CN107824163B - 一种吸附砷的MIL-125(Ti)/壳聚糖复合微球 - Google Patents

一种吸附砷的MIL-125(Ti)/壳聚糖复合微球 Download PDF

Info

Publication number
CN107824163B
CN107824163B CN201711184995.1A CN201711184995A CN107824163B CN 107824163 B CN107824163 B CN 107824163B CN 201711184995 A CN201711184995 A CN 201711184995A CN 107824163 B CN107824163 B CN 107824163B
Authority
CN
China
Prior art keywords
chitosan
composite microsphere
preparation
arsenic
modified chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711184995.1A
Other languages
English (en)
Other versions
CN107824163A (zh
Inventor
郁迪
王南
欧阳小琨
梁雪雪
杨立业
蓝浩
龚戬芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN201711184995.1A priority Critical patent/CN107824163B/zh
Publication of CN107824163A publication Critical patent/CN107824163A/zh
Application granted granted Critical
Publication of CN107824163B publication Critical patent/CN107824163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种吸附砷的MIL‑125(Ti)/壳聚糖复合微球,复合微球中改性壳聚糖和MIL‑12(Ti)的重量比为1:0.8‑1.2。复合微球的制备方法为:用三氯化铁对壳聚糖进行改性,然后与戊二醛交联反应,洗净,烘干,磨细,即得改性壳聚糖;将钛酸四丁酯、对苯二甲酸、N,N‑二甲基甲酰胺和甲醇混合均匀,在高压反应釜反应得MIL‑12(Ti);将MIL‑12(Ti)溶解于去离子水中,溶解后加入改性壳聚糖,搅拌,然后滴入到三聚磷酸钠溶液中,搅拌固化,即得复合微球。有益效果为:本发明复合微球分散性良好、球形度规整,具有较高的吸附容量和更快的吸附速率,吸附砷的能力强,可重复利用性强。

Description

一种吸附砷的MIL-125(Ti)/壳聚糖复合微球
技术领域
本发明涉及吸附分离技术领域,尤其是涉及一种吸附砷的MIL-125(Ti)/壳聚糖复合微球。
背景技术
砷是一种灰色有光泽的化学元素,具有非金属与金属性质,其在地壳中含量大概为3mg/kg,在自然界的丰度排在第二十位,广泛存在于自然界中。随着采矿、冶金、各种杀虫剂、砷酸盐药物等人类活动以及地球化学演化,砷金属大量进入环境,由于其毒性与某些性质类似于重金属元素,常常在不同体系下与其他有害元素共存,故在环境中有着极强的危害作用。一般而言,砷中毒都是人们通过与含砷的食物、空气、特别是用水而导致的中毒,大部分的中毒均为慢性中毒,由于慢性中毒短时间内难以显现症状,所以水环境中的砷污染处理尤为重要。由于砷在水中的巨大危害,砷污染一旦在环境中形成就很难消除,特别是对水体的污染,最终可以通过地下水、地表水或者生物富集进入人体从而危害健康。面对日益严峻的全球水体砷污染问题,需要开发经济高效的除砷技术,以尽快解决砷污染对人类的威胁。
现有技术如授权公告号为CN 105381780 B的中国发明专利,公开了一种吸附-超导磁分离除砷锑的磁性吸附剂及其制备方法,将具有强吸附能力的弱磁性材料铁基凝胶通过原位反应的方法负载在吸附能力较弱但具有强磁性的铁酸盐材料上,从而获得同时具备很强吸附能力与优异的磁分离特性的材料。材料吸附砷锑之后,再利用连续式超导磁分离系统完成固液分离。该吸附剂可用于去除饮用水、地下水、工业废水以及湖泊、水库、河流等水体中的砷锑污染物,也可用于水中铜、铬、镉、铅、铊等重金属和磷酸盐等污染物去除以及突发性污染事件的水体污染治理。但是该吸附剂吸附容量和吸附速率较慢,可重复利用性强较差,造成吸附剂的使用成本较高。
发明内容
本发明的目的在于提供一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,该微球的分散性良好、球形度规整,可利用其特殊的孔道分布、官能团、吸附位点等能高效地对砷进行吸附去除,可通过过滤分离将该材料从水体中分离、回收,可重复利用性强、有望大幅降低吸附剂的使用成本的,可作为良好的光催化剂降解其中难以吸附的物质。
本发明针对上述技术中提到的问题,采取的技术方案为:
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,复合微球中改性壳聚糖和MIL-125(Ti)的重量比为1:0.8-1.2,上述复合微球的直径在为0.1-0.5mm。该复合微球本发明复合微球具有高比表面积、好的热稳定性及孔道的可调节性等优势,可利用其特殊的孔道分布、官能团、吸附位点等能高效地对砷进行吸附去除;该复合微球可作为良好的光催化剂降解其中难以吸附的物质,可通过过滤分离将该材料从水体中分离、回收,不会对水体产生污染,可重复利用性强,在经历8次吸附-脱附循环后依然表现出较强的吸附能力。
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其制备方法包括改性壳聚糖制备、MIL-125(Ti)制备和复合微球制备,具体包括以下步骤:
改性壳聚糖制备:按料液比为1:13-16(g/mL)将三氯化铁溶于去离子水中,待充分溶解后加入壳聚糖,三氯化铁和壳聚糖的重量比为1:1.1-1.2,磁力搅拌3-5h,反应结束后,缓慢加入去离子水体积1.8-2.2倍的无水乙醇,缓慢搅拌,待沉淀逐渐生成后,离心分离,然后用乙醇清洗沉淀,洗去未反应的Fe3+,然后加入去离子水体积的0.18-0.22倍的20-30%戊二醛溶液,交联反应100-150min,离心分离固体壳聚糖,最后用乙醇清洗沉淀,洗去未反应的戊二醛,烘干,磨细,即得改性壳聚糖,Fe3+与壳聚糖的螯合作用提高了改性壳聚糖对砷离子的吸附能力,并使其能在碱性条件下仍保持良好的吸附性能,且磁性吸附传质速率高、固液接触良好、压降低,且吸附剂在外加磁场的作用下能够从水中分离,进而洗脱再生,重复利用,同时将壳聚糖分子的链状结构交联成三维网状结构,提高后续复合微球的稳定性,在水处理中具有十分优越的应用前景;
MIL-125(Ti)制备:将钛酸四丁酯、对苯二甲酸、N,N-二甲基甲酰胺和甲醇按照摩尔比为1:2.8-3.2:8.2-8.5:8.2-8.5混合均匀,匀浆后转入到高压反应釜中,在140-160℃下反应18-22h,冷却至室温,过滤,并依次用N,N-二甲基甲酰胺和甲醇洗涤2-4次,烘干即得MIL-125(Ti),该金属有机骨架材料具有高比表面积、好的热稳定性及孔道的可调节性等优势,可利用其特殊的孔道分布、官能团、吸附位点等能高效地对砷进行吸附去除,同时也可作为良好的光催化剂降解其中难以吸附的物质,而且可通过过滤分离将该材料从水体中分离、回收,不会对水体产生污染,可重复利用性强,在经历8次吸附-脱附循环后依然表现出较强的吸附能力;
复合微球制备:按料液比为1:18-22(g/mL)将MIL-125(Ti)溶解于去离子水中,完全溶解后加入改性壳聚糖,等充分溶解后停止搅拌,然后用横流泵将混合物滴入到质量浓度为2.8-3.2wt%的三聚磷酸钠溶液中,改性壳聚糖和三聚磷酸钠的质量比为3-5:1,磁力搅拌,以防微球粘在一起,成球后继续搅拌固化1-2小时,将固化好的微球用去离子水冲洗,捞出放在烧杯里用保鲜膜封好,放在冰箱中备用,即得MIL-125(Ti)/壳聚糖复合微球,该步骤中壳聚糖分子结构上的氨基与三聚磷酸钠上的磷酸基团之间的分子作用力或静电作用相互交联起来,形成网状结构的高分子,并在相互交联形成微球的过程中MIL-125(Ti)被包裹在其中,改性壳聚糖和三聚磷酸钠的合理比例使得包封率达到最佳,通过对壳聚糖的动力学过程加以控制,可制备成分散性良好、球形度规整的微球,可以实现工业化生产,该微球有较高的吸附容量和更快的吸附速率,吸附砷的能力较强,三价砷去除率高达93.21%,具有良好的再生循环使用性能,有望大幅降低吸附剂的使用成本。
与现有技术相比,本发明的优点在于:1)本发明复合微球具有高比表面积、好的热稳定性及孔道的可调节性等优势,可利用其特殊的孔道分布、官能团、吸附位点等能高效地对砷进行吸附去除;2)该复合微球可作为良好的光催化剂降解其中难以吸附的物质,可通过过滤分离将该材料从水体中分离、回收,不会对水体产生污染,可重复利用性强,在经历8次吸附-脱附循环后依然表现出较强的吸附能力;3)该复合微球具有较高的吸附容量和更快的吸附速率,吸附砷的能力强,三价砷去除率高达93.21%;4)该制备方法制备成分散性良好、球形度规整的微球,可以实现工业化生产,有望大幅降低吸附剂的使用成本。
具体实施方式
下面通过实施例对本发明方案作进一步说明:
实施例1:
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,复合微球中改性壳聚糖和MIL-125(Ti)的重量比为1:0.8-1.2,上述复合微球的直径在为0.1-0.5mm。
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其制备方法包括改性壳聚糖制备、MIL-125(Ti)制备和复合微球制备,具体包括以下步骤:
1)改性壳聚糖制备:按料液比为1:13-16(g/mL)将三氯化铁溶于去离子水中,待充分溶解后加入壳聚糖,三氯化铁和壳聚糖的重量比为1:1.1-1.2,磁力搅拌3-5h,反应结束后,缓慢加入去离子水体积1.8-2.2倍的无水乙醇,缓慢搅拌,待沉淀逐渐生成后,离心分离,然后用乙醇清洗沉淀,洗去未反应的Fe3+,然后加入去离子水体积的0.18-0.22倍的20-30%戊二醛溶液,交联反应100-150min,离心分离固体壳聚糖,最后用乙醇清洗沉淀,洗去未反应的戊二醛,烘干,磨细,即得改性壳聚糖;
2)MIL-125(Ti)制备:将钛酸四丁酯、对苯二甲酸、N,N-二甲基甲酰胺和甲醇按照摩尔比为1:2.8-3.2:8.2-8.5:8.2-8.5混合均匀,匀浆后转入到高压反应釜中,在140-160℃下反应18-22h,冷却至室温,过滤,并依次用N,N-二甲基甲酰胺和甲醇洗涤2-4次,烘干即得MIL-125(Ti);
3)复合微球制备:按料液比为1:18-22(g/mL)将MIL-125(Ti)溶解于去离子水中,完全溶解后加入改性壳聚糖,等充分溶解后停止搅拌,然后用横流泵将混合物滴入到质量浓度为2.8-3.2wt%的三聚磷酸钠溶液中,改性壳聚糖和三聚磷酸钠的质量比为3-5:1,磁力搅拌,以防微球粘在一起,成球后继续搅拌固化1-2小时,将固化好的微球用去离子水冲洗,捞出放在烧杯里用保鲜膜封好,放在冰箱中备用,即得MIL-125(Ti)/壳聚糖复合微球。
实施例2:
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,复合微球中改性壳聚糖和MIL-125(Ti)的重量比为1:1.2,上述复合微球的直径在为0.1-0.5mm。
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其制备方法包括改性壳聚糖制备、MIL-125(Ti)制备和复合微球制备,具体包括以下步骤:
1)改性壳聚糖制备:按料液比为1:16(g/mL)将三氯化铁溶于去离子水中,待充分溶解后加入壳聚糖,三氯化铁和壳聚糖的重量比为1:1.2,磁力搅拌3h,反应结束后,缓慢加入去离子水体积1.8倍的无水乙醇,缓慢搅拌,待沉淀逐渐生成后,离心分离,然后用乙醇清洗沉淀,洗去未反应的Fe3+,然后加入去离子水体积的0.22倍的20%戊二醛溶液,交联反应150min,离心分离固体壳聚糖,最后用乙醇清洗沉淀,洗去未反应的戊二醛,烘干,磨细,即得改性壳聚糖;
2)MIL-125(Ti)制备:将钛酸四丁酯、对苯二甲酸、N,N-二甲基甲酰胺和甲醇按照摩尔比为1:2.8:8.5:8.2混合均匀,匀浆后转入到高压反应釜中,在160℃下反应18h,冷却至室温,过滤,并依次用N,N-二甲基甲酰胺和甲醇洗涤4次,烘干即得MIL-125(Ti);
3)复合微球制备:按料液比为1:18(g/mL)将MIL-125(Ti)溶解于去离子水中,完全溶解后加入改性壳聚糖,等充分溶解后停止搅拌,然后用横流泵将混合物滴入到质量浓度为3.2wt%的三聚磷酸钠溶液中,改性壳聚糖和三聚磷酸钠的质量比为5:1,磁力搅拌,以防微球粘在一起,成球后继续搅拌固化1小时,将固化好的微球用去离子水冲洗,捞出放在烧杯里用保鲜膜封好,放在冰箱中备用,即得MIL-125(Ti)/壳聚糖复合微球。
实施例3:
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,复合微球中改性壳聚糖和MIL-125(Ti)的重量比为1:1,上述复合微球的直径在为0.1-0.5mm。
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其制备方法包括改性壳聚糖制备、MIL-125(Ti)制备和复合微球制备,具体包括以下步骤:
1)改性壳聚糖制备:按料液比为1:14.3(g/mL)将三氯化铁溶于去离子水中,待充分溶解后加入壳聚糖,三氯化铁和壳聚糖的重量比为1:1.14,磁力搅拌4h,反应结束后,缓慢加入去离子水体积2.0倍的无水乙醇,缓慢搅拌,待沉淀逐渐生成后,离心分离,然后用乙醇清洗沉淀,洗去未反应的Fe3+,然后加入去离子水体积的0.20倍的25%戊二醛溶液,交联反应120min,离心分离固体壳聚糖,最后用乙醇清洗沉淀,洗去未反应的戊二醛,烘干,磨细,即得改性壳聚糖;
2)MIL-125(Ti)制备:将钛酸四丁酯、对苯二甲酸、N,N-二甲基甲酰胺和甲醇按照摩尔比为1:3.0:8.34:8.34混合均匀,匀浆后转入到高压反应釜中,在140-160℃下反应20h,冷却至室温,过滤,并依次用N,N-二甲基甲酰胺和甲醇洗涤3次,烘干即得MIL-125(Ti);
3)复合微球制备:按料液比为1:20(g/mL)将MIL-125(Ti)溶解于去离子水中,完全溶解后加入改性壳聚糖,等充分溶解后停止搅拌,然后用横流泵将混合物滴入到质量浓度为3.0wt%的三聚磷酸钠溶液中,改性壳聚糖和三聚磷酸钠的质量比为4:1,磁力搅拌,以防微球粘在一起,成球后继续搅拌固化1.5小时,将固化好的微球用去离子水冲洗,捞出放在烧杯里用保鲜膜封好,放在冰箱中备用,即得MIL-125(Ti)/壳聚糖复合微球。
实施例4:
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,复合微球中改性壳聚糖和MIL-125(Ti)的重量比为1:1,上述复合微球的直径在为0.1-0.5mm。
一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其制备方法包括改性壳聚糖制备、MIL-125(Ti)制备和复合微球制备,具体包括以下步骤:
1)改性壳聚糖制备:按料液比为1:14.3(g/mL)将三氯化铁溶于去离子水中,待充分溶解后加入壳聚糖,三氯化铁和壳聚糖的重量比为1:1.14,磁力搅拌4h,反应结束后,缓慢加入去离子水体积2.0倍的无水乙醇,缓慢搅拌,待沉淀逐渐生成后,离心分离,然后用乙醇清洗沉淀,洗去未反应的Fe3+,然后加入去离子水体积的0.20倍的25%戊二醛溶液,交联反应120min,离心分离固体壳聚糖,最后用乙醇清洗沉淀,洗去未反应的戊二醛,烘干,再按壳聚糖和聚乙烯亚胺的重量比为1:1加入聚乙烯亚胺,然后加入缩合剂,室温下机械搅拌24h,反应结束后离心,将所得产物用去离子水洗涤三次,干燥后得改性壳聚糖,该缩合剂的添加量为碳纳米管重量的2.2-2.8倍,缩合剂为重量比为1:0.75-0.82:0.02-0.03的1-羟基-7-偶氮苯并三氮唑、1-羟基苯并三唑和4-苯偶氮基苯酚的混合物,缩合剂中各成分能够发挥相互协同作用,使得壳聚糖和聚乙烯亚胺的反应具有反应速度快、产物消旋小、收率高等诸多优点,减少了副反应,有效降低产物的消旋程度,提高了缩合产率,提高了壳聚糖的氨基化程度进而提高改性壳聚糖和三聚磷酸钠对MIL-125(Ti)的包封率,且能提高微球中吸附砷的基团数量,同时减少了分离的麻烦;
2)MIL-125(Ti)制备:将钛酸四丁酯、对苯二甲酸、N,N-二甲基甲酰胺和甲醇按照摩尔比为1:3.0:8.34:8.34混合均匀,匀浆后转入到高压反应釜中,在140-160℃下反应20h,冷却至室温,过滤,并依次用N,N-二甲基甲酰胺和甲醇洗涤3次,烘干即得MIL-125(Ti);
3)复合微球制备:按料液比为1:20(g/mL)将MIL-125(Ti)溶解于去离子水中,完全溶解后加入改性壳聚糖,等充分溶解后停止搅拌,然后用横流泵将混合物滴入到质量浓度为3.0wt%的三聚磷酸钠溶液中,改性壳聚糖和三聚磷酸钠的质量比为4:1,磁力搅拌,以防微球粘在一起,成球后继续搅拌固化1.5小时,将固化好的微球用去离子水冲洗,捞出放在烧杯里用保鲜膜封好,放在冰箱中备用,即得MIL-125(Ti)/壳聚糖复合微球。
实施例5:
吸附砷性能测试
试验组为实施例3产品,对照组为市售吸附砷产品。
吸附实验用砷标准吸附溶液的配制:将三氧化二砷粉末在105℃下干燥2小时备用,称取三氧化二砷粉末0.6600g溶于10mL 1mmol/L的氢氧化钠溶液,转入容量瓶中定容至500mL,得1mg/mL的砷标准储备液。然后取20mL 1mg/mL的砷标准储备液转入容量瓶中定容至1000mL,得浓度为20mg/L的砷标准吸附溶液。
吸附实验方法:准备两份20mg/L砷吸附标准溶液,按照0.5g/L的剂量分别投入试验组和对照组产品,然后放在磁力搅拌器中以150r/min转速连续搅拌下吸附3小时取出,进行过滤,然后取适量的吸附后砷溶液,按二乙基二硫代氨基甲酸银分光光度法(GB/T5750.6-2006)测定残留的砷含量。
试验组砷的去除率为93.21%,对照组砷的去除率为53.69%,说明实施例3产品吸附砷的效果远远好于对照组。
本发明的操作步骤中的常规操作为本领域技术人员所熟知,在此不进行赘述。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其特征在于:所述复合微球中改性壳聚糖和MIL-125(Ti)的重量比为1:0.8-1.2;所述复合微球的制备方法包括改性壳聚糖制备、MIL-125(Ti)制备和复合微球制备,其中,
所述改性壳聚糖制备步骤为:将三氯化铁溶于去离子水中,待充分溶解后加入壳聚糖,反应结束后,缓慢加入无水乙醇,缓慢搅拌,待沉淀逐渐生成后,离心,清洗沉淀,再加入戊二醛溶液进行交联反应,离心,清洗沉淀,烘干,磨细,即得改性壳聚糖;
所述MIL-125(Ti)制备步骤为:将钛酸四丁酯、对苯二甲酸、N,N-二甲基甲酰胺和甲醇按照摩尔比为1:2.8-3.2:8.2-8.5:8.2-8.5混合均匀,匀浆后转入到高压反应釜中,在140-160℃下反应18-22h,冷却至室温,过滤,并依次用N,N-二甲基甲酰胺和甲醇洗涤2-4次,烘干即得MIL-125(Ti);
所述复合微球制备的制备步骤为:按料液比为1:18-22g/mL将MIL-125(Ti)溶解于去离子水中,完全溶解后加入改性壳聚糖,充分溶解,然后用横流泵将混合物滴入到质量浓度为2.8-3.2wt%的三聚磷酸钠溶液中,改性壳聚糖和三聚磷酸钠的质量比为3-5:1,磁力搅拌,成球后继续搅拌固化1-2小时,冲洗,封好,放在冰箱中备用,即得MIL-125(Ti)/壳聚糖复合微球。
2.根据权利要求1所述的一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其特征在于:所述复合微球的直径在为0.1-0.5mm。
3.根据权利要求1所述的一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其特征在于:所述改性壳聚糖制备步骤中三氯化铁和去离子水的料液比为1:13-16g/mL,三氯化铁和壳聚糖的重量比为1:1.1-1.2,反应3-5h。
4.根据权利要求1所述的一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其特征在于:所述改性壳聚糖制备步骤中无水乙醇的添加量为去离子水体积的1.8-2.2倍。
5.根据权利要求1所述的一种吸附砷的MIL-125(Ti)/壳聚糖复合微球,其特征在于:所述改性壳聚糖制备步骤中戊二醛溶液浓度为20-30%,添加量为加入去离子水体积的0.18-0.22倍,交联反应100-150min。
CN201711184995.1A 2017-11-23 2017-11-23 一种吸附砷的MIL-125(Ti)/壳聚糖复合微球 Active CN107824163B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711184995.1A CN107824163B (zh) 2017-11-23 2017-11-23 一种吸附砷的MIL-125(Ti)/壳聚糖复合微球

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711184995.1A CN107824163B (zh) 2017-11-23 2017-11-23 一种吸附砷的MIL-125(Ti)/壳聚糖复合微球

Publications (2)

Publication Number Publication Date
CN107824163A CN107824163A (zh) 2018-03-23
CN107824163B true CN107824163B (zh) 2020-07-14

Family

ID=61653473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711184995.1A Active CN107824163B (zh) 2017-11-23 2017-11-23 一种吸附砷的MIL-125(Ti)/壳聚糖复合微球

Country Status (1)

Country Link
CN (1) CN107824163B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636367A (zh) * 2018-05-11 2018-10-12 浙江海洋大学 一种吸附PPCPs的磁性壳聚糖复合材料及制备方法
CN109589939B (zh) * 2018-12-13 2020-05-12 常州大学 高吸附性能的三明治型UiO-66/壳聚糖@UiO-66复合珠粒的制备方法
CN109705235A (zh) * 2018-12-29 2019-05-03 湖北工程学院 一种壳聚糖-金属配合物及其制备方法和应用
CN109647364B (zh) * 2019-02-03 2021-09-21 重庆盈燚科技咨询有限公司 一种用于重金属处理的可回收磁性吸附材料的制备方法
CN111992155B (zh) * 2019-11-19 2022-08-30 南京工业大学 一种壳聚糖-锂离子筛复合小球及制备方法和应用
CN111001442B (zh) * 2019-12-19 2023-01-17 辽宁大学 一种金属有机框架MIL-101(Cr)负载壳聚糖材料及其制备方法和应用
CN112759770B (zh) * 2020-12-31 2022-06-07 江汉大学 一种功能化NH2-MIL125(Ti)及其制备方法和应用
CN112973638B (zh) * 2021-02-23 2023-03-28 云南省水利水电科学研究院 去除水体中微污染汞的改性MIL-125(Ti)材料制备方法及应用
CN113019332B (zh) * 2021-03-01 2023-01-20 齐鲁工业大学 一种壳聚糖/zif-8复合材料及其制备方法与应用
CN114989443A (zh) * 2022-06-27 2022-09-02 沈阳医学院 一种钛基mof的制备方法及其在分离纯化免疫球蛋白中的应用
CN114939186A (zh) * 2022-07-10 2022-08-26 广东工业大学 一种Ti-MOF/壳聚糖支架及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105566660A (zh) * 2016-02-04 2016-05-11 南京师范大学 一种壳聚糖-金属有机框架复合小球及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105566660A (zh) * 2016-02-04 2016-05-11 南京师范大学 一种壳聚糖-金属有机框架复合小球及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate;Meenakshi Dan-Hardi,et.al.;《J. AM. CHEM. SOC.》;20090721;第131卷;第10857-10859页 *

Also Published As

Publication number Publication date
CN107824163A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN107824163B (zh) 一种吸附砷的MIL-125(Ti)/壳聚糖复合微球
CN107999033B (zh) 一种吸附砷的聚多巴胺/氨基化碳纳米管/海藻酸钠微球
Kumar et al. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd (II) from wastewater
Zheng et al. Structural design of magnetic biosorbents for the removal of ciprofloxacin from water
Fan et al. Comparative and competitive adsorption of Pb (II) and Cu (II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles
Mansour et al. Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust
Uğuzdoğan et al. The use of polyethyleneglycolmethacrylate-co-vinylimidazole (PEGMA-co-VI) microspheres for the removal of nickel (II) and chromium (VI) ions
Kawamura et al. Adsorption of metal ions on polyaminated highly porous chitosan chelating resin
US10537873B2 (en) Synthesis and application of MOFs/natural polymers composite beads adsorbents
Shang et al. Preferable uptake of phosphate by hydrous zirconium oxide nanoparticles embedded in quaternary-ammonium Chinese reed
Ngah et al. Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads
Liu et al. Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions
Chen et al. Comparative adsorption of Cu (II), Zn (II), and Pb (II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin
Popuri et al. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads
Liu et al. Adsorption properties of Cd (II)-imprinted chitosan resin
Zhou et al. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution
GÖKSUNGUR et al. Biosorption of copper ions by caustic treated waste baker's yeast biomass
Ding et al. Highly efficient extraction of thorium from aqueous solution by fungal mycelium-based microspheres fabricated via immobilization
Rao et al. Removal of natural organic matter by cationic hydrogel with magnetic properties
Long et al. Performance and mechanism of biosorption of nickel (II) from aqueous solution by non-living Streptomyces roseorubens SY
Shan et al. Magnetic aminated lignin/CeO2/Fe3O4 composites with tailored interfacial chemistry and affinity for selective phosphate removal
Gyananath et al. Removal of lead (II) from aqueous solutions by adsorption onto chitosan beads
Jeon Adsorption and recovery of immobilized coffee ground beads for silver ions from industrial wastewater
Erdem et al. Preparation and characterization of tannic acid resin: study of boron adsorption
Babakhani et al. Synthesis, characterization, and performance evaluation of ion-imprinted crosslinked chitosan (with sodium tripolyphosphate) for cadmium biosorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant