括适配用于完全植入在心脏腔室内的经导管心脏内起搏器。
3.如权利要求1-2中任一项所述的医疗设备系统,其特征在于,所述感测设备包括皮下地植入的电极以感测所述心脏信号。
4.如权利要求1-3中任一项所述的医疗设备系统,其特征在于,所述感测设备包括皮下地植入的无引线设备。
5.如权利要求1-4中任一项所述的医疗设备系统,其特征在于,所述P波模板的所述感测窗口的所述长度对应于所述P波的所述宽度的预定的百分比。
6.如权利要求1-5中任一项所述的医疗设备系统,其特征在于,所述P波的所述宽度的所述百分比包括百分之五十。
7.如权利要求1-6中任一项所述的医疗设备系统,其特征在于,所述P波的所述宽度的所述百分比对应于预定的房室延迟。
8.如权利要求1-7中任一项所述的医疗设备系统,其特征在于,所述刺激脉冲包括心脏再同步起搏脉冲。
9.如权利要求1-8中任一项所述的医疗设备系统,其特征在于,所述可能的P波阈值包括振幅、斜率、极性、相关系数以及小波匹配分数中的至少一者。
10.如权利要求1-9中任一项所述的医疗设备系统,其特征在于,所述可能的P波阈值包括振幅敏感的阈值和振幅不敏感的阈值。
11.如权利要求1-10中任一项所述的医疗设备系统,其特征在于,所述振幅敏感的阈值包括区域差异阈值并且所述振幅不敏感的阈值包括相关波形分析阈值。
CN201680041946.XA 2015-07-16 2016-07-14 确认感测心房事件以在心脏医疗设备与医疗设备系统中的再同步治疗期间进行起搏 Active CN107847747B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/801,049 2015-07-16
US14/801,049 US10004906B2 (en) 2015-07-16 2015-07-16 Confirming sensed atrial events for pacing during resynchronization therapy in a cardiac medical device and medical device system
PCT/US2016/042283 WO2017011659A1 (en) 2015-07-16 2016-07-14 Confirming sensed atrial events for pacing during resychronization therapy in a cardiac medical device and medical device system

Publications (2)

Publication Number Publication Date
CN107847747A true CN107847747A (zh) 2018-03-27
CN107847747B CN107847747B (zh) 2021-03-23

Family

ID=56507878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680041946.XA Active CN107847747B (zh) 2015-07-16 2016-07-14 确认感测心房事件以在心脏医疗设备与医疗设备系统中的再同步治疗期间进行起搏

Country Status (4)

Country Link
US (2) US10004906B2 (zh)
EP (1) EP3322478B1 (zh)
CN (1) CN107847747B (zh)
WO (1) WO2017011659A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111789590A (zh) * 2019-04-08 2020-10-20 四川锦江电子科技有限公司 一种人体心腔内刺激与电生理记录同步记录的方法和系统
CN111936203A (zh) * 2018-04-03 2020-11-13 美敦力公司 用于无引线起搏治疗的基于特征的感测
CN112438735A (zh) * 2021-01-29 2021-03-05 深圳市理邦精密仪器股份有限公司 一种心电图p波检测方法、分析装置以及存储介质
CN112543662A (zh) * 2018-07-06 2021-03-23 心脏起搏器股份公司 希氏束起搏器中的可调节感测

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511233B2 (en) 2013-11-21 2016-12-06 Medtronic, Inc. Systems and methods for leadless cardiac resynchronization therapy
CN107206242B (zh) 2015-02-06 2020-10-30 心脏起搏器股份公司 用于电刺激治疗的安全递送的系统和方法
US10004906B2 (en) 2015-07-16 2018-06-26 Medtronic, Inc. Confirming sensed atrial events for pacing during resynchronization therapy in a cardiac medical device and medical device system
EP3341076B1 (en) 2015-08-28 2022-05-11 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
CN108472490B (zh) 2015-12-17 2022-06-28 心脏起搏器股份公司 医疗设备系统中的传导通信
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
WO2017136548A1 (en) 2016-02-04 2017-08-10 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
EP3436142A1 (en) 2016-03-31 2019-02-06 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
JP6764956B2 (ja) 2016-06-27 2020-10-07 カーディアック ペースメイカーズ, インコーポレイテッド 再同期ペーシング管理に皮下で感知されたp波を使用する心臓治療法システム
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
US10688304B2 (en) 2016-07-20 2020-06-23 Cardiac Pacemakers, Inc. Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
EP3500342B1 (en) 2016-08-19 2020-05-13 Cardiac Pacemakers, Inc. Trans-septal implantable medical device
US10870008B2 (en) 2016-08-24 2020-12-22 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
CN109640809B (zh) 2016-08-24 2021-08-17 心脏起搏器股份公司 使用p波到起搏定时的集成式多装置心脏再同步治疗
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
EP3515553B1 (en) 2016-09-21 2020-08-26 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
WO2018057626A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Implantable cardiac monitor
WO2018081225A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
WO2018081133A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
CN109890457B (zh) 2016-10-27 2023-07-04 心脏起搏器股份公司 单独的设备在管理心脏起搏器的起搏脉冲能量时的使用
US10463305B2 (en) * 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
WO2018081721A1 (en) 2016-10-31 2018-05-03 Cardiac Pacemakers, Inc Systems for activity level pacing
WO2018081713A1 (en) 2016-10-31 2018-05-03 Cardiac Pacemakers, Inc Systems for activity level pacing
US10583301B2 (en) 2016-11-08 2020-03-10 Cardiac Pacemakers, Inc. Implantable medical device for atrial deployment
CN109952129B (zh) 2016-11-09 2024-02-20 心脏起搏器股份公司 为心脏起搏设备设定心脏起搏脉冲参数的系统、设备和方法
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
CN109963618B (zh) 2016-11-21 2023-07-04 心脏起搏器股份公司 具有多模式通信的无引线心脏起搏器
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
WO2018140623A1 (en) 2017-01-26 2018-08-02 Cardiac Pacemakers, Inc. Leadless device with overmolded components
AU2018213326B2 (en) 2017-01-26 2020-09-10 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
EP3573708B1 (en) 2017-01-26 2021-03-10 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
EP3606605B1 (en) 2017-04-03 2023-12-20 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10576288B2 (en) * 2017-04-26 2020-03-03 Medtronic, Inc. Cardiac event sensing in an implantable medical device
EP3668592B1 (en) 2017-08-18 2021-11-17 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
WO2019036568A1 (en) 2017-08-18 2019-02-21 Cardiac Pacemakers, Inc. IMPLANTABLE MEDICAL DEVICE COMPRISING A FLOW CONCENTRATOR AND A RECEPTION COIL PROVIDED AROUND THE FLOW CONCENTRATOR
WO2019060302A1 (en) 2017-09-20 2019-03-28 Cardiac Pacemakers, Inc. IMPLANTABLE MEDICAL DEVICE WITH MULTIPLE OPERATING MODES
US10694967B2 (en) * 2017-10-18 2020-06-30 Medtronic, Inc. State-based atrial event detection
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
WO2019108830A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
WO2019108837A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
WO2019108482A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11235159B2 (en) 2018-03-23 2022-02-01 Medtronic, Inc. VFA cardiac resynchronization therapy
EP3768160B1 (en) 2018-03-23 2023-06-07 Medtronic, Inc. Vfa cardiac therapy for tachycardia
EP3768369A1 (en) 2018-03-23 2021-01-27 Medtronic, Inc. Av synchronous vfa cardiac therapy
US11351383B2 (en) * 2018-04-30 2022-06-07 Medtronic, Inc. Left ventricular capture and synchronization verification using a single multi-electrode coronary sinus lead
US11191969B2 (en) 2018-04-30 2021-12-07 Medtronic, Inc. Adaptive cardiac resynchronization therapy using a single multi-electrode coronary sinus lead
WO2020065582A1 (en) 2018-09-26 2020-04-02 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11951313B2 (en) 2018-11-17 2024-04-09 Medtronic, Inc. VFA delivery systems and methods
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11219774B2 (en) * 2019-05-29 2022-01-11 Pacesetter, Inc. Ventricular leadless implantable medical device with dual chamber sensing and method for same
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
WO2023233232A1 (en) 2022-05-28 2023-12-07 Medtronic, Inc. Method and apparatus for establishing atrial synchronous ventricular pacing control parameters

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312445A (en) * 1992-02-03 1994-05-17 Telectronics Pacing Systems, Inc. Implantable cardiac stimulating apparatus and method employing detection of P-waves from signals sensed in the ventricle
US5794624A (en) * 1997-01-31 1998-08-18 Hewlett-Packard Company Method and system for the fast determination of EKG waveform morphology
WO2002047761A2 (en) * 2000-12-14 2002-06-20 Medtronic, Inc. Atrial aware vvi: a method for atrial synchronous ventricular (vdd/r) pacing using the subcutaneous electrode array and a standard pacing lead
CN1662278A (zh) * 2002-04-22 2005-08-31 麦德托尼克公司 房室延迟的调整
US20060116595A1 (en) * 2004-11-29 2006-06-01 Cameron Health, Inc. Method for defining signal templates in implantable cardiac devices
CN101268938A (zh) * 2008-04-30 2008-09-24 董军 用于心电图识别与分类的方法和设备
CN101500480A (zh) * 2006-08-04 2009-08-05 詹姆麦德有限公司 处理心电信号的方法以及相应的装置
US20090281587A1 (en) * 2008-05-07 2009-11-12 Pacesetter, Inc. System and method for detecting hidden atrial events for use with automatic mode switching within an implantable medical device
CN101969842A (zh) * 2008-01-14 2011-02-09 皇家飞利浦电子股份有限公司 房颤监测
CN102579034A (zh) * 2012-02-28 2012-07-18 卢才义 房室旁道和房性心律失常的定位装置
CN102626310A (zh) * 2012-04-23 2012-08-08 天津工业大学 基于提升小波变换和改进近似包络的心电特征检测算法
US20120226179A1 (en) * 2011-03-02 2012-09-06 Stadler Robert W Implanted multichamber cardiac device with selective use of reliable atrial information
US20120239105A1 (en) * 2011-03-15 2012-09-20 Vinayakrishnan Rajan Atrial nerve stimulation with ventricular pacing
US20130066222A1 (en) * 2011-09-12 2013-03-14 Pacesetter, Inc. Systems and methods for detecting far-field oversensing based on signals sensed by the proximal electrode of a multipolar lv lead
CN103381284A (zh) * 2005-10-14 2013-11-06 内诺斯蒂姆股份有限公司 无引线心脏起搏器和系统
US20140107723A1 (en) * 2012-10-16 2014-04-17 Pacesetter, Inc. Single-chamber leadless intra-cardiac medical device with dual-chamber functionality
US20140135867A1 (en) * 2012-11-15 2014-05-15 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
CN104323771A (zh) * 2014-11-11 2015-02-04 北京海思敏医疗技术有限公司 检测心电图信号中p波、t波的方法和装置
CN104736049A (zh) * 2012-09-11 2015-06-24 德尔格医疗系统有限公司 用于检测egg波形中的特性的系统和方法

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481950A (en) 1979-04-27 1984-11-13 Medtronic, Inc. Acoustic signalling apparatus for implantable devices
US4374382A (en) 1981-01-16 1983-02-15 Medtronic, Inc. Marker channel telemetry system for a medical device
US4428378A (en) 1981-11-19 1984-01-31 Medtronic, Inc. Rate adaptive pacer
US5421819A (en) 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US4543955A (en) 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
US4787389A (en) 1987-07-16 1988-11-29 Tnc Medical Devices Pte. Ltd. Using an implantable antitachycardia defibrillator circuit
DE3831809A1 (de) 1988-09-19 1990-03-22 Funke Hermann Zur mindestens teilweisen implantation im lebenden koerper bestimmtes geraet
US5052388A (en) 1989-12-22 1991-10-01 Medtronic, Inc. Method and apparatus for implementing activity sensing in a pulse generator
US5117824A (en) 1990-11-14 1992-06-02 Medtronic, Inc. Apparatus for monitoring electrical physiologic signals
US5193550A (en) 1990-11-30 1993-03-16 Medtronic, Inc. Method and apparatus for discriminating among normal and pathological tachyarrhythmias
US5179949A (en) 1990-12-07 1993-01-19 Raul Chirife Cardiac pacemaker with automatic a-v programming for optimization of left heart a-v interval
CA2105162A1 (en) 1992-02-03 1993-08-04 Karel Den Dulk Dual chamber pacemaker system for delivering atrial sync pulses
JPH05245215A (ja) 1992-03-03 1993-09-24 Terumo Corp 心臓ペースメーカ
US5741308A (en) 1992-11-13 1998-04-21 Pacesetter, Inc. Dual-chamber implantable pacemaker and method of operating same for automatically setting the pacemaker's AV interval as a function of a natural measured conduction time
US5690689A (en) 1992-11-13 1997-11-25 Pacesetter, Inc. Dual-chamber implantable stimulation device having adaptive AV intervall and method for treating cardiomyopathy thereof
US5340361A (en) 1992-11-13 1994-08-23 Siemens Pacesetter, Inc. Implantable pacemaker having adaptive AV interval adoptively shortened to assure ventricular pacing
US5354316A (en) 1993-01-29 1994-10-11 Medtronic, Inc. Method and apparatus for detection and treatment of tachycardia and fibrillation
US5370668A (en) 1993-06-22 1994-12-06 Medtronic, Inc. Fault-tolerant elective replacement indication for implantable medical device
US5507782A (en) 1994-03-17 1996-04-16 Medtronic, Inc. Method and apparatus for dual chamber cardiac pacing
US5601613A (en) 1995-02-07 1997-02-11 Pacesetter, Inc. Method and apparatus for providing enhanced 2:1 block response with rate-responsive AV delay in a pacemaker
US5545186A (en) 1995-03-30 1996-08-13 Medtronic, Inc. Prioritized rule based method and apparatus for diagnosis and treatment of arrhythmias
US5620474A (en) 1995-04-24 1997-04-15 Vitatron Medical, B.V. System and method for determining indicated pacemaker replacement time based upon battery impedance measurement
EP0794813B1 (en) 1995-09-29 2003-07-02 Medtronic, Inc. Adaptive search av algorithm
US5683432A (en) 1996-01-11 1997-11-04 Medtronic, Inc. Adaptive, performance-optimizing communication system for communicating with an implanted medical device
US6108579A (en) 1996-04-15 2000-08-22 Pacesetter, Inc. Battery monitoring apparatus and method for programmers of cardiac stimulating devices
US7269457B2 (en) 1996-04-30 2007-09-11 Medtronic, Inc. Method and system for vagal nerve stimulation with multi-site cardiac pacing
US5690691A (en) 1996-05-08 1997-11-25 The Center For Innovative Technology Gastro-intestinal pacemaker having phased multi-point stimulation
US5755739A (en) 1996-12-04 1998-05-26 Medtronic, Inc. Adaptive and morphological system for discriminating P-waves and R-waves inside the human body
US5893882A (en) 1996-12-17 1999-04-13 Medtronic, Inc. Method and apparatus for diagnosis and treatment of arrhythmias
US5814089A (en) 1996-12-18 1998-09-29 Medtronic, Inc. Leadless multisite implantable stimulus and diagnostic system
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US5902326A (en) 1997-09-03 1999-05-11 Medtronic, Inc. Optical window for implantable medical devices
US5954649A (en) 1997-10-20 1999-09-21 Irvine Biomedical, Inc. Catheter system having ultrasound locating capabilities
GB2331365B (en) 1997-11-15 2002-03-13 Roke Manor Research Catheter tracking system
US6016448A (en) 1998-10-27 2000-01-18 Medtronic, Inc. Multilevel ERI for implantable medical devices
US6292693B1 (en) 1998-11-06 2001-09-18 Impulse Dynamics N.V. Contractility enhancement using excitable tissue control and multi-site pacing
US6477415B1 (en) 1998-12-29 2002-11-05 Medtronic, Inc. AV synchronous cardiac pacing system delivering multi-site ventricular pacing triggered by a ventricular sense event during the AV delay
US6324427B1 (en) 1999-01-26 2001-11-27 Pacesetter, Inc. Implantable cardiac stimulation device having T-wave discrimination of fusion events during autocapture/autothreshold assessment
US6508771B1 (en) 1999-03-05 2003-01-21 Medtronic, Inc. Method and apparatus for monitoring heart rate
US6263242B1 (en) 1999-03-25 2001-07-17 Impulse Dynamics N.V. Apparatus and method for timing the delivery of non-excitatory ETC signals to a heart
EP1178855B1 (en) 1999-05-12 2006-08-02 Medtronic, Inc. Monitoring apparatus using wavelet transforms for the analysis of heart rhythms
AU3219001A (en) 2000-02-09 2001-08-20 Impulse Dynamics N.V. Cardiac control using paired pacing
US6592519B1 (en) 2000-04-28 2003-07-15 Medtronic, Inc. Smart microfluidic device with universal coating
US6754528B2 (en) 2001-11-21 2004-06-22 Cameraon Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
US6764446B2 (en) 2000-10-16 2004-07-20 Remon Medical Technologies Ltd Implantable pressure sensors and methods for making and using them
US6628989B1 (en) 2000-10-16 2003-09-30 Remon Medical Technologies, Ltd. Acoustic switch and apparatus and methods for using acoustic switches within a body
US7198603B2 (en) 2003-04-14 2007-04-03 Remon Medical Technologies, Inc. Apparatus and methods using acoustic telemetry for intrabody communications
US7283874B2 (en) 2000-10-16 2007-10-16 Remon Medical Technologies Ltd. Acoustically powered implantable stimulating device
US7024248B2 (en) 2000-10-16 2006-04-04 Remon Medical Technologies Ltd Systems and methods for communicating with implantable devices
US6522915B1 (en) 2000-10-26 2003-02-18 Medtronic, Inc. Surround shroud connector and electrode housings for a subcutaneous electrode array and leadless ECGS
US7130683B2 (en) 2000-12-21 2006-10-31 Medtronic, Inc. Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining back support
US6772005B2 (en) 2000-12-21 2004-08-03 Medtronic, Inc. Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support
US6597951B2 (en) 2001-03-16 2003-07-22 Cardiac Pacemakers, Inc. Automatic selection from multiple cardiac optimization protocols
US6477420B1 (en) 2001-04-27 2002-11-05 Medtronic, Inc Control of pacing rate in mode switching implantable medical devices
US6622046B2 (en) 2001-05-07 2003-09-16 Medtronic, Inc. Subcutaneous sensing feedthrough/electrode assembly
US6738668B1 (en) 2001-11-01 2004-05-18 Pacesetter, Inc. Implantable cardiac stimulation device having a capture assurance system which minimizes battery current drain and method for operating the same
US6931279B2 (en) 2002-04-22 2005-08-16 Medtronic, Inc. Method and apparatus for implementing task-oriented induction capabilities in an implantable cardioverter defibrillator and programmer
US7031772B2 (en) 2002-04-29 2006-04-18 Medtronic, Inc. Method and apparatus for rate responsive adjustments in an implantable medical device
JP2004072907A (ja) 2002-08-06 2004-03-04 Sumitomo Wiring Syst Ltd 電気接続箱
US6876881B2 (en) 2002-08-16 2005-04-05 Cardiac Pacemakers, Inc. Cardiac rhythm management system with respiration synchronous optimization of cardiac performance using atrial cycle length
US7209790B2 (en) 2002-09-30 2007-04-24 Medtronic, Inc. Multi-mode programmer for medical device communication
US7149577B2 (en) 2002-12-02 2006-12-12 Medtronic, Inc. Apparatus and method using ATP return cycle length for arrhythmia discrimination
US7013176B2 (en) 2003-01-28 2006-03-14 Cardiac Pacemakers, Inc. Method and apparatus for setting pacing parameters in cardiac resynchronization therapy
US7092755B2 (en) 2003-03-18 2006-08-15 Pacesetter, Inc. System and method of cardiac pacing during sleep apnea
US7945064B2 (en) 2003-04-09 2011-05-17 Board Of Trustees Of The University Of Illinois Intrabody communication with ultrasound
US7499750B2 (en) 2003-04-11 2009-03-03 Cardiac Pacemakers, Inc. Noise canceling cardiac electrodes
US8433396B2 (en) 2003-04-18 2013-04-30 Medtronic, Inc. Methods and apparatus for atrioventricular search
US7079895B2 (en) 2003-04-25 2006-07-18 Medtronic, Inc. Cardiac pacing for optimal intra-left ventricular resynchronization
US7930026B2 (en) 2003-04-25 2011-04-19 Medtronic, Inc. Monitoring QRS complex to identify left ventricular dysfunction
US7620446B2 (en) 2003-07-31 2009-11-17 Medtronic, Inc. Monitoring P-waves to detect degradation of atrial myocardium
US7184835B2 (en) 2003-12-12 2007-02-27 Cardiac Pacemakers, Inc. Method and apparatus for adjustable AVD programming using a table
EP1566199B1 (en) 2004-02-23 2014-03-19 Biotronik CRM Patent AG Adaptive ventricular rate smoothing during atrial fibrillation
US7254442B2 (en) 2004-03-17 2007-08-07 Medtronic, Inc. Apparatus and method for “LEPARS” interval-based fusion pacing
US7181284B2 (en) 2004-03-17 2007-02-20 Medtronic, Inc. Apparatus and methods of energy efficient, atrial-based Bi-ventricular fusion-pacing
WO2005107864A1 (en) 2004-05-04 2005-11-17 University Of Rochester Leadless implantable cardioverter defibrillator
US7248925B2 (en) 2004-08-27 2007-07-24 Pacesetter, Inc. System and method for determining optimal atrioventricular delay based on intrinsic conduction delays
US7248924B2 (en) 2004-10-25 2007-07-24 Medtronic, Inc. Self limited rate response
US20060116596A1 (en) 2004-12-01 2006-06-01 Xiaohong Zhou Method and apparatus for detection and monitoring of T-wave alternans
US20060116592A1 (en) 2004-12-01 2006-06-01 Medtronic, Inc. Method and apparatus for detection and monitoring of T-wave alternans
EP1833553B1 (en) 2004-12-21 2015-11-18 EBR Systems, Inc. Implantable transducer devices
US7558631B2 (en) 2004-12-21 2009-07-07 Ebr Systems, Inc. Leadless tissue stimulation systems and methods
WO2006069215A2 (en) 2004-12-21 2006-06-29 Ebr Systems, Inc. Leadless cardiac system for pacing and arrhythmia treatment
US7515960B2 (en) 2005-03-31 2009-04-07 Medtronic, Inc. Method and apparatus to terminate ventricular tachycardia via pacing
US7634313B1 (en) 2005-04-11 2009-12-15 Pacesetter, Inc. Failsafe satellite pacemaker system
US8214041B2 (en) 2005-04-19 2012-07-03 Medtronic, Inc. Optimization of AV intervals in single ventricle fusion pacing through electrogram morphology
US7991467B2 (en) 2005-04-26 2011-08-02 Medtronic, Inc. Remotely enabled pacemaker and implantable subcutaneous cardioverter/defibrillator system
US7623911B2 (en) 2005-04-29 2009-11-24 Medtronic, Inc. Method and apparatus for detection of tachyarrhythmia using cycle lengths
US7505813B1 (en) 2005-08-08 2009-03-17 Pacesetter, Inc. System and method for determining preferred atrioventricular pacing delay values based on intracardiac electrogram signals
US7869876B2 (en) 2005-10-07 2011-01-11 Medtronic, Inc. Method and apparatus for monitoring and optimizing atrial function
US9168383B2 (en) 2005-10-14 2015-10-27 Pacesetter, Inc. Leadless cardiac pacemaker with conducted communication
US7689279B2 (en) 2005-11-10 2010-03-30 Medtronic, Inc. Pacing device for minimizing ventricular pauses after delivery of atrial anti-tachycardia pacing therapy
US20070129762A1 (en) 2005-12-01 2007-06-07 Seth Worley Cardiac pacemaker with dynamic conduction time monitoring
US8175703B2 (en) 2006-01-25 2012-05-08 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy parameter optimization
US20070191892A1 (en) 2006-02-03 2007-08-16 Mullen Thomas J Apparatus and methods for automatic adjustment of av interval to ensure delivery of cardiac resynchronization therapy
US7761150B2 (en) 2006-03-29 2010-07-20 Medtronic, Inc. Method and apparatus for detecting arrhythmias in a medical device
US8527048B2 (en) 2006-06-29 2013-09-03 Cardiac Pacemakers, Inc. Local and non-local sensing for cardiac pacing
US8437837B2 (en) 2006-09-29 2013-05-07 Medtronic, Inc. Method and apparatus for induced T-wave alternans assessment
US7831304B2 (en) 2006-09-29 2010-11-09 Medtronic, Inc. Method for determining oversensing in an implantable device
US7925343B1 (en) 2006-10-06 2011-04-12 Pacesetter, Inc. Subcutaneous implantable cardiac device system with low defibrillation thresholds and improved sensing
US7702390B1 (en) 2006-12-13 2010-04-20 Pacesetter, Inc. Rate adaptive biventricular and cardiac resynchronization therapy
US9381366B2 (en) 2007-03-16 2016-07-05 Medtronic, Inc. Methods and apparatus for improved IPG rate response using subcutaneous electrodes directly coupled to an implantable medical device (IMD)
US7904153B2 (en) 2007-04-27 2011-03-08 Medtronic, Inc. Method and apparatus for subcutaneous ECG vector acceptability and selection
US7706879B2 (en) 2007-04-30 2010-04-27 Medtronic, Inc. Apparatus and methods for automatic determination of a fusion pacing pre-excitation interval
US7930027B2 (en) 2007-04-30 2011-04-19 Medtronic, Inc. Method and apparatus to deliver mechanically fused pacing therapy
US8275432B2 (en) 2007-12-12 2012-09-25 Medtronic, Inc. Implantable optical sensor and method for manufacture
US8145308B2 (en) 2008-03-13 2012-03-27 Medtronic, Inc. Method and apparatus for determining a parameter associated with delivery of therapy in a medical device
US20090234414A1 (en) 2008-03-13 2009-09-17 Sambelashvili Aleksandre T Apparatus and methods of optimizing atrioventricular pacing delay intervals
US20090234413A1 (en) 2008-03-13 2009-09-17 Sambelashvili Aleksandre T Apparatus and methods of adjusting atrioventricular pacing delay intervals in a rate adaptive pacemaker
US9566013B2 (en) * 2008-03-13 2017-02-14 Medtronic, Inc. Methods and apparatus for monitoring P-wave duration and end and QRS duration with an implantable medical device
US7941218B2 (en) 2008-03-13 2011-05-10 Medtronic, Inc. Apparatus and methods of optimizing atrioventricular pacing delay intervals
US7881791B2 (en) 2008-03-25 2011-02-01 Medtronic, Inc. Apparatus and methods of optimizing ventricle-to-ventricular pacing delay intervals
US8364276B2 (en) 2008-03-25 2013-01-29 Ebr Systems, Inc. Operation and estimation of output voltage of wireless stimulators
US8452402B2 (en) 2008-04-23 2013-05-28 Medtronic, Inc. Optical sensing device for use in a medical device
US8239022B2 (en) 2009-01-20 2012-08-07 Pacesetter, Inc. Methods and systems for discriminating between ventricular waveforms when ventricular rate exceeds atrial rate
US8204590B2 (en) 2009-01-30 2012-06-19 Medtronic, Inc. Fusion pacing interval determination
US8391964B2 (en) 2009-05-11 2013-03-05 Medtronic, Inc. Detecting electrical conduction abnormalities in a heart
US8541131B2 (en) 2009-05-29 2013-09-24 Medtronic, Inc. Elongate battery for implantable medical device
US8170666B2 (en) 2009-08-13 2012-05-01 Medtronic, Inc. Method for scheduling atrial-ventricular conduction checks in minimum ventricular pacing
US8936630B2 (en) 2009-11-25 2015-01-20 Medtronic, Inc. Optical stimulation therapy
US8433409B2 (en) 2010-01-29 2013-04-30 Medtronic, Inc. Implantable medical device battery
US8401629B2 (en) 2010-04-28 2013-03-19 Medtronic, Inc. Method and apparatus for detecting and discriminating tachycardia
WO2012019036A1 (en) 2010-08-06 2012-02-09 Cardiac Pacemakers, Inc. User interface system for use with multipolar pacing leads
US8652048B2 (en) 2010-08-06 2014-02-18 Biotronik Se & Co. Kg Implant and system for predicting decompensation
US8666505B2 (en) 2010-10-26 2014-03-04 Medtronic, Inc. Wafer-scale package including power source
US20120109235A1 (en) 2010-10-27 2012-05-03 Medtronic, Inc. Capture detection in response to lead related conditions
US9775982B2 (en) 2010-12-29 2017-10-03 Medtronic, Inc. Implantable medical device fixation
EP2486953B1 (fr) 2011-02-09 2016-06-01 Sorin CRM SAS Procédé de quantification de la désynchronisation entre les horloges de deux implants actifs de type HBC
US8521268B2 (en) 2011-05-10 2013-08-27 Medtronic, Inc. Techniques for determining cardiac cycle morphology
US8617082B2 (en) 2011-05-19 2013-12-31 Medtronic, Inc. Heart sounds-based pacing optimization
US9849291B2 (en) 2011-06-09 2017-12-26 Cameron Health, Inc. Antitachycardia pacing pulse from a subcutaneous defibrillator
US8589153B2 (en) 2011-06-28 2013-11-19 Microsoft Corporation Adaptive conference comfort noise
US8768459B2 (en) 2011-07-31 2014-07-01 Medtronic, Inc. Morphology-based precursor to template matching comparison
US8758365B2 (en) 2011-08-03 2014-06-24 Medtronic, Inc. Implant system including guiding accessory and methods of use
US9248300B2 (en) 2011-09-09 2016-02-02 Medtronic, Inc. Controlling wireless communication in an implanted cardiac device
US8798740B2 (en) 2011-11-03 2014-08-05 Pacesetter, Inc. Single chamber leadless intra-cardiac medical device with dual-chamber functionality
US20130138006A1 (en) 2011-11-04 2013-05-30 Pacesetter, Inc. Single chamber leadless intra-cardiac medical device having dual chamber sensing with signal discrimination
US8639333B2 (en) 2011-11-21 2014-01-28 Medtronic, Inc. Method and apparatus for adaptive cardiac resynchronization therapy employing a multipolar left ventricular lead
US9199087B2 (en) 2011-11-21 2015-12-01 Medtronic, Inc. Apparatus and method for selecting a preferred pacing vector in a cardiac resynchronization device
US9002454B2 (en) 2011-12-23 2015-04-07 Medtronic, Inc. Tracking pacing effectiveness based on waveform features
US8886307B2 (en) 2012-01-30 2014-11-11 Medtronic, Inc. Adaptive cardiac resynchronization therapy
US8615298B2 (en) 2012-02-17 2013-12-24 Medtronic, Inc. Criteria for optimal electrical resynchronization derived from multipolar leads or multiple electrodes during biventricular pacing
US9095718B2 (en) 2012-04-04 2015-08-04 Medtronic, Inc. Heart-sounds based adaptive cardiac resynchronization therapy timing parameter optimization system
US9155897B2 (en) 2012-05-04 2015-10-13 Medtronic, Inc. Criteria for optimal electrical resynchronization during biventricular pacing
US8532785B1 (en) 2012-09-26 2013-09-10 Medtronic, Inc. Therapy delivery method and system for implantable medical devices
US8923963B2 (en) 2012-10-31 2014-12-30 Medtronic, Inc. Leadless pacemaker system
US9808633B2 (en) 2012-10-31 2017-11-07 Medtronic, Inc. Leadless pacemaker system
US8738132B1 (en) 2012-12-06 2014-05-27 Medtronic, Inc. Effective capture test
US8744572B1 (en) 2013-01-31 2014-06-03 Medronic, Inc. Systems and methods for leadless pacing and shock therapy
US8929984B2 (en) 2013-02-21 2015-01-06 Medtronic, Inc. Criteria for optimal electrical resynchronization during fusion pacing
EP2968946B1 (en) 2013-03-15 2020-10-28 Medtronic Inc. Modulate pacing rate to increase the percentage of effective ventricular capture during atrial fibrillation
US9278219B2 (en) 2013-03-15 2016-03-08 Medtronic, Inc. Closed loop optimization of control parameters during cardiac pacing
US9717923B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US20140330287A1 (en) 2013-05-06 2014-11-06 Medtronic, Inc. Devices and techniques for anchoring an implantable medical device
US9717898B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US20140358135A1 (en) 2013-05-29 2014-12-04 Medtronic Cryocath Lp Method and apparatus for using phonomyography to prevent nerve damage during a medical procedure
US9511233B2 (en) 2013-11-21 2016-12-06 Medtronic, Inc. Systems and methods for leadless cardiac resynchronization therapy
US10004906B2 (en) 2015-07-16 2018-06-26 Medtronic, Inc. Confirming sensed atrial events for pacing during resynchronization therapy in a cardiac medical device and medical device system

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312445A (en) * 1992-02-03 1994-05-17 Telectronics Pacing Systems, Inc. Implantable cardiac stimulating apparatus and method employing detection of P-waves from signals sensed in the ventricle
US5794624A (en) * 1997-01-31 1998-08-18 Hewlett-Packard Company Method and system for the fast determination of EKG waveform morphology
WO2002047761A2 (en) * 2000-12-14 2002-06-20 Medtronic, Inc. Atrial aware vvi: a method for atrial synchronous ventricular (vdd/r) pacing using the subcutaneous electrode array and a standard pacing lead
CN1662278A (zh) * 2002-04-22 2005-08-31 麦德托尼克公司 房室延迟的调整
US20060116595A1 (en) * 2004-11-29 2006-06-01 Cameron Health, Inc. Method for defining signal templates in implantable cardiac devices
CN103381284A (zh) * 2005-10-14 2013-11-06 内诺斯蒂姆股份有限公司 无引线心脏起搏器和系统
CN101500480A (zh) * 2006-08-04 2009-08-05 詹姆麦德有限公司 处理心电信号的方法以及相应的装置
CN101969842A (zh) * 2008-01-14 2011-02-09 皇家飞利浦电子股份有限公司 房颤监测
CN101268938A (zh) * 2008-04-30 2008-09-24 董军 用于心电图识别与分类的方法和设备
US20090281587A1 (en) * 2008-05-07 2009-11-12 Pacesetter, Inc. System and method for detecting hidden atrial events for use with automatic mode switching within an implantable medical device
US20120226179A1 (en) * 2011-03-02 2012-09-06 Stadler Robert W Implanted multichamber cardiac device with selective use of reliable atrial information
US20120239105A1 (en) * 2011-03-15 2012-09-20 Vinayakrishnan Rajan Atrial nerve stimulation with ventricular pacing
US20130066222A1 (en) * 2011-09-12 2013-03-14 Pacesetter, Inc. Systems and methods for detecting far-field oversensing based on signals sensed by the proximal electrode of a multipolar lv lead
CN102579034A (zh) * 2012-02-28 2012-07-18 卢才义 房室旁道和房性心律失常的定位装置
CN102626310A (zh) * 2012-04-23 2012-08-08 天津工业大学 基于提升小波变换和改进近似包络的心电特征检测算法
CN104736049A (zh) * 2012-09-11 2015-06-24 德尔格医疗系统有限公司 用于检测egg波形中的特性的系统和方法
US20140107723A1 (en) * 2012-10-16 2014-04-17 Pacesetter, Inc. Single-chamber leadless intra-cardiac medical device with dual-chamber functionality
US20140135867A1 (en) * 2012-11-15 2014-05-15 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
CN104323771A (zh) * 2014-11-11 2015-02-04 北京海思敏医疗技术有限公司 检测心电图信号中p波、t波的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聂如琼: "心脏再同步化起搏及除颤器在心力衰竭治疗中的应用", 《中国心脏起搏与心电生理杂志》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936203A (zh) * 2018-04-03 2020-11-13 美敦力公司 用于无引线起搏治疗的基于特征的感测
CN112543662A (zh) * 2018-07-06 2021-03-23 心脏起搏器股份公司 希氏束起搏器中的可调节感测
CN111789590A (zh) * 2019-04-08 2020-10-20 四川锦江电子科技有限公司 一种人体心腔内刺激与电生理记录同步记录的方法和系统
CN112438735A (zh) * 2021-01-29 2021-03-05 深圳市理邦精密仪器股份有限公司 一种心电图p波检测方法、分析装置以及存储介质

Also Published As

Publication number Publication date
EP3322478A1 (en) 2018-05-23
US11013925B2 (en) 2021-05-25
EP3322478B1 (en) 2019-08-28
US10004906B2 (en) 2018-06-26
US20180289964A1 (en) 2018-10-11
US20170014629A1 (en) 2017-01-19
WO2017011659A1 (en) 2017-01-19
CN107847747B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
CN107847747A (zh) 确认感测心房事件以在心脏医疗设备与医疗设备系统中的再同步治疗期间进行起搏
US10342981B2 (en) Far-field P-wave sensing in near real-time for timing delivery of pacing therapy in a cardiac medical device and medical device system
CN106255528B (zh) 声学触发式治疗递送
CN106255529B (zh) 触发式起搏系统
CN109475745B (zh) 用于控制心脏起搏模式切换的系统和方法
CN106573147B (zh) 用于触发式起搏的系统
CN109982746A (zh) 提供心脏再同步治疗的无引线心脏起搏器
CN107921270A (zh) 医疗设备系统中左心室起搏治疗期间的夺获管理
EP2069012A2 (en) Temporary leadless pacing systems and methods
AU2018213326B2 (en) Intra-body device communication with redundant message transmission

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant