CN107846080A - 无线通信方法及发送设备、接收设备 - Google Patents

无线通信方法及发送设备、接收设备 Download PDF

Info

Publication number
CN107846080A
CN107846080A CN201610830270.4A CN201610830270A CN107846080A CN 107846080 A CN107846080 A CN 107846080A CN 201610830270 A CN201610830270 A CN 201610830270A CN 107846080 A CN107846080 A CN 107846080A
Authority
CN
China
Prior art keywords
information
electromagnetic induction
equipment
signal
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610830270.4A
Other languages
English (en)
Inventor
陈涛
刘世伟
梁超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZTE Corp
Original Assignee
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTE Corp filed Critical ZTE Corp
Priority to CN201610830270.4A priority Critical patent/CN107846080A/zh
Priority to PCT/CN2017/076339 priority patent/WO2018049799A1/zh
Publication of CN107846080A publication Critical patent/CN107846080A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • H02J7/025
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Near-Field Transmission Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明实施例提供一种无线通信方法及发送设备、接收设备,在无线充电的基础上,由供电设备或者是被充电设备中的任意一个作为发送设备,将待发送的通信信息调制到用于为被充电设备充电的充电电磁感应信号上,通过充电电磁感应信号将通信信息传输给信息的接收设备,接收设备在获取到电磁感应信号之后,根据对应的解调方式从充电电磁感应信号中获取到发送设备发送的通信信息。本发明实施例中提供的无线通信方案让充电电磁感应信号作为通信信号的载体,从而实现在充电的同时进行数据传输的效果,增加了数据传输与充电过程的灵活性。而且由于充电时可以在终端关机甚至死机状态下进行的,因此,在这些情况下也同样可以进行数据传输,提高了用户体验。

Description

无线通信方法及发送设备、接收设备
技术领域
本发明涉及通信领域,尤其涉及无线通信方法及发送设备、接收设备。
背景技术
一般来讲,数据传输的方式分为有线传输和无线传输两种方式,在有线传输中,终端的数据传输主要通过将数据输出到其USB接口后依靠和该USB接口连接的数据线将数据传输给接收终端,接收终端所在的位置不仅受到数据线长短的限制,还会受到发送终端位置的限定。对于这种有线传输的方式,在接收终端与发送终端上设置数据接口是不可避免的,即使不设置标准的USB接口,也必须设置一些外露的触点。但目前终端的发展趋势是轻便与小体积,因此,设置数据传输接口将会受到终端体积的限制。另一方面,外露的数据接口会影响到终端“三防”(防霉菌、防潮湿、防盐雾)的性能。
针对终端有线传输所存在的缺点,现有终端基本都可以实现无线方式的数据传输,相对有线传输来说无线传输更自由,具有明显的优势。目前应用比较广泛的无线通信技术包括红外传输、蓝牙传输、WIFI(Wireless-Fidelity,无线保真)传输等。甚至在部分终端中还设置了线圈,终端利用该线圈与外部设备上的线圈之间的电磁感应,能够基于电磁感应信号与其他设备进行通信。
例如在无线充电基座上设置两个线圈,一个用于无线充电,另一个用于无线通信。但是这种方案有比较明显地缺陷,即数据传输与充电两个过程必须分离不同同时进行,因为如果同时进行则会导致充电产生纹波影响,如果数据传输使用的信号幅值过大,则会在充电时对终端系统的稳定性产生影响;如果数据传输使用的信号幅值较小,则数据传输会受到充电的影响,从而产生错误数据,增加了数据传输的误码率。如果将充电与数据传输两个过程分开进行,则严重限制了充电与数据传输的自由与灵活性,因为用户极有可能需要在终端充电的时候进行数据传输。同样地,数据传输过程中出现终端电量过低的情况的可能性也是极大的。
从另一方面来说,目前无论是无线红外传输、蓝牙传输、WIFI传输,还是通过电磁感应信号承载信息进行传输,都必须需要专门设置供电电源来支持发送终端与接收终端之间的通信,一旦终端电量不足,或者终端处于关机或者死机状态下,则无线通信也无法进行,这一点极大地降低了用户体验。
发明内容
本发明实施例提供的无线通信方法及发送设备、接收设备,主要解决的技术问题是:提供一种无线通信方案,用以解决现有技术中的无线传输方式在终端电量不足关机或者终端死机的状态下无法进行数据传输,以及利用电磁感应信号进行无线传输时不能与无线充电同时进行的问题。
为解决上述技术问题,本发明实施例提供一种无线通信方法,包括:
发送设备获取到待发送的通信信息;
所述发送设备将所述通信信息调制到充电电磁感应信号上传输给接收设备,所述发送设备和所述接收设备中的一个为被充电设备,所述电磁感应信号用于对所述被充电设备充电。
本发明实施例提供一种无线通信方法,包括:
接收设备获取用于为被充电设备充电的充电电磁感应信号;
所述接收设备将获取到的所述充电电磁感应信号转换成电压信号;
所述接收设备对所述电压信号进行解析以获取发送设备承载在所述充电电磁感应信号上的通信信息,所述接收设备与所述发送设备中的一个为被充电设备。
本发明实施例还提供一种发送设备,包括:第一控制器、调制电路、第一充电线圈;
所述第一控制器获取第一通信信息,控制所述调制电路将所述第一通信信息调制到充电电磁感应信号上,并通过所述第一充电线圈将所述调制后的充电电磁感应信号传输给接收设备的第二充电线圈;
所述发送设备和所述接收设备中的一个为被充电设备,所述充电电磁感应信号用于为所述被充电设备充电。
发明实施例还提供一种接收设备,包括:第二控制器、解调电路、第二充电线圈;
所述第二充电线圈用于获取为被充电设备充电的充电电磁感应信号并将所述充电电磁感应信号转换为电压信号;所述第二控制器用于控制所述解调电路对所述电压信号进行解析以获取发送设备承载在所述充电电磁感应信号上的第一通信信息;所述接收设备与所述发送设备中的一个为被充电设备。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述的任一项的无线通信方法。
本发明的有益效果是:
根据本发明实施例提供的无线通信方法及发送设备、接收设备以及计算机存储介质,在无线充电的基础上,由供电设备或者是被充电设备中的任意一个作为发送设备,将待发送的通信信息调制到用于为被充电设备充电的充电电磁感应信号上,通过充电电磁感应信号将通信信息传输给信息的接收设备,接收设备在获取到电磁感应信号之后,根据对应的解调方式从充电电磁感应信号中获取到发送设备发送的通信信息。本发明实施例中提供的无线通信方案让充电电磁感应信号作为通信信号的载体,从而实现在充电的同时进行数据传输的效果,增加了数据传输与充电过程的灵活性。而且由于充电时可以在终端关机甚至死机状态下进行的,因此,在这些情况下也同样可以进行数据传输,提高了用户体验。
附图说明
图1为本发明实施例一提供的无线通信方法的一种流程图;
图2为本发明各实施例中调制电路的一种硬件结构示意图;
图3为本发明各实施例中信息调制过程的一种流程图;
图4为本发明实施例二中提供的无线通信方法的一种流程图;
图5为本发明各实施例中解调电路的一种硬件结构示意图;
图6为本发明各实施例中信息解调过程的一种流程图;
图7是本发明实施例二中解调各阶段的波形图;
图8为本发明实施例二中提供的一种数据帧结构示意图;
图9为本发明实施例三提供的发送设备的一种硬件结构示意图;
图10为本发明实施例三提供的发送设备的另一种硬件结构示意图;
图11为本发明实施例四提供的接收设备的一种硬件结构示意图;
图12为本发明实施例四提供的接收设备的另一种硬件结构示意图;
图13为本发明实施例五提供的无线充电基座的一种硬件结构示意图;
图14为本发明实施例五提供的智能手机的一种硬件结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。
实施例一:
目前绝大多数终端的充电依旧是通过有线的方式,有线充电与有线数据传输一样,也需要在终端上设置专门的充电接口,充电接口不但会受制于终端的构造,反过来,充电接口本身也会限制终端体积。另一方面,充电接口的设置会导致终端导电接点外露,影响电子产品的“三防”性能。为了解决有线充电方式所存在的问题,本实施例中采用无线充电方式。无线充电技术(Wireless charging technology),源于无线电力输送技术。无线充电,又称作感应充电、非接触式感应充电,是利用近场感应,也就是电感耦合,由供电设备(例如无线充电基座)将能量传送至用电的被充电设备,被充电设备使用接收到的能量对电池充电。由于无线充电基座与被充电设备之间以电感耦合传送能量,两者之间不用电线连接,因此被充电设备可以做到无导电接点外露。
为了解决现有技术中无线通信只能在具有足够的电量支持的情况下进行,甚至部分无线传输方式不能与充电过程同时进行的问题,本实施例提供一种无线通信方法,该无线通信方法中,信息发送设备接和接收设备之间基于无线充电中传输电能的电磁感应信号进行通信,本实施例中的无线通信方法适用于信息的发送设备。为了使本领域技术人员充分了解本实施例提供的无线通信方法的优点和细节,下面结合附图做进一步说明,请参见图1:
S102、发送设备获取到待发送的通信信息。
本实施例中“发送设备”与“接收设备”这两个概念是站在信息交互的角度来看的,而“供电设备”与“被充电设备”则是从无线充电这一功能出发的。因此,“发送设备”与“接收设备”同“供电设备”与“被充电设备”这两个概念之间没有必然关系,本实施例中的充电设备可以是发送设备,也可以是接收设备,被充电设备可以是发送设备也可以是接收设备。同样地,本实施例中的发送设备可以是供电设备,也可以是被充电设备,顾名思义,被充电设备是需要充电的设备,而供电设备是指那些能够为被充电设备提供电能的设备,例如无线充电基座。通过无线的方式为被充电设备提供电能。被充电设备可以为各种类型的终端,智能手机、PDA(Personal Digital Assistant,个人数字助理)、平板电脑、台式电脑、多媒体播放设备、GPS(Global Positioning System,全球定位系统)导航仪等。另外,被充电设备还包括各种类型的穿戴式智能设备,例如电子腕表、眼镜、手套、服饰及鞋等,这些设备也需要充电。目前比较常见的供电设备包括无线充电基座,但是如果一个终端或者穿戴式智能设备具有为其他终端或者穿戴式智能设备提供电能,则这些终端或者智能设备也可以作为供电设备。
通信信息是需要发送给接收设备的信息,其可以是发送设备本身要发送接收设备的,也可以是其他设备需要通过发送设备发送给接收设备的。如果发送设备是终端或者是穿戴式智能设备等被充电设备,则通信信息可以是其自身需要传输给接收设备的。如果发送设备仅仅是无线充电基座,通常情况下,无线充电基座本身与被充电设备之间基本不需要进行信息交互,所以无线充电基座发送给接收设备的待发送信息可以是其他终端或者充电式设备需要通过无线充电基座传输给被充电设备的。在发送设备为无线充电基座的情况下无线充电基座获取的待发送通信信息可以是其他设备通过有线或者无线方式传输过来的,例如一台笔记本电脑通过数据线与设置在无线充电基座上的USB接口连接,通过有线传输的方式,将需要传输给正在通过无线充电基座充电的智能手机的相关信息传输给无线充电基座,由无线充电基座将这些通信信息通过无线传输的方式转发给智能手机。
S104、发送设备将通信信息调制到充电电磁感应信号上传输给接收设备。
由于发送设备和接收设备中的任意一个为被充电设备,另一个为供电设备,充电过程中,这二者之间会通过充电电磁感应信号传输电能。而电磁感应信号可以作为传递通信信息的载波信号,因此,本实施例中可以由发送设备将待发送的通信信息调制(modulation)到充电电磁感应信号上,通过充电电磁感应信号传输给接收设备。
调制就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。这个信号叫做已调信号,而基带信号叫做调制信号。调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的,因此,常见的调制方式包括调幅、调频与调相。而解调则是将基带信号从载波中提取出来以便预定的接收设备处理和理解的过程。
在本实施例中,发送设备采用调幅的方式根据待发送的通信信息对电磁感应信号进行调制。但本领域技术人员可以理解的是,调频与调相也应当是本实施例提供的无线通信方法可以采用的调制方式。下面对调幅方式下的调制过程进行介绍,图2示出的是本实施例中一种可选的调制电路:
图2中的调制电路2包括调制控制单元21和调制单元22,调制单元22中输出端a1和a2用于与无线充电LC振荡回路相连,R1和R2为对地下拉负载电阻。调制控制单元21通过输出高低电平控制两个MOS管的通断,输出高电平时MOS管导通,将充电电磁感应信号的幅度拉低;调制控制单元21输出低电平时,MOS管断开,对地下拉负载电阻不导通,因此,充电电磁感应信号将被拉高。在默认状态下,调制控制单元21输出高电平,则充电电磁感应信号保持在低幅度状态下。
调制电路2在实际的调制过程中,调制控制单元21究竟如何输出,还需要参考当前待调制信息以及预设调制策略。预设调制策略是一种规则,例如采用高电平代表待调制信息“1”,采用低电平代表待调制信息“0”。如,通信信息为“101”时,调制控制单元21应当先输出低电平保证充电磁感应信号在发送信息的第一个时钟周期内保持高电平,从而让接收设备根据充电电磁感应信号的高电平确定出第一时钟周期内充电电磁感应信号代表的通信信息是“1”。相应的,在第二个时钟周期与第三时钟周期内,调制控制单元21应当分别输出高电平和低电平,保证调制单元22在第二时钟周期和第三时钟周期内分别输出电平和高电平,通过充电线圈将表征“0”和“1”的充电电磁感应信号传输给接收设备。
在上述示例当中预设调制策略是直接采用充电电磁感应信号的低电平和高电平分别表征通信信息“0”和“1”,调制控制单元21的调制控制方式仅取决于当前待调制信息。但本实施例中的预设调制策略可以多种多样,例如采用低电平表征通信信息“1”,高电平则表征通信信息“0”也是可以的。另外本实施例中部分预设调制策略还会基于当前时钟周期之前的某一个时钟周期是如何调制的,例如,在一种预设调制策略中,如果当前时钟周期调制后,充电电磁感应信号的电平与前一时钟周期,即当前时钟周期之前的第1个时钟周期的充电电磁感应信号的电平相同,则表征当前时钟周期中输出的通信信息为“1”,否则,当前时钟周期的充电电磁感应信号表征的信息是“0”。在这种方式下,针对当前待调制信息的调制控制方式不再取决于待调制信息本身,还取决于前一时钟周期调制控制单元21是如何对调制单元22进行调制控制的。例如,当前待调制信息为“0”,为了在当前预设调制策略的基础上调制出表征“0”的充电电磁感应信号,则调制控制单元21应当确定前一时钟周期是输出了高电平还是低电平,如果前一时钟周期输出的是高电平,则本时钟周期应当输出低电平,反之亦然。
在上述示例当中,预设调制策略确定当前时钟周期的调制控制方式与前一时钟周期的调制控制方式有关,但毫无疑义的是,当前的调制控制方式也可以依据当前时钟周期之前任意一个时钟周期的调制控制方式确定,设定当前时钟周期为“0时钟周期”,此前一个时钟周期为“-1时钟周期”,在此时钟周期前两个时钟周期的时钟周期为“-2时钟周期”……以此类推。则当前时钟周期的调制控制方式可以依据“-1时钟周期”、“-2时钟周期”、“-3时钟周期”……中的任意一个和当前待调制信息确定。在本实施例中将“-1时钟周期”、“-2时钟周期”、“-3时钟周期”……“-n时钟周期”的调制控制方式统称为“在先调制控制方式”,也就是说在先调制控制方式为当前时钟周期之前的第N个时钟周期中对充电电磁感应信号进行调制所使用的控制方式,N大于等于1。N等于1时,在先调制控制方式为“-1时钟周期”的调制控制方式,N等于2时,在先调制控制方式为“-2时钟周期”的调制控制方式……N等于n时,在先调制控制方式为“-n时钟周期”的调制控制方式,下面结合图3对本实施例中的调制过程进行说明:
S302、确定对充电电磁感应信号的在先调制控制方式。
同上面示例介绍的一样,在先调制控制方式为可以是在当前时钟周期之前的任意一个时钟周期的调制控制方式。这里还是以前一时钟周期,即“-1时钟周期”为例进行说明。假定“-1时钟周期”的调制控制方式为调制控制单元21输出高电平。
S304、从通信信息中获取当前待调制信息。
假定一个转换为二进制的通信信息为“1010111”,每一个时钟周期调制一个数据到充电电磁感应信号上,当前是第三个时钟周期了,则需要调制到充电电磁感应信号上的当前待调制信息为“1”。
S306、结合在先调制控制方式和当前待调制信息,根据预设调制策略确定针对当前待调制信息的调制控制方式。
预设调制策略为当前时钟周期与当前时钟周期的“-1时钟周期”的调制控制方式相同,则表征当前调制的通信信息为“1”,否则表征当前时钟周期对应的待调制信息为“0”。因此,为了将待调制信息“1”调制到充电电磁感应信号上,当前时钟周期的调制控制方式应当与“-1时钟周期”的相同,故当前时钟周期调制控制单元21应当输出高电平。本领域技术人员可以理解的是,如果预设调制策略中规定当前时钟周期与在先时钟周期的调制控制方式不同表征当前待调制信息为“1”,否则为“0”也是可行的。
S308、根据确定出的调制控制方式对充电电磁感应信息进行调制。
调制控制单元21根据S306的确定结果输出高电平,控制调制单元22中的两个MOS管导通。
如果预设调制策略只是简单地根据充电电磁感应信号电平的高低来表征“1”和“0”,在这种方式中,由于默认状态下,调制控制单元21输出高电平,充电电磁感应信号被调制为低电平。如果通信信息中第一个信息为“0”,则控制会输单元21还是出高电平,让充电电磁感应信号为这会对接收设备的解调造成困难:因为在发送设备没有发送通信信息的时候,发送设备输出的高电平属于无效信号,但是第一时钟周期中输出的高电平确实表征着通信信息“0”,但表征“0”和无效信号对于接收设备来说是没有区别的。所以为了让接收设备明确哪些信息是有效的,哪些信息上面没有承载通信信息,是无效的,为此,在本实施例中,可以在调制通信信息到充电电磁感应信号之前先发送一个参考信号给接收设备,让接收设备明白在该参考信号之后的信号即为发送设备发送的通信信息。例如,若默认状态下,调制控制单元21输出高电平,则调制控制单元21在正式调制通信信息之前先输出一次低电平,让充电电磁感应信号的幅值变为高电平作为参考信息,提示接收设备在该参考信号之后的信息均为通信信息。
另外,如果通信信息中包括多位数据,则发送设备可以以数据帧的格式一次性将所有数据都发送给接收设备,数据帧的格式可以由发送设备和接收设备预先定义,例如,发送设备和接收设备预先协商在一帧数据中包含5位数据,则接收设备从参考数据之后接收到5位数据之后则可以确定当前帧的数据接收完成。或者接收设备和发送设备部预先预定数据帧的格式,而是约定一个校验码,该校验码也是通信数据的一部分,发送设备发送完所有的原始数据之后再将校验码调制到充电电磁感应信号上进行发送,让接收端在接收到该校验码之后确定所有的原始数据已经接受完成,也就是说校验码是原始数据传输完成的一个标志。本领域技术人员应当明白的是,校验码可以由一位或者多位数据组合形成,其应当能够与原始数据进行区分,即作为校验码的数据应当不是原始数据中可能出现的数据。
本发明实施例提供的无线通信方法,通过将通信信息调制到无线充电中充电电磁感应信号上,以充电电磁感应信号作为通信信息的载体,让供电设备与被充电设备之间在充电同时利用充电资源达成了无线传输的目的,在这种无线传输方式中,被充电设备与供电设备之间用于无线传输电磁感应信号是复用的充电过程中的充电电磁感应信号,实现了资源的复用。更进一步的,由于充电电磁感应信号只要充电就会存在,而充电过程可以在被充电设备关机的状态下进行,因此,本实施例中提供的无线通信方法能够解决现有技术中在终端关机或者死机状态下无法进行无线传输问题,提高了无线传输的灵活性,提高了用户体验。
实施例二:
本实施例提供一种应用于接收设备的无线通信方法,该方法用于和实施例一提供的应用于发送设备的无线通信方法配合使用,下面请参考图4:
S402、接收设备获取用于为被充电设备充电的充电电磁感应信号并将其转换成电压信号。
在无线充电场景中,供电设备与被充电设备中都设置有充电线圈,充电线圈之间形成磁场,通过磁场将供电设备中的电能传输到被充电设备中。发送设备中用于传输电磁感应信号的是充电线圈,同样的,在接收设备中接收电磁感应信号的也是充电线圈。
由于在发送设备中是通过调幅方式将通信信息调制到充电电磁感应信号上,也即,在发送设备中,调制电路对充电电磁感应信号的电压幅值进行了调制,因此,接收设备中充电线圈在接收到充电电磁感应信号之后,将其转换为电压信号,根据电压的高低来解析通信信号。
S404、接收设备对电压信号进行解析以获取发送设备承载在充电电磁感应信号上的通信。
解调是从携带消息的已调信号中恢复消息的过程,解调是调制的逆过程。调制方式不同,解调方法也不一样。所以接收设备的解调过程与发送设备的调制过程相应。针对实施例一中提供的调制电路,本实施例提供一种解调电路,如图5所示:
解调电路5包括解调控制单元51和解调单元52,在解调单元52中包括整流桥521,整流桥521由四个二极管构成,整流桥521的输入端b1和b2用于连接接收设备的充电线圈。解调单元52张还包括移位比较器522用于对整流桥521的输出进行移位以便解调控制单元51进行解调。
下面结合图6对本实施例中接收设备对电压信息进行解调以获取承载在充电电磁感应信号的过程进行介绍:
S602、获取当前电压信号和在先电压信号。
解调控制单元51的解调过程与发送设备的调制过程紧密相关,由于调制过程中针对每一个待调制信息的调制控制方式都与在先调制控制方式相关,因此在解调过程中,当前电压信号所表征的通信信息与在先电压信号有关。当前电压信号为当前时钟周期对应的电压信号,在先电压信号为当前时钟周期之前的某一个时钟周期对应的电压信号。还是假定当前时钟周期为“0时钟周期”,该时钟周期的前一个时钟周期为“-1时钟周期”,该时钟周期的前两个时钟周期为“-2时钟周期”……以此类推,在当前时钟周期之前n个时钟周期的为“-n时钟周期”。“-1时钟周期”、“-2时钟周期”……“-n时钟周期”的电压信号统称为“在先电压信号”也就是说在先电压信号为当前时钟周期之前的第N个时钟周期所对应的电压信号,N大于等于1。N等于1时,在先电压信号为“-1时钟周期”的电压信号,N等于2时,在先电压信号为“-2时钟周期”的电压信号……N等于n时,在先电压信号为“-n时钟周期”的电压信号。
发送设备获取的在先时钟周期究竟是哪一个可以由预设解调策略来确定,而预设解调策略又与发送设备侧的预设调制策略相互关联。当预设调制策略中对当前待调制信息调制到充电电磁感应信号时与“-5时钟周期”的调制控制方式相关,则在接收设备中,在对当前电压信号进行解调的时候,需要结合“-5时钟周期”中电压信号的电压值进行。当预设调制策略与“-n时钟周期”的调制控制方式相关时,预设解调策略也同样与“-n时钟周期”的电压信号有关。假定本实施例中发送设备在对通信信息进行调制的时候依据了当前时钟周期的前一时钟周期的调制控制方式,即是根据“-1时钟周期”的调制控制方式确定出当前时钟周期的调制控制方式的,则在解调过程中就获取“-1时钟周期”的电压信号作为在先电压信号。
S604、结合在先电压信号和当前电压信号,根据预设解调策略确定当前电压信号所表征的通信信息。
如果“-1时钟周期”的电压信号与当前电压信号相同,同为高电平或者低电平,则说明当前时钟周期中充电电磁感应信号所承载的通信信息为“1”,否则,当前时钟周期中充电电磁感应信号承载的通信信息为“0”。如果发送设备中预设调制策略是当前时钟周期与在先时钟周期的调制控制方式不一致,则表征当前时钟周期调制到充电电磁感应信号上的通信信息为“1”,反之则表征当前时钟周期调制到充电电磁感应信号上的通信信息为“0”,那么在这种情况下,预设解调策略也会发生相应的变化:当前电压信号与在先电压信号相同则当前时钟周期对应的通信信息为“0”,否则为“1”。
本实施例图7所示出的是对一段充电电磁感应信号进行解码时,各解码阶段的波形示意图:波形A是接收设备接收到的电磁感应信号转化形成的电压信号波形;波形B是整流桥521输出信号的波形;波形C是同步时钟信号的波形;波形D是解析出的通信信息的波形。其中,低电平表征通信信息“0”,高电平表征通信信息“1”。
在波形A当中,时钟周期a中的电信号表征的是参考信号。承载在充电电磁感应信号上的通信信息按照通信信息为“1”时,当前时钟周期与前一时钟周期的调制控制方式相同,否则相反的原则进行调制。则由于a≠b,则在一个时钟周期内b对应位置代表数据位0;同理b=c,则在一个时钟周期内c对应位置代表数据位1;同理c=d,则在一个时钟周期内d对应位置代表数据位1;d≠e,则在一个时钟周期内e对应位置代表数据位0;e≠f,则在一个时钟周期内f对应位置代表数据位0;f=g,则在一个时钟周期内g对应位置代表数据位1;g≠h,则在一个时钟周期内h对应位置代表数据位0;h=i,则在一个时钟周期内i对应位置代表数据位1;i≠j,则在一个时钟周期内j对应位置代表数据位0;j=k,则在一个时钟周期内k对应位置代表数据位1;则图7代表的一帧的通信信息为“0110010101”。
无线充电是单向的过程,也就是说,只能由供电设备将电能传输给被充电设备,被充电设备的电能不能反向传输给供电设备,但是无线通信过程却有很大的不同,在无线通信中,发送设备在发送信息的同时也具备接收信息的能力。通信双方可能随时都在发送端与接收端两个角色中进行切换,甚至有的设备在作为发送端的时候还在同时接收信息。所以在本实施例中,接收设备也可以具备发送设备的发送能力,能够将需要发送给发送设备的通信信息按照实施例1中的无线通信方法进行调制之后传输给发送设备,同样的,实施例一中的发送设备也可以接收来自接收设备向其发送的通信信息,并按照本实施例提供的无线通信方法对承载了通信信息的充电电磁感应信号进行解调处理,解调完成之后获取到接收设备发送的通信信息。
由于实施例一中的发送设备可以通过充电电磁感应信号发送信息,也可以通过充电电磁感应信号接收信息,但是充电电磁感应信号在同一时间内只能供一个发送一方的设备使用。例如,甲设备和乙设备利用二者之间的充电电磁感应信号进行通信,在同一时间内,甲在利用充电电磁感应信息向乙发送第一通信信息,而乙也同时在利用该充电电磁感应信号向甲发送第二通信信息,则两端对充电电磁感应信号的调制将会产生叠加,导致第一通信信息和第二通信信息无法被乙设备和甲设备正确解析出来。
在一个设备同时具有发送功能和接收功能的时候,该设备在发送信息之前应当先确认当前通信对端当前没有利用充电电磁感应信号传输通信信息,即实施例一中的发送设备和本实施例中的接收设备在向对方发送通信信息之前应当将当前获取到的充电电磁感应信号转换成电压信号,然后按照本实施例中提供的解调方法对该电压信号进行解调,确定充电电磁感应信号上当前没有承载对端发送的信息,以此确定判定充电电磁感应信号空闲,再次之后才能开始将通信信息调制到空闲的充电电磁感应信号上的过程。
除此以外,由于发送设备和接收设备均会向对端发送信息,同样又都会接收对端发送的信息,而对于发送设备和接收设备中的控制器来说,其获取到待发送的通信信息和解调电路解析得到的通信信息是基本没有区别的,因此,为了让发送设备或者接收设备能够识别出哪些信息是需要发送出去的,哪些是接收到的,因此,在本实施例和实施例一中通信信息还包括标识信息,标识信息用于让发送设备和接收设备确定该信息的类型。例如,在发送设备向接收设备发送的信息中包含“111”这一标识信息,而在接收设备箱发送设备发送的信息中则包含“000”这一标识信息。本实施例中还提供一种数据帧格式,如图8所示,其包括帧头、起始位为、数据信息和校验码,其中数据帧头中三位数据为信息发送端的标识信息,在本实施例中该发送端的标识信息为“011”,校验码表征数据发送结束。
本实施例提供的无线通信方法,接收设备在接收到发送设备传输的充电电磁感应信号之后,对充电电磁感应信号进行解析以获取到承载在充电电磁感应信号上的通信信息,复用充电过程中的充电电磁感应信号,在进行充电的过程中实现了无线传输。另外发送设备与接收设备可以分别作为信息的发送端与接收端,也可以反过来,从而可以实现二者之间的交互。本实施例中提供的无线通信方法能够解决现有技术中在终端关机或者死机状态下无法进行无线传输问题,提高了无线传输的灵活性,提高了用户体验。
实施例三:
本实施例提供了一种适用于信息发送的发送设备,请参考图9:
发送设备90包括第一控制器1、调制电路2和第一充电线圈3。其中控制器1获取第一通信信息,第一通信信息是需要发送给接收设备的信息,其可以是发送设备90本身要发送接收设备的,也可以是其他设备需要通过发送设备90发送给接收设备的。如果发送设备90是终端或者是穿戴式智能设备等被充电设备,则第一通信信息可以是其自身需要传输给接收设备的。如果发送设备90仅仅是无线充电基座,通常情况下,无线充电基座本身与被充电设备之间基本不需要进行信息交互,所以无线充电基座发送给接收设备的待发送信息可以是其他终端或者充电式设备需要通过无线充电基座传输给被充电设备的。在发送设备90为无线充电基座的情况下,无线充电基座获取的待发送第一通信信息可以是其他设备通过有线或者无线方式传输过来的,例如一台笔记本电脑通过数据线与设置在无线充电基座上的USB接口连接,通过有线传输的方式,将需要传输给正在通过无线充电基座充电的智能手机的相关信息传输给无线充电基座,由无线充电基座将这些第一通信信息通过无线传输的方式转发给智能手机。
调制电路2将第一通信信息调制到充电电磁感应信号上传输给接收设备。
在本实施例中,发送设备90和接收设备中的任意一个为被充电设备,另一个为供电设备,充电过程中,这二者之间会通过充电电磁感应信号传输电能。而电磁感应信号可以作为传递第一通信信息的载波信号,因此,本实施例中可以由调制电路2将待发送的第一通信信息调制到充电电磁感应信号上,通过充电电磁感应信号后通过第一充电线圈3传输给接收设备。
调制就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。这个信号叫做已调信号,而基带信号叫做调制信号。调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的,因此,常见的调制方式包括调幅、调频与调相。而解调则是将基带信号从载波中提取出来以便预定的接收设备处理和理解的过程。
在本实施例中,调制电路2采用调幅的方式根据待发送的第一通信信息对电磁感应信号进行调制。但本领域技术人员可以理解的是,调频与调相也应当是本实施例提供的调制电路2可以采用的调制方式。调制电路2的具体细节可以参考图2:
调制电路2包括调制控制单元21和调制单元22,调制单元22中输出端a1和a2用于与无线充电LC振荡回路相连,R1和R2为对地下拉负载电阻。调制控制单元21通过输出高低电平控制两个MOS管的通断,输出高电平时MOS管导通,将充电电磁感应信号的幅度拉低;调制控制单元21输出低电平时,MOS管断开,对地下拉负载电阻不导通,因此,充电电磁感应信号将被拉高。在默认状态下,调制控制单元21输出高电平,则充电电磁感应信号保持在低幅度状态下。
调制电路2在实际的调制过程中,调制控制单元21究竟如何输出,还需要参考当前待调制信息以及预设调制策略。预设调制策略是一种规则,例如采用高电平代表待调制信息“1”,采用低电平代表待调制信息“0”。例如,第一通信信息为“101”时,调制控制单元21应当先输出低电平保证充电磁感应信号在发送信息的第一个时钟周期内保持高电平,从而让接收设备根据充电电磁感应信号的高电平确定出第一时钟周期内充电电磁感应信号代表的第一通信信息是“1”。相应的,在第二个时钟周期与第三时钟周期内,调制控制单元21应当分别输出高电平和低电平,保证调制单元22在第二时钟周期和第三时钟周期内分别输出电平和高电平,通过充电线圈将表征“0”和“1”的充电电磁感应信号传输给接收设备。
在上述示例当中预设调制策略是直接采用充电电磁感应信号的低电平和高电平分别表征第一通信信息“0”和“1”,调制控制单元21的调制控制方式仅取决于当前待调制信息。但本实施例中的预设调制策略可以多种多样,例如采用低电平表征第一通信信息“1”,高电平则表征第一通信信息“0”也是可以的。另外本实施例中部分预设调制策略还会关注当前时钟周期之前的时钟周期是如何调制的,例如,在一种预设调制策略中,如果当前时钟周期调制后,充电电磁感应信号的电平与前一时钟周期充电电磁感应信号的电平相同,则表征当前时钟周期中输出的第一通信信息为“1”,否则,当前时钟周期的充电电磁感应信号表征的信息是“0”。在这种方式下,针对当前待调制信息的调制控制方式不再取决于待调制信息本身,还取决于前一周期调制控制单元21是如何对调制单元22进行调制控制的。例如,当前待调制信息为“0”,为了在当前预设调制策略的基础上调制出表征“0”的充电电磁感应信号,则调制控制单元21应当确定前一时钟周期是输出了高电平还是低电平,如果前一时钟周期输出的是高电平,则本时钟周期应当输出低电平,反之亦然。
在上述示例当中,预设调制策略确定当前时钟周期的调制控制方式与前一时钟周期的调制控制方式有关,但毫无疑义的是,当前的调制控制方式也可以依据当前时钟周期之前任意一个时钟周期的调制控制方式确定,设定当前时钟周期为“0时钟周期”,此前一个时钟周期为“-1时钟周期”,在此时钟周期前两个时钟周期的时钟周期为“-2时钟周期”……以此类推。则当前时钟周期的调制控制方式可以依据“-1时钟周期”、“-2时钟周期”、“-3时钟周期”……中的任意一个和当前待调制信息确定。在本实施例中将“-1时钟周期”、“-2时钟周期”、“-3时钟周期”……“-n时钟周期”的调制控制方式统称为“在先调制控制方式”。也就是说在先调制控制方式为当前时钟周期之前的第N个时钟周期中对充电电磁感应信号进行调制所使用的控制方式,N大于等于1。N等于1时,在先调制控制方式为“-1时钟周期”的调制控制方式,N等于2时,在先调制控制方式为“-2时钟周期”的调制控制方式……N等于n时,在先调制控制方式为“-n时钟周期”的调制控制方式,在实际调制过程中,调制控制单元21会记录对充电电磁感应信号的在先调制控制方式。
同上面示例介绍的一样,在先调制控制方式为可以是在当前时钟周期之前的任意一个时钟周期的调制控制方式。这里还是以前一时钟周期,即“-1时钟周期”为例进行说明。假定“-1时钟周期”的调制控制方式为调制控制单元21输出高电平。
然后调制控制单元21从第一通信信息中获取当前待调制信息。假定一个转换为二进制的第一通信信息为“1010111”,每一个时钟周期调制一个数据到充电电磁感应信号上,当前是第三个时钟周期了,则需要调制到充电电磁感应信号上的当前待调制信息为“1”。
接着,调制控制单元21结合在先调制控制方式和当前待调制信息,根据预设调制策略确定针对当前待调制信息的调制控制方式。
预设调制策略为当前时钟周期与当前时钟周期的“-1时钟周期”的调制控制方式相同,则表征当前调制的第一通信信息为“1”,否则表征当前时钟周期对应的待调制信息为“0”。因此,为了将待调制信息“1”调制到充电电磁感应信号上,当前时钟周期的调制控制方式应当与“-1时钟周期”的相同,故当前时钟周期调制控制单元21应当输出高电平。本领域技术人员可以理解的是,如果预设调制策略中规定当前时钟周期与在先时钟周期的调制控制方式不同表征当前待调制信息为“1”,否则为“0”也是可行的。
最后调制控制单元21根据确定出的调制控制方式对充电电磁感应信息进行调制。调制控制单元21根据上述确定结果输出高电平,控制调制单元22中的两个MOS管导通。
如果预设调制策略只是简单地根据充电电磁感应信号电平的高低来表征“1”和“0”,在这种方式中,由于默认状态下,调制控制单元21输出高电平,充电电磁感应信号被调制为低电平。如果第一通信信息中第一个信息为“0”,则控制会输单元21还是出高电平,让充电电磁感应信号为这会对接收设备的解调造成困难:因为在发送设备90没有发送第一通信信息的时候,发送设备90输出的高电平属于无效信号,但是第一时钟周期中输出的高电平确实表征着第一通信信息“0”,但表征“0”和无效信号对于接收设备来说是没有区别的。所以为了让接收设备明确哪些信息是有效的,哪些信息上面没有承载第一通信信息,是无效的,为此,在本实施例中,可以在调制第一通信信息到充电电磁感应信号之前先发送一个参考信号给接收设备,让接收设备明白在该参考信号之后的信号即为发送设备90发送的第一通信信息。例如,若默认状态下,调制控制单元21输出高电平,则调制控制单元21在正式调制第一通信信息之前先输出一次低电平,让充电电磁感应信号的幅值变为高电平作为参考信息,提示接收设备在该参考信号之后的信息均为第一通信信息。
另外,如果第一通信信息中包括多位数据,则发送设备90可以以数据帧的格式一次性将所有数据都发送给接收设备,数据帧的格式可以由发送设备90和接收设备预先定义,例如,发送设备90和接收设备预先协商在一帧数据中包含5位数据,则接收设备从参考数据之后接收到5位数据之后则可以确定当前帧的数据接收完成。或者接收设备和发送设备90部预先预定数据帧的格式,而是约定一个校验码,该校验码也是通信数据的一部分,发送设备90发送完所有的原始数据之后再将校验码调制到充电电磁感应信号上进行发送,让接收端在接收到该校验码之后确定所有的原始数据已经接受完成,也就是说校验码是原始数据传输完成的一个标志。本领域技术人员应当明白的是,校验码可以由一位或者多位数据组合形成,其应当能够与原始数据进行区分,即作为校验码的数据应当不是原始数据中可能出现的数据。
由于在无线通信过程中,通信双方并不是单纯作为信息发送端和信息接收端,实际通信要求一个设备技能作为信息发送端,又能作为信息接收端。所以,本实施例的一种示例中还提供一种发送设备,如图10所示,发送设备90包括第一控制器1、调制电路2和第一充电线圈3以外,还包括解调电路5。
其中第一充电线圈3还用于获取用于为被充电设备充电的充电电磁感应信号并将充电电磁感应信号转化为电压信号。第一控制器1控制解调电路5按照实施例二提供的解调方法对电压信号进行解析以获取到承载在所述充电电磁信号上的第二通信信息。第二通信信息中至少包括接收设备的第二标识信息,发送设备90能够根据第二标识信息确定出该第二通信信息是从外界接收到的信息。
所以在本实施例中,“发送设备”仅仅是一个名词,一个代号,并不是限定发送设备只能进行信息发送。
本发明实施例提供的发送设备90,通过调制电路2将第一通信信息调制到无线充电中充电电磁感应信号上,以充电电磁感应信号作为第一通信信息的载体,让供电设备与被充电设备之间在充电同时利用充电资源达成了无线传输的目的,在这种无线传输方式中,被充电设备与供电设备之间用于无线传输电磁感应信号是复用的充电过程中的充电电磁感应信号,实现了资源的复用。更进一步的,由于充电电磁感应信号只要充电就会存在,而充电过程可以在被充电设备关机的状态下进行,因此,本实施例中提供的发送设备90能够解决现有技术中在终端关机或者死机状态下无法进行无线传输问题,提高了无线传输的灵活性,提高了用户体验。
实施例四:
本实施例提供一种适用于信息接收的接收设备,如图11所示:
接收设备11包括解调电路5、第二控制器6和第二充电线圈7,其中第二充电线圈7获取用于为被充电设备充电的充电电磁感应信号并将其转换成电压信号。
在无线充电场景中,供电设备与被充电设备中都设置有充电线圈,充电线圈之间形成磁场,通过磁场将供电设备中的电能传输到被充电设备中。发送设备中用于传输电磁感应信号的是第一充电线圈,同样的,在接收设备10中接收电磁感应信号的是第二充电线圈7。
由于在发送设备中是通过调幅方式将第一通信信息调制到充电电磁感应信号上,也即,在发送设备中,调制电路对充电电磁感应信号的电压幅值进行了调制,因此,接收设备10中第二充电线圈7在接收到充电电磁感应信号之后,将其转换为电压信号,解调电路5根据电压的高低来解析第一通信信号。
解调电路5对电压信号进行解析以获取发送设备承载在充电电磁感应信号上的通信。解调是从携带消息的已调信号中恢复消息的过程,解调是调制的逆过程。调制方式不同,解调方法也不一样。所以解调电路5的解调过程与发送设备的调制过程相应。如图5是本实施例中一种具体的解调电路结构示意图:
解调电路5包括解调控制单元51和解调单元52,在解调单元52中包括整流桥521,整流桥521由四个二极管构成,整流桥521的输入端b1和b2用于连接接收设备10的充电线圈。解调单元52张还包括移位比较器522用于对整流桥521的输出进行移位以便解调控制单元51进行解调。
解调控制单元51获取当前电压信号和在先电压信号。由于解调控制单元51的解调过程与发送设备的调制过程紧密相关,由于调制过程中针对每一个待调制信息的调制控制方式都与在先调制控制方式相关,因此在解调过程中,当前电压信号所表征的第一通信信息与在先电压信号有关。当前电压信号为当前时钟周期对应的电压信号,在先电压信号为当前时钟周期之前的时钟周期对应的电压信号。还是假定当前时钟周期为“0时钟周期”,该时钟周期的前一个时钟周期为“-1时钟周期”,该时钟周期的前两个时钟周期为“-2时钟周期”……以此类推,在当前时钟周期之前n个时钟周期的为“-n时钟周期”。“-1时钟周期”、“-2时钟周期”……“-n时钟周期”的电压信号统称为“在先电压信号”。在先电压信号为当前时钟周期之前的第N个时钟周期所对应的电压信号,N大于等于1。N等于1时,在先电压信号为“-1时钟周期”的电压信号,N等于2时,在先电压信号为“-2时钟周期”的电压信号……N等于n时,在先电压信号为“-n时钟周期”的电压信号
发送设备获取的在先时钟周期究竟是哪一个可以由预设解调策略来确定,而预设解调策略又与发送设备侧的预设调制策略相互关联。当预设调制策略中对当前待调制信息调制到充电电磁感应信号时与“-5时钟周期”的调制控制方式相关,则在接收设备10中,在对当前电压信号进行解调的时候,需要结合“-5时钟周期”中电压信号的电压值进行。当预设调制策略与“-n时钟周期”的调制控制方式相关时,预设解调策略也同样与“-n时钟周期”的电压信号有关。假定本实施例中发送设备在对第一通信信息进行调制的时候依据了当前时钟周期的前一时钟周期的调制控制方式,即是根据“-1时钟周期”的调制控制方式确定出当前时钟周期的调制控制方式的,则在解调过程中就获取“-1时钟周期”的电压信号作为在先电压信号。
解调控制单元51结合在先电压信号和当前电压信号,根据预设解调策略确定当前电压信号所表征的第一通信信息。
如果“-1时钟周期”的电压信号与当前电压信号相同,同为高电平或者低电平,则说明当前时钟周期中充电电磁感应信号所承载的第一通信信息为“1”,否则,当前时钟周期中充电电磁感应信号承载的第一通信信息为“0”。如果发送设备中预设调制策略是当前时钟周期与在先时钟周期的调制控制方式不一致,则表征当前时钟周期调制到充电电磁感应信号上的第一通信信息为“1”,反之则表征当前时钟周期调制到充电电磁感应信号上的第一通信信息为“0”,那么在这种情况下,预设解调策略也会发生相应的变化:当前电压信号与在先电压信号相同则当前时钟周期对应的第一通信信息为“0”,否则为“1”。
无线充电是单向的过程,也就是说,只能由供电设备将电能传输给被充电设备,被充电设备的电能不能反向传输给供电设备,但是无线通信过程却有很大的不同,在无线通信中,发送设备在发送信息的同时也具备接收信息的能力。通信双方可能随时都在发送端与接收端两个角色中进行切换,甚至有的设备在作为发送端的时候还在同时接收信息。所以在本实施例中,所以在本实施例中,“接收设备”仅仅是一个名词,一个代号,并不是限定接收设备只能进行信息接收。接收设备10也可以具备发送设备的发送能力,如图12所示,本实施例提供的另外一种接收设备10还包括调制电路2,调制电路2能够将第二控制器6获取到的第二通信信息根据实施例一提供的调制方法调制到充电电磁感应信号上,然后由第二充电线圈7将调制后的充电电磁感应信号传输给发送设备。能够将需要发送给发送设备的第二通信信息按照实施例一中的无线通信方法进行调制之后传输给发送设备。
由于本实施例中的接收设备10和实施例三中的接收设备90都是既可以通过充电电磁感应信号发送信息,也可以通过充电电磁感应信号接收信息,但是充电电磁感应信号在同一时间内只能供一个发送一方的设备使用。例如,在同一时间内,接收设备90在利用充电电磁感应信息向接收设备10发送第一通信信息,而接收设备10也同时在利用该充电电磁感应信号向接收设备90发送第二通信信息,则两端对充电电磁感应信号的调制将会产生叠加,导致第一通信信息和第二通信信息无法被接收设备10设备和接收设备90设备正确解析出来。
在一个设备同时具有发送功能和接收功能的时候,该设备在发送信息之前应当先确认当前通信对端当前没有利用充电电磁感应信号传输第一通信信息,即本实施例中的接收设备10和实施例三中的接收设备90在向对方发送第一通信信息或者第二信息之前,应当将当前获取到的充电电磁感应信号转换成电压信号,然后通过解调电路5对该电压信号进行解调,确定充电电磁感应信号上当前没有承载对端发送的信息,以此确定判定充电电磁感应信号空闲,再次之后才能开始将第一通信信息或第二通信信息调制到空闲的充电电磁感应信号上的过程。
本实施例提供的接收设备10在接收到发送设备传输的充电电磁感应信号之后,对充电电磁感应信号进行解析以获取到承载在充电电磁感应信号上的第一通信信息,复用充电过程中的充电电磁感应信号,在进行充电的过程中实现了无线传输。另外发送设备与接收设备10可以分别作为信息的发送端与接收端,也可以反过来,从而可以实现二者之间的交互。本实施例中提供的无线通信方法能够解决现有技术中在终端关机或者死机状态下无法进行无线传输问题,提高了无线传输的灵活性,提高了用户体验。
实施例五:
假定实施例三提供的接收设备90是作为供电设备的无线充电基座,而实施例四提供的接收设备10是作为被充电设备的移动终端,例如智能手机。下面结合图13与图14对无线充电基座13和智能手机14的结构进行说明:
无线充电基座13包括第三控制器130、第三调制单元131、第三解调单元132、第三充电线圈133和用于将高压直流转换为低压直流的供电转换单元134。第三调制单元131和第三控制器130共同实现调制功能,而第三解调单元132则在第三控制器130的控制下实现解调功能。由于电脑等外部终端需要通过无线充电基座13向智能手机14发送第三通信数据,因此,电脑等外部终端需要将第三通信数据传输至无线充电基座13中,而无线充电基座13与外部终端之间通过USB接口135连接,外部终端发送给无线充电基座的数据格式是USB可识别的格式,但由于调制的时候是对二进制信息进行调制,因此,无线充电基座13还包括一个第三数据转换单元136,用于将外部终端传输的通信信息转换为二进制。另外第三数据转换单元136还用于将解调出来的二进制数据转换为USB格式后通过USB接口以及数据线传输给外部终端。
智能手机14包括第四控制器140、第四调制单元141、第四解调单元142、第四充电线圈143和用于将交流转换为直流的充电转换单元144。第四调制单元141和第四控制器140共同实现调制功能,而第四解调单元142则在第四控制器140的控制下实现解调功能。在第四控制器140的控制下,第四解调单元142解调出相应的通信信息之后,第四控制器140通过通信信息中的标识信息确定其是接收到的信息,则将其输入第四数据转换单元144,由第四数据转换单元将其转换USB格式之后传输给基带单元145。另外,当智能手机14的基带单元145箱第四控制器140传输待发送通信信息时,第四数据转换单元144会将待发送通信信息转换为二进制后在传输给第四控制器140。
本发明实施例中提供的无线通信方案让充电电磁感应信号作为通信信号的载体,从而实现在充电的同时进行数据传输的效果,增加了数据传输与充电过程的灵活性。而且由于充电时可以在智能手机关机甚至死机状态下进行的,因此,在这些情况下也同样可以进行数据传输,提高了用户体验。
在上述智能手机14的基础上,本实施例还提供一种为智能手机设置外部按键的方案:由于智能手机14中设置了用于无线充电和无线通信的第四充电线圈143,因此,如果在手机保护套、自拍杆、耳机等手机配件上设置对应的感应线圈,当手机配件中的感应线圈导通和断开的瞬间都会影响感应线圈与第四充电线圈之间磁场的变化。在智能手机中设置能够检测到磁场变化的相关器件,智能手机就可以识别到外部感应线圈“通”与“断”之间的切换,而这切换又可以让智能手机对其功能进行不同的控制,例如手机的息屏与亮屏、音乐播放与暂停、通话接听与挂断,或者是通过拍照的拍摄。
在这种设置外部按键的方案中,可以通过在手机保护套、耳机、自拍杆上设置按钮,当用户按下按钮的时候控制感应线圈通或断。不需要为手机配件中感应线圈提供电源,因为当两个线圈靠得比较近时,其中一个线圈通断的瞬间,会通过磁场变化对另一个线圈中的电信号产生影响,因此,这种外部按键环保又永久,唯一需要注意的是,感应线圈和智能手机14中的第四充电线圈不应当距离太远。对于在保护套上设置按钮的方案应当非常适用,但对于耳机或者自拍杆,也可以将感应线圈设置在距离手机较近的地方,但是通过导线将线圈的通断控制移至便于用户操作的地方,例如,自拍杆中可以通过导线将感应线圈的通断控制引到设置自拍杆按钮的地方。
显然,本领域的技术人员应该明白,上述本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本发明不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (15)

1.一种无线通信方法,包括:
发送设备获取到待发送的通信信息;
所述发送设备将所述通信信息调制到充电电磁感应信号上传输给接收设备,所述发送设备和所述接收设备中的一个为被充电设备,所述电磁感应信号用于对所述被充电设备充电。
2.如权利要求1所述的无线通信方法,其特征在于,所述发送设备将所述通信信息调制到电磁感应信号上传输给所述接收设备之前还包括:
将当前获取到的充电电磁感应信号转换成电压信号;
对所述电压信号进行解调;
通过确定所述充电电磁感应信号上当前没有承载所述接收设备发送的信息以判定所述充电电磁感应信号空闲。
3.如权利要求1或2所述的无线通信方法,其特征在于,将所述通信信息调制到充电电磁感应信号上包括:
确定对充电电磁感应信号的在先调制控制方式,所述在先调制控制方式为当前时钟周期之前的第N个时钟周期中对所述充电电磁感应信号进行调制所使用的控制方式,所述N大于等于1;
从所述通信信息中获取当前待调制信息;
结合所述在先调制控制方式和所述当前待调制信息,根据预设调制策略确定针对所述当前待调制信息的调制控制方式;
根据确定出的调制控制方式对所述充电电磁感应信息进行调制。
4.如权利要求3所述的无线通信方法,其特征在于,所述N等于1,所述预设调制策略包括:
若所述当前待调制信息为“1”,则针对所述当前待调制信息的调制控制方式与所述在先调制控制方式相同;
若所述当前待调制信息为“0”,则针对所述当前待调制信息的调制控制方式与所述在先调制控制方式不同。
5.一种无线通信方法,包括:
接收设备获取用于为被充电设备充电的充电电磁感应信号;
所述接收设备将获取到的所述充电电磁感应信号转换成电压信号;
所述接收设备对所述电压信号进行解析以获取发送设备承载在所述充电电磁感应信号上的通信信息,所述接收设备与所述发送设备中的一个为被充电设备。
6.如权利要求5所述的无线通信方法,其特征在于,对所述电压信号进行解析包括:
获取当前电压信号和在先电压信号,所述当前电压信号为当前时钟周期对应的电压信号,所述在先电压信号为当前时钟周期之前的第N个时钟周期对应的电压信号,所述N大于等于1;
结合所述在先电压信号和所述当前电压信号,根据预设解调策略确定所述当前电压信号所表征的通信信息。
7.如权利要求6所述的无线通信方法,其特征在于,所述N等于1,所述预设解调策略包括:
若所述电压信号与所述在先电压信号相同,则所述当前电压信号所表征的通信信息为“1”;
若所述当前电压信号与所述在先电压信号不同,则所述当前电压信号所表征的通信信息为“0”。
8.一种发送设备,其特征在于,包括:第一控制器、调制电路、第一充电线圈;
所述第一控制器获取第一通信信息,控制所述调制电路将所述第一通信信息调制到充电电磁感应信号上,并通过所述第一充电线圈将所述调制后的充电电磁感应信号传输给接收设备的第二充电线圈;
所述发送设备和所述接收设备中的一个为被充电设备,所述充电电磁感应信号用于为所述被充电设备充电。
9.如权利要求8所述的发送设备,其特征在于,所述第一通信信息包括所述发送设备的第一标识信息;所述第一控制器控制所述调制电路将所述第一通信信息调制到充电电磁感应信号上之前还包括:
根据所述第一标识信息确定所述第一通信信息为待发送的信息。
10.如权利要求8所述的发送设备,其特征在于,所述第一控制器控制所述调制电路将第一通信信息调制到充电电磁感应信号上包括:
所述第一控制器确定对充电电磁感应信号的在先调制控制方式,所述在先调制控制方式为当前时钟周期之前对所述充电电磁感应信号进行调制所使用的控制方式;
所述第一控制器从所述第一通信信息中获取当前待调制信息;
所述第一控制器结合所述在先调制控制方式和所述当前待调制信息,根据预设调制策略确定针对所述当前待调制信息的调制控制方式;
所述第一控制器根据确定出的调制控制方式控制所述调制电路对所述充电电磁感应信号进行调制。
11.如权利要求8-10任一项所述的发送设备,其特征在于,还包括解调电路;
所述第一充电线圈还用于获取用于为被充电设备充电的充电电磁感应信号并将所述充电电磁感应信号转化为电压信号;所述第一控制器还用于控制所述解调电路对所述电压信号进行解析以获取到所述接收设备承载在所述充电电磁信号上的第二通信信息;所述第二通信信息中至少包括所述接收设备的第二标识信息,所述第二标识信息用于所述发送设备确定所述第二通信信息为接收到的信息。
12.一种接收设备,其特征在于,包括:第二控制器、解调电路、第二充电线圈;
所述第二充电线圈用于获取为被充电设备充电的充电电磁感应信号并将所述充电电磁感应信号转换为电压信号;所述第二控制器用于控制所述解调电路对所述电压信号进行解析以获取发送设备承载在所述充电电磁感应信号上的第一通信信息;所述接收设备与所述发送设备中的一个为被充电设备。
13.如权利要求12所述的接收设备,其特征在于,所述第一通信信息还包括所述发送设备的第一标识信息,所述第一标识信息用于确定所述第一通信信息为接收到的信息。
14.如权利要求12所述的接收设备,其特征在于,所述第二控制器控制所述解调电路对所述电磁感应信息进行解析包括:
所述解调电路获取当前电压信号和在先电压信号,所述当前电压信号为当前时钟周期对应的电压信号,所述在先电压信号为当前时钟周期之前的时钟周期对应的电压信号;
所述解调电路结合所述在先电压信号和所述当前电压信号,根据预设解调策略确定所述当前电压信号所表征的通信信息。
15.如权利要求12-14任一项所述的接收设备,其特征在于,还包括调制电路;
所述第二控制器获取到第二通信信息后,控制所述调制电路将所述第二通信信息调制到所述充电电磁感应信号上,所述第二充电线圈还用于将调制后的所述充电电磁感应信号传输给所述发送设备;所述第二通信信息至少包括所述接收设备的第二标识信息,所述第二标识信息用于所述接收设备确定所述第二通信信息为待发送的信息。
CN201610830270.4A 2016-09-18 2016-09-18 无线通信方法及发送设备、接收设备 Pending CN107846080A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610830270.4A CN107846080A (zh) 2016-09-18 2016-09-18 无线通信方法及发送设备、接收设备
PCT/CN2017/076339 WO2018049799A1 (zh) 2016-09-18 2017-03-10 无线通信方法及发送设备、接收设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610830270.4A CN107846080A (zh) 2016-09-18 2016-09-18 无线通信方法及发送设备、接收设备

Publications (1)

Publication Number Publication Date
CN107846080A true CN107846080A (zh) 2018-03-27

Family

ID=61619316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610830270.4A Pending CN107846080A (zh) 2016-09-18 2016-09-18 无线通信方法及发送设备、接收设备

Country Status (2)

Country Link
CN (1) CN107846080A (zh)
WO (1) WO2018049799A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711902A (zh) * 2018-05-25 2018-10-26 上海与德通讯技术有限公司 无线充电传输方法、系统、充电装置和电子设备
CN110491387A (zh) * 2019-08-23 2019-11-22 三星电子(中国)研发中心 一种基于多个终端的交互服务实现方法和系统
WO2020056673A1 (zh) * 2018-09-20 2020-03-26 华为技术有限公司 利用无线线圈实现电子设备控制和受控电路、方法及设备
CN111181604A (zh) * 2019-12-31 2020-05-19 上海阪辉新能源科技有限公司 近场通信方法/传感器及地面端设备和移动端设备
CN111988110A (zh) * 2019-05-21 2020-11-24 北京小米移动软件有限公司 无线充电方法及装置
WO2021217495A1 (zh) * 2020-04-29 2021-11-04 华为数字能源技术有限公司 一种远距离无线充电的发射端、接收端和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372324A (zh) * 2018-12-26 2020-07-03 珠海市魅族科技有限公司 无线数据传输控制方法、系统和无线充电设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323746B (zh) * 2011-05-19 2012-11-28 福州核心电子科技有限公司 带时钟显示的风扇
CN103545936A (zh) * 2012-07-13 2014-01-29 国民技术股份有限公司 一种连接装置、设备及通信方法
CN104123820A (zh) * 2013-04-28 2014-10-29 海尔集团技术研发中心 基于无线电力传输系统的通讯信号传输方法和系统
CN104578345B (zh) * 2015-01-23 2017-02-22 山东大学 基于cll谐振变换的电磁共振式无线充电装置及控制方法
CN105657095A (zh) * 2016-02-01 2016-06-08 广东欧珀移动通信有限公司 移动终端和用于移动终端的数据传输方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711902A (zh) * 2018-05-25 2018-10-26 上海与德通讯技术有限公司 无线充电传输方法、系统、充电装置和电子设备
WO2020056673A1 (zh) * 2018-09-20 2020-03-26 华为技术有限公司 利用无线线圈实现电子设备控制和受控电路、方法及设备
CN111699667A (zh) * 2018-09-20 2020-09-22 华为技术有限公司 利用无线线圈实现电子设备控制和受控电路、方法及设备
CN111699667B (zh) * 2018-09-20 2021-09-21 华为技术有限公司 利用无线线圈实现电子设备控制和受控的电路、方法及设备
CN111988110A (zh) * 2019-05-21 2020-11-24 北京小米移动软件有限公司 无线充电方法及装置
CN111988110B (zh) * 2019-05-21 2023-07-04 北京小米移动软件有限公司 无线充电方法及装置
CN110491387A (zh) * 2019-08-23 2019-11-22 三星电子(中国)研发中心 一种基于多个终端的交互服务实现方法和系统
CN111181604A (zh) * 2019-12-31 2020-05-19 上海阪辉新能源科技有限公司 近场通信方法/传感器及地面端设备和移动端设备
CN115882901A (zh) * 2019-12-31 2023-03-31 上海阪辉新能源科技有限公司 地面端设备、移动端设备及控制方法
WO2021217495A1 (zh) * 2020-04-29 2021-11-04 华为数字能源技术有限公司 一种远距离无线充电的发射端、接收端和系统

Also Published As

Publication number Publication date
WO2018049799A1 (zh) 2018-03-22

Similar Documents

Publication Publication Date Title
CN107846080A (zh) 无线通信方法及发送设备、接收设备
CN105765827B (zh) 无线电力传送方法、装置以及系统
CN101366210B (zh) 提供基于即触即用服务的方法和装置、以及使用该方法和装置的系统
WO2013036059A1 (en) Method for transmitting signals from a plurality of wireless power receivers to wireless power supplier
CN103683400B (zh) 基于nfc的无线充电控制方法及系统
CN105990914A (zh) 无线供电系统、电力发送设备和电力接收设备
CN103718428B (zh) 馈送系统、馈送单元和电子单元
CN203261438U (zh) 基于nfc的电视机和电视系统
CN103200263A (zh) 智能终端和蓝牙音频播放设备及其交互方法、系统
CN109638911A (zh) 充电通信电路、系统、方法、智能终端及其配件
CN105208515A (zh) 利用无线充电接口实现蓝牙外设与主机间自动配对的方法
KR20190064016A (ko) 무선 전력 송신 장치 및 그의 제어 방법
CN108712739A (zh) 一种ios系统获取蓝牙地址的方法及装置
CN106454569A (zh) 数字双向自动变频无线麦克风及系统
CN102970062B (zh) 一种无线通信系统及其控制方法
CN203279031U (zh) Mhl-hdmi转接单元以及包括该单元的电视机
CN107846052A (zh) 一种兼容性广的手机快充方法及快充电路
CN109150465A (zh) 同步信号块指示确定方法、装置、基站、终端及存储介质
CN106787257A (zh) 无线充电方法及装置
CN104008641B (zh) 移动终端、刷卡器、移动终端音频通信方法及系统
CN112787415A (zh) 一种用于无线充电解调解码性能测试的装置
CN104902350B (zh) 一种数字对讲机及其数据处理装置、数据发送方法
CN106787259A (zh) 基于蓝牙通信的无线充电方法及装置
CN103297886B (zh) Zigbee适配器及包括其的耳机装置
CN112769191A (zh) 电压转换设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180327

WD01 Invention patent application deemed withdrawn after publication