CN107843298B - 两相流流量及干度的测量系统及方法 - Google Patents

两相流流量及干度的测量系统及方法 Download PDF

Info

Publication number
CN107843298B
CN107843298B CN201710983710.4A CN201710983710A CN107843298B CN 107843298 B CN107843298 B CN 107843298B CN 201710983710 A CN201710983710 A CN 201710983710A CN 107843298 B CN107843298 B CN 107843298B
Authority
CN
China
Prior art keywords
temperature
pipe
measuring equipment
phase flow
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710983710.4A
Other languages
English (en)
Other versions
CN107843298A (zh
Inventor
白万金
徐肖肖
陈龙
肖久旻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Chongqing Jiaotong University
Original Assignee
Chongqing University
Chongqing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Chongqing Jiaotong University filed Critical Chongqing University
Priority to CN201710983710.4A priority Critical patent/CN107843298B/zh
Publication of CN107843298A publication Critical patent/CN107843298A/zh
Application granted granted Critical
Publication of CN107843298B publication Critical patent/CN107843298B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明提供一种两相流流量及干度的测量系统及方法,该系统包括第一、第二和第三管道,且第二、三管道之间设有冷却管道;第一管道与两相流回路的连接处设有测温装置和测压装置,第一管道内设有加热装置;第二管道与第一管道的连接处设有测温装置和测压装置,第二管道内设有加热装置;冷却管道与第二管道的连接处设有测温装置和测压装置,冷却管道内设有冷却器;第三管道与冷却管道的连接处设有测温装置和测压装置,第三管道内设有加热装置,第三管道与两相流回路的连接处设有测温装置和测压装置。本发明价格低,可靠性好,对两相流体工质无特定要求,不破坏测试前的流体流量与干度,在测量时不需要采用气液分离装置,可满足现场快速测量的需要。

Description

两相流流量及干度的测量系统及方法
技术领域
本发明属于流体测量领域,尤其涉及一种两相流流量及干度的测量系统及方法。
背景技术
气液两相流动大量存在于工业生产和科研实验中。为了对两相流动进行控制管理或实验研究,就必须对其流量和干度进行测量。目前常用的流量计只能测量单相流的流量,在流量较低的情况下测量误差较大并且价格昂贵。与单相流动比,两相流动更为复杂,由于其流型的复杂多变,用传统的单相流测量方法测量两相流的、流量和干度就变得十分困难且代价高昂。
发明内容
本发明的目的在于针对上述现有技术的不足,提出一种改进的两相流流量及干度的测量系统及方法,以在气液两相流微流量的工况下达到较高的测量精度,同时具有极高的性价比,能够广泛地推广,具有良好的经济效益。
为了实现上述目的,本发明一方面提供一种两相流流量及干度的测量系统,该测量系统包括在两相流回路中沿流动路径方向前后依次连通的第一管道、第二管道和第三管道,且第二管道和第三管道之间设有冷却管道;
所述第一管道与两相流回路的连接处设有第一测温装置和第一测压装置,所述第一管道内设有第一加热装置;
所述第二管道与所述第一管道的连接处设有第四测温装置和第二测压装置,所述第二管道内设有第二加热装置;
所述冷却管道与所述第二管道的连接处设有第七测温装置和第三测压装置,所述冷却管道内设有冷却器;
所述第三管道与所述冷却管道的连接处设有第八测温装置和第四测压装置,所述第三管道内设有第三加热装置,所述第三管道与两相流回路的连接处设有第十一测温装置和第五测压装置。
进一步地,所述第一管道上设有分别邻近所述第一加热装置前端和后端的第二测温装置和第三测温装置,所述第二管道上设有分别邻近所述第二加热装置前端和后端的第五测温装置和第六测温装置,所述第三管道上设有分别邻近所述第三加热装置前端和后端的第九测温装置和第十测温装置。
进一步地,所述第一加热装置与一第一功率测量装置相连,所述第二加热装置与一第二功率测量装置相连,所述第三加热装置与一第三功率测量装置相连。
进一步地,所述第一至第十一测温装置为热电偶、所述第一至第五测压装置为压力传感器、所述冷却器为冷却水或者半导体制冷设备、和/或所述第一至第三加热装置为加热棒、加热带或加热网。
进一步地,所述第一至第三功率测量装置为功率表或功率间接测量装置。
本发明另一方面提供一种两相流流量及干度的测量方法,该方法基于前述的两相流流量及干度的测量系统实现。
进一步地,该方法包括以下步骤:
S1,通过第一加热装置将流过第一管道的流体加热至单相的过热状态;
S2,通过第二加热装置对流过第二管道的流体进行再加热,并通过式(1)和(2)得到两相流回路中流体的流量qm及干度x:
其中,Φ2表示第二功率测量装置所测得的第二加热装置的功率,表示第二加热装置的漏热系数,h3表示第三测压装置和第七测温装置所测得的温度与压力下的流体焓值,h2表示第二测压装置和第四测温装置所测得的温度与压力下的流体焓值,Φ1表示第一功率测量装置所测得的第一加热装置的功率,表示第一加热装置的漏热系数,h′1表示第一测压装置和第一测温装置所测得的温度与压力下的流体饱和液体点焓值,h″1表示第一测压装置和第一测温装置所测得的温度与压力下的流体饱和蒸气点焓值;
S3,通过所述冷却器将流过冷却管道的流体冷却至低于第一测温装置所测得的温度;
S4,通过所述第三加热装置将流过第三管道的流体加热至测量前的状态。
进一步地,所述步骤S4通过调节第三加热装置的功率Φ3实现,其中Φ3通过式(3)得到:
式中,表示第三加热装置的漏热系数,h4表示第八测温装置和第四测压装置测得的温度与压力下的流体焓值,h1表示第一测压装置和第一测温装置所测得的温度与压力在干度x下的流体焓值。
进一步地,所述第一加热装置的漏热系数通过对式(4)进行最小二乘法拟合得到:
其中,Tf1为第一、第四测温装置所测得的温度平均值,Th1、Tb1分别为第一加热装置前端和后端处的温度,Ta为环境温度,C1、C2、C3为拟合的参数;
所述第二加热装置的漏热系数通过对式(5)进行最小二乘法拟合得到:
其中,Tf2为第四、第七测温装置所测得的温度平均值,Th2、Tb2分别为第二加热装置前端和后端处的温度,C4、C5、C6为拟合的参数;
所述第三加热装置的漏热系数通过对式(6)进行最小二乘法拟合得到:
其中,Tf3为第八、第十一测温装置所测得的温度平均值,Th3、Tb3分别为第三加热装置前端和后端处的温度,C7、C8、C9为拟合的参数。
通过采用上述技术方案,本发明具有如下有益效果:
本发明通过将两相流加热到过热状态使其变成单相流,再对过热蒸汽进行加热使其温度升高,通过前后温差和吸收热量的关系计算出流体的流量和干度。从而,本发明解决了两相流流量和干度测量的问题,所设计的测量系统结构简单,成本低廉,稳定可靠,测量精度高,在实验研究和工业生产中具有广阔的应用前景,同时本发明对两相流体工质没有特定的要求,不破坏测试前的流体流量与干度,在测量时不需要采用气液分离装置,可以满足现场快速测量的需要。
附图说明
图1为本发明一种两相流流量及干度的测量系统的结构示意图。
具体实施方式
下面通过实施实例进一步描述本发明,但本发明的实施方式不限于此。
本发明两相流流量及干度的测量系统及方法是利用热力学的原理,通过对流体进行两次加热来进行流量和干度的测量。工作时,将需要测量的两相流回路截断,截断的一端为前端接口,另一端为后端接口,使用时将测量系统连接在两相流回路的前端接口与后端接口之间。
在本发明中,两相流流量及干度的测量系统如图1所示,包括在两相流回路中沿流动路径方向前后依次连通的第一管道、第二管道和第三管道,且第二管道和第三管道之间设有冷却管道。其中,第一管道与两相流回路前端接口之间、第二管道与第一管道之间、冷却管道与第二管道之间、第三管道与冷却管道之间、以及第三管道与两相流回路后端口之间分别采用采用第一至第五连接装置6、10、17、24、28依次连接。
在图1所示的实施例中,第一管道与两相流回路前端接口的连接处设有第一测温装置1和第一测压装置5,第一管道内设有第一加热装置7,第一管道上设有分别邻近第一加热装置7前端和后端的第二测温装置2和第三测温装置3,且第一加热装置7与一第一功率测量装置8相连;第二管道与第一管道的连接处设有第四测温装置4和第二测压装置9,第二管道内设有第二加热装置14,第二管道上设有分别邻近第二加热装置14前端和后端的第五测温装置11和第六测温装置12,且第二加热装置14与一第二功率测量装置15相连;冷却管道与第二管道的连接处设有第七测温装置13和第三测压装置16,冷却管道内设有冷却器18;第三管道与冷却管道的连接处设有第八测温装置19和第四测压装置23,第三管道内设有第三加热装置25,第三管道上设有分别邻近第三加热装置25前端和后端的第九测温装置20和第十测温装置21,第三管道与两相流回路后端接口的连接处设有第十一测温装置22和第五测压装置27,且第三加热装置25与一第三功率测量装置26相连。
优选地,第一至第十一测温装置1、2、3、4、11、12、13、19、20、21、22包括但不限于热电偶,第一至第五测压装置5、9、16、23、27包括但不限于压力传感器,第一至第三功率测量装置8、15、26包括但不限于功率表或功率间接测量装置,第一至第三加热装置7、14、25包括但不限于带电源的加热棒、加热带或加热网,冷却器18包括但不限于采用冷却水或者半导体制冷设备实现冷却。
在前述两相流流量及干度的测量系统基础上,本发明提供一种对应的两相流流量及干度的测量方法,该方法包括以下步骤:
S1,通过第一加热装置7将流过第一管道的流体加热至单相的过热状态,其中通过监控第一、第四测温装置1、4以及第一、第二测压装置5、9的数值,确保流体经过第一加热装置7加热后处于单相的过热状态。
S2,通过第二加热装置14对流过第二管道的流体进行再加热,并通过将流体的吸热量与状态点的焓值相对应,利用能量守恒就可以得出下面的关系式(1)和(2),对下面的关系式(1)、(2)进行求解即可以求出管两相流回路中流体的流量qm及干度x:
其中,Φ2表示第二功率测量装置15所测得的第二加热装置14的功率,表示第二加热装置14的漏热系数,h3表示第三测压装置16和第七测温装置13所测得的温度与压力下的流体焓值,h2表示第二测压装置9和第四测温装置4所测得的温度与压力+3下的流体焓值,Φ1表示第一功率测量装置8所测得的第一加热装置7的功率,表示第一加热装置7的漏热系数,h′1表示第一测压装置5和第一测温装置1所测得的温度与压力下的流体饱和液体点焓值,h″1表示第一测压装置5和第一测温装置1所测得的温度与压力下的流体饱和蒸气点焓值。
S3,待系统稳定后,通过冷却器18将流过冷却管道的流体冷却至低于第一测温装置1所测得的温度,同时通过第三测压装置16和第七测温装置13监测冷却管道的出口压力和温度,确保流体冷却到位。
S4,根据前面求得的流量qm及干度x,通过调节第三加热装置25的功率Φ3将流过第三管道的流体加热至测量前的初始状态,即恢复到进入第一管道之前的状态。其中,Φ3通过式(3)得到:
式中,表示第三加热装置25的漏热系数,h4表示第八测温装置19和第四测压装置23测得的温度与压力下的流体焓值,h1表示第一测压装置5和第一测温装置1所测得的温度与压力在干度x下的流体焓值,h′1与步骤S2中的含义相同。
应该理解,在实现前述步骤之前,应先确定每个加热装置7、14、25的漏热系数,其中,第一加热装置7的漏热系数通过对式(4)进行最小二乘法拟合得到:
其中,Tf1为第一、第四测温装置1、4所测得的温度平均值,Th1、Tb1分别为第一加热装置7前端和后端处的温度(即第二、第三测温装置2、3所测得的温度),Ta为环境温度,C1、C2、C3为拟合的参数。
第二加热装置14的漏热系数通过对式(5)进行最小二乘法拟合得到:
其中,Tf2为第四、第七测温装置4、13所测得的温度平均值,Th2、Tb2分别为第二加热装置14前端和后端处的温度(即第五、第六测温装置11、12所测得的温度),C4、C5、C6为拟合的参数;
第三加热装置25的漏热系数通过对式(6)进行最小二乘法拟合得到:
其中,Tf3为第八、第十一测温装置19、22所测得的温度平均值,Th3、Tb3分别为第三加热装置25前端和后端处的温度(即第九、第十测温装置20、21所测得的温度),C7、C8、C9为拟合的参数。
在进行前述最小二乘法拟合时,将已知流量的单相流体流入对应的管道中,并使对应的加热装置加热N次(N大于等于3)而保持流体不发生相变,通过计算N次不同的漏热系数并根据相应的N个温度无量纲数(i取1、2、3)使用最小二乘法拟合出一条二次曲线,即可确定各式中拟合参数的值。需要说明的是,若第一、第二、第三加热装置7、14、25是相同的,则三者的漏热系数也相同,只要计算出其中任意一个加热装置的漏热系数即可。
综上,本发明价格低廉,可靠性好,对两相流体工质没有特定的要求,不破坏测试前的流体流量与干度,在测量时不需要采用气液分离装置,可以满足现场快速测量的需要。
本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (9)

1.一种两相流流量及干度的测量系统,其特征在于,该测量系统包括在两相流回路中沿流动路径方向前后依次连通的第一管道、第二管道和第三管道,且第二管道和第三管道之间设有冷却管道;
所述第一管道与两相流回路的连接处设有第一测温装置和第一测压装置,所述第一管道内设有第一加热装置,通过第一加热装置将流过第一管道内的流体加热至单相的过热状态;
所述第二管道与所述第一管道的连接处设有第四测温装置和第二测压装置,所述第二管道内设有第二加热装置,通过第二加热装置对流过第二管道的流体进行再加热,再对过热蒸汽加热使其温度升高;
所述冷却管道与所述第二管道的连接处设有第七测温装置和第三测压装置,所述冷却管道内设有冷却器;
所述第三管道与所述冷却管道的连接处设有第八测温装置和第四测压装置,所述第三管道内设有第三加热装置,所述第三管道与两相流回路的连接处设有第十一测温装置和第五测压装置。
2.根据权利要求1所述的两相流流量及干度的测量系统,其特征在于,所述第一管道上设有分别邻近所述第一加热装置前端和后端的第二测温装置和第三测温装置,所述第二管道上设有分别邻近所述第二加热装置前端和后端的第五测温装置和第六测温装置,所述第三管道上设有分别邻近所述第三加热装置前端和后端的第九测温装置和第十测温装置。
3.根据权利要求1所述的两相流流量及干度的测量系统,其特征在于,所述第一加热装置与一第一功率测量装置相连,所述第二加热装置与一第二功率测量装置相连,所述第三加热装置与一第三功率测量装置相连。
4.根据权利要求2所述的两相流流量及干度的测量系统,其特征在于,所述第一至第十一测温装置为热电偶、所述第一至第五测压装置为压力传感器、所述冷却器为冷却水或者半导体制冷设备、和/或所述第一至第三加热装置为加热棒、加热带或加热网。
5.根据权利要求3所述的两相流流量及干度的测量系统,其特征在于,所述第一至第三功率测量装置为功率表或功率间接测量装置。
6.根据权利要求1所述的两相流流量及干度的测量系统,其特征在于,所述第一管道与两相流回路之间、第二管道与第一管道之间、冷却管道与第二管道之间、第三管道与冷却管道之间、以及第三管道与两相流回路之间分别采用采用第一至第五连接装置依次连接。
7.一种两相流流量及干度的测量方法,其特征在于,该方法基于权利要求1-6中任一项所述的两相流流量及干度的测量系统实现;该方法包括以下步骤:
S1,通过第一加热装置将流过第一管道的流体加热至单相的过热状态;
S2,通过第二加热装置对流过第二管道的流体进行再加热,并通过式1和式2得到两相流回路中流体的流量qm及干度x:
其中,Φ2表示第二功率测量装置所测得的第二加热装置的功率,表示第二加热装置的漏热系数,h3表示第三测压装置和第七测温装置所测得的温度与压力下的流体焓值,h2表示第二测压装置和第四测温装置所测得的温度与压力下的流体焓值,Φ1表示第一功率测量装置所测得的第一加热装置的功率,表示第一加热装置的漏热系数,h′1表示第一测压装置和第一测温装置所测得的温度与压力下的流体饱和液体点焓值,h″1表示第一测压装置和第一测温装置所测得的温度与压力下的流体饱和蒸气点焓值;
S3,通过所述冷却器将流过冷却管道的流体冷却至低于第一测温装置所测得的温度;
S4,通过所述第三加热装置将流过第三管道的流体加热至测量前的状态。
8.根据权利要求7所述的两相流流量及干度的测量方法,其特征在于,所述步骤S4通过调节第三加热装置的功率Φ3实现,其中Φ3通过式3得到:
式中,表示第三加热装置的漏热系数,h4表示第八测温装置和第四测压装置测得的温度与压力下的流体焓值,h1表示第一测压装置和第一测温装置所测得的温度与压力在干度x下的流体焓值。
9.根据权利要求8所述的两相流流量及干度的测量方法,其特征在于,所述第一加热装置的漏热系数通过对式4进行最小二乘法拟合得到:
其中,Tf1为第一、第四测温装置所测得的温度平均值,Th1、Tb1分别为第一加热装置前端和后端处的温度,Ta为环境温度,C1、C2、C3为拟合的参数;
所述第二加热装置的漏热系数通过对式5进行最小二乘法拟合得到:
其中,Tf2为第四、第七测温装置所测得的温度平均值,Th2、Tb2分别为第二加热装置前端和后端处的温度,C4、C5、C6为拟合的参数;
所述第三加热装置的漏热系数通过对式6进行最小二乘法拟合得到:
其中,Tf3为第八、第十一测温装置所测得的温度平均值,Th3、Tb3分别为第三加热装置前端和后端处的温度,C7、C8、C9为拟合的参数。
CN201710983710.4A 2017-10-20 2017-10-20 两相流流量及干度的测量系统及方法 Expired - Fee Related CN107843298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710983710.4A CN107843298B (zh) 2017-10-20 2017-10-20 两相流流量及干度的测量系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710983710.4A CN107843298B (zh) 2017-10-20 2017-10-20 两相流流量及干度的测量系统及方法

Publications (2)

Publication Number Publication Date
CN107843298A CN107843298A (zh) 2018-03-27
CN107843298B true CN107843298B (zh) 2019-11-15

Family

ID=61662665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710983710.4A Expired - Fee Related CN107843298B (zh) 2017-10-20 2017-10-20 两相流流量及干度的测量系统及方法

Country Status (1)

Country Link
CN (1) CN107843298B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110274627B (zh) * 2019-06-25 2020-06-19 西安交通大学 并联管束内高温高压工质流量分配的测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1690700A (zh) * 2004-04-19 2005-11-02 西北工业大学 能恒混合式水蒸气干度的测量方法及装置
CN102721444A (zh) * 2012-06-07 2012-10-10 西安交通大学 一种测量气-液两相流系统带液量的装置及方法
CN103134834A (zh) * 2013-01-30 2013-06-05 东南大学 一种湿蒸汽干度测量装置及方法
CN103207210A (zh) * 2013-03-19 2013-07-17 中国核动力研究设计院 一种湿蒸汽干度在线测量仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO330714B1 (no) * 2009-11-23 2011-06-20 Polytec Bestemmelse av flerfasesammensetning
JP2014115164A (ja) * 2012-12-07 2014-06-26 Mitsubishi Heavy Ind Ltd 気液二相流の流量計測装置、流量計測方法及び流量計測用コンピュータプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1690700A (zh) * 2004-04-19 2005-11-02 西北工业大学 能恒混合式水蒸气干度的测量方法及装置
CN102721444A (zh) * 2012-06-07 2012-10-10 西安交通大学 一种测量气-液两相流系统带液量的装置及方法
CN103134834A (zh) * 2013-01-30 2013-06-05 东南大学 一种湿蒸汽干度测量装置及方法
CN103207210A (zh) * 2013-03-19 2013-07-17 中国核动力研究设计院 一种湿蒸汽干度在线测量仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
凝结法与加热法测蒸汽干度的比较;石凯旋;《能源工程》;20151220(第06期);第22-26页 *

Also Published As

Publication number Publication date
CN107843298A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
CN105067661B (zh) 气-液换热器传热系数测定装置
CN102243192B (zh) 地源热泵用多功能岩土体热物性测试装置
Wang et al. Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays
CN104280258B (zh) 一种用于换热器测试的综合热工系统
CN106932214A (zh) 一种换热器性能及能效测试平台
CN110186959A (zh) 一种用于热伏发电的实验测试仪
O'Donovan et al. Pressure drop analysis of steam condensation in air-cooled circular tube bundles
CN107843298B (zh) 两相流流量及干度的测量系统及方法
Zhang et al. Simulation and experimental studies of R134a flow condensation characteristics in a pump-assisted separate heat pipe
CN206960129U (zh) 一种换热器性能及能效测试平台
Al-Fahed et al. Heat transfer and pressure drop in a tube with internal microfins under turbulent water flow conditions
CN104390664B (zh) 气液两相流相变换热循环系统
CN106768118B (zh) 一种湿蒸汽流量计量装置及其计算方法
CN104568484A (zh) 有机朗肯循环中换热器性能测试系统
CN204514619U (zh) 换热器性能测试系统
CN108458888A (zh) 一种20k以下温区低温换热器性能测试装置
Aslan et al. Effects of different operating conditions of Gonen geothermal district heating system on its annual performance
CN110189593B (zh) 一种精确的传热综合实验装置
Song et al. Heat transfer rate characteristics of two-phase closed thermosyphon heat exchanger
CN205826573U (zh) 一种用于分析有机工质传热规律的试验装置
Zhang et al. Experimental and simulation study on the distributor design in plate evaporators
CN102175715A (zh) 一种双工况岩土体热响应试验方法及试验装置
CN206321437U (zh) 一种气‑液管壳式换热器性能测试装置
CN105301046B (zh) 换热器热性能检测装置
CN212871746U (zh) 一种双制冷循环反向耦合换热器性能测试系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191115

Termination date: 20211020