CN107819139B - 基于可再生燃料电池/膨胀机混合循环的冷热电联供系统 - Google Patents

基于可再生燃料电池/膨胀机混合循环的冷热电联供系统 Download PDF

Info

Publication number
CN107819139B
CN107819139B CN201711071272.0A CN201711071272A CN107819139B CN 107819139 B CN107819139 B CN 107819139B CN 201711071272 A CN201711071272 A CN 201711071272A CN 107819139 B CN107819139 B CN 107819139B
Authority
CN
China
Prior art keywords
fuel cell
expander
electrolytic cell
gas
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711071272.0A
Other languages
English (en)
Other versions
CN107819139A (zh
Inventor
张兄文
何丽美
李国君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201711071272.0A priority Critical patent/CN107819139B/zh
Publication of CN107819139A publication Critical patent/CN107819139A/zh
Application granted granted Critical
Publication of CN107819139B publication Critical patent/CN107819139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04059Evaporative processes for the cooling of a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,供电母线通过导电线路分别与可再生能源发电设备、化学储能设备、电解池的电源输入端、燃料电池的发电输出端、压气机的电机输电端以及膨胀机的发电输出端相连;当电解池中有电流通过时,电解池中的水被电解为氧气和氢气,电解池的氧气输出端通过管路连接至膨胀机并形成制冷通路,燃料电池电化学反应生成的水在制冷通路中凝结并通过管路回流到电解池中。电解池冷却管路和燃料电池冷却管路并联连接,并通过管路连接至供热换热器形成供热通路。本发明结构简单、成本低,能源综合利用效率高,可以提供零下温度的冷量用于冷冻需求,也可以提供零上温度的冷量满足空调需求。

Description

基于可再生燃料电池/膨胀机混合循环的冷热电联供系统
技术领域
本发明属于冷热电联供设备技术领域,具体涉及一种基于可再生燃料电池/膨胀机混合循环的冷热电联供系统。
背景技术
冷热电联供是达到能源高效利用的重要途径,传统方法一般是通过有机朗肯循环、吸收式制冷/热泵、换热器等热力学循环或装置将动力余热或工业余热进一步利用,达到冷热电联供目标,提高化石能源的综合利用效率,该技术路径属于余热驱动型冷热电联供技术。余热驱动型冷热电联供系统要求有相应品位的余热资源,且系统循环较复杂。若无余热资源,则可采用电采暖、电热泵、电制冷等技术达到供暖和制冷目标,但该技术路径耗电大,如果电能来源于化石能源,则会增加污染物和温室气体排放,若电能来源于可再生能源,则需要大容量的储能设备。
可再生能源发电越来越普及,但大部分可再生能源与时间相关,且具有间歇性的特点,因此需要配备较大容量储能设备,最常用的是蓄电池,但蓄电池储存时间有限,并且它的性能受环境温度影响大,寿命短,能量密度低。
在边远或海岛地区的供能系统,考虑到化石能源运输成本高,应尽量减少或完全不使用化石能源供能,对于这类完全依赖可再生能源的供能系统(譬如光伏或风力发电系统),在无余热资源可以利用且要避免采用大容量化学储能设备的情况下,亟需一种新的高效冷热电联供设备。
发明内容
本发明的目的在于提供一种基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,该系统结构设计合理,能源综合利用率高,能够有效解决在无余热资源可利用场合开展冷热电联供问题。
本发明是通过以下技术方案来实现:
本发明公开了一种基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,包括可再生能源发电设备、化学储能设备、供电母线、电解池、燃料电池、压气机及膨胀机;
供电母线通过导电线路分别与可再生能源发电设备、化学储能设备、电解池的电源输入端、燃料电池的发电输出端、压气机的供电端以及膨胀机的发电输出端相连;其中,可再生能源发电设备产生的电能通过发电输出电路送达至供电母线满足与供电母线相连的电负荷需求,可再生能源发电设备产生的多余电量被储存在化学储能设备中;
当电解池中有电流通过时,电解池中的水被电解为氧气和氢气,电解池的氧气输出端通过管路连接至膨胀机并形成制冷通路,氢气输出端通过管路连接至燃料电池的阳极气体入口,电解池和燃料电池的冷却管路与热负荷形成闭环连接并形成供热通路。
优选地,所述制冷通路包括与电解池的氧气出口相连的储氧罐,储氧罐的气体出口通过管路连接有引射器,引射器的气体出口通过管路与压气机的气体出口相连,两股气体混合后连接至燃料电池阴极气体入口,燃料电池阴极气体出口通过管路与膨胀机的气体入口相连,膨胀机的气体出口端连接水气分离器的气体入口,水气分离器的液态水出口通过管路与电解池的水入口相连,水气分离器出口的气体送往冷藏间或空调房间。
进一步优选地,所述引射器为单级引射器或多级引射器。
优选地,所述供热通路由电解池的冷却管路、燃料电池的冷却管路、循环泵及供热换热器构成;
其中,电解池和燃料电池中的冷却管路为并联连接,循环介质为液态流体,电解池和燃料电池的冷却管出口与循环泵入口相连,循环泵的出口与供热换热器高温侧的管道进口相连,供热换热器高温侧的管道出口与电解池、燃料电池的冷却管进口相连。
优选地,在电解池的氢气输出端与燃料电池相连的管路上设有储氢罐,储氢罐和储氧罐能够承受1.5MPa以上气体压力;储氢罐和储氧罐中的气体均为高压气体,温度接近于环境温度。
优选地,所述可再生能源发电设备为一个或多个,采用太阳能光伏发电设备、风力发电设备或潮汐能发电设备。
优选地,所述化学储能设备为一个或多个,采用锂电池、铅酸电池或超级电容器。
优选地,所述电解池为质子交换膜电解池或碱性电解池,当加载电流时电解池能够将水分解为氢气和氧气,能够承受大于1.5倍大气压的工作压力;所述燃料电池为质子交换膜燃料电池或碱性燃料电池。
优选地,所述膨胀机为气体膨胀机,包括容积型膨胀机和速度型膨胀机;其中,容积型膨胀机包括涡旋式、活塞式、螺杆式和旋叶式;速度型膨胀机包括离心式和轴流式。
优选地,所述压气机包括容积型压气机和速度型压气机;其中,容积型压气机包括涡旋式、活塞式、螺杆式和旋叶式;速度型压气机包括离心式和轴流式;
压气机驱动方式包括两种,第一种是供电母线通过供电给电机驱动压气机工作,第二种是膨胀机通过轴带动压气机工作。
与现有技术相比,本发明具有以下有益的技术效果:
本发明采用可再生燃料电池和膨胀机组成的混合功能系统,可再生能源发电设备产生的电能通过发电输出电路送达供电母线上,并通过供电母线满足供电母线上的电负荷,若可再生能源发电设备输出的电量大于总电负荷,则多出来的电量被储存在电化学储能设备中。当给电解池加载电流时,电解池中的水被电解为氧气和氢气,电解池的氧气输出端通过管路连接至膨胀机并形成制冷通路,可以提供零下温度的冷量用于冷冻需求,也可以提供零上温度的冷量满足空调需求。燃料电池和电解池内部的冷却管路与循环泵、供热换热器形成供热通路,燃料电池和电解池工作过程中产生的热量通过供热管路传递到供热负荷地点。本发明系统具有结构简单、成本低,能源综合利用效率高。
附图说明
图1为本发明公开的可再生燃料电池/膨胀机混合循环的冷热电联供系统结构示意图。
其中,1为可再生能源发电设备;2为化学储能设备;3为供电母线;4为电解池;5为储氧罐;6为引射器;7为储氢罐;8为燃料电池;9为压气机;10为水气分离器;11为循环泵;12为供热换热器;13为膨胀机。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
参见图1,本发明公开的可再生燃料电池/膨胀机混合循环的冷热电联供系统,包括:可再生能源发电设备1、化学储能设备2、供电母线3、电解池4、储氧罐5、引射器6、储氢罐7、燃料电池8、压气机9、水气分离器10、循环泵11、供热换热器12、膨胀机13。
供电母线3通过导电线路分别与可再生能源发电设备1、化学储能设备2、电解池4的电源输入端、燃料电池8的发电输出端以及膨胀机13的发电输出端相连;其中,可再生能源发电设备1产生的电能通过发电输出电路送达至供电母线3满足其电负荷,可再生能源发电设备1产生的多余电量被储存在化学储能设备2中;
当电解池4中有电流通过时,电解池4中的水被电解为氧气和氢气,电解池4的氧气输出端通过管路连接至膨胀机13并形成制冷通路,氢气输出端通过管路连接至燃料电池8阳极入口,电解池4和燃料电池8的冷却管路并联连接,电解池4和燃料电池8冷却管路与循环泵11、供热换热器12通过管路连接形成供热通路。
其中,可再生能源发电设备1为一个或多个,采用太阳能光伏发电设备、风力发电设备或潮汐能发电设备。所述化学储能设备2为一个或多个,采用锂电池、铅酸电池或超级电容器。所述电解池4为质子交换膜电解池或碱性电解池,当加载电流时电解池4能够将水分解为氢气和氧气,能够承受大于1.5倍大气压的工作压力;所述燃料电池8为质子交换膜燃料电池或碱性燃料电池。
所述膨胀机13为气体膨胀机,包括容积型膨胀机和速度型膨胀机;其中,容积型膨胀机包括涡旋式、活塞式、螺杆式和旋叶式;速度型膨胀机包括向心透平和轴流透平。
所述制冷通路包括与电解池4的氧气出口相连的储氧罐5,储氧罐5的气体出口通过管路连接有引射器6,引射器6的气体出口通过管路与压气机9出口相连,两股气体混合后通过管路与燃料电池8阴极气体入口相连,燃料电池8阴极气体出口与膨胀机13的气体入口相连,膨胀机13的气体出口端与水气分离器10气体入口相连,水气分离器10的液态水出口通过管路与电解池4的水入口相连,水气分离器10出口的气体送往冷藏间或空调房间。
优选地,所述引射器6包括单级引射器和多级引射器。
所述供热通路包括电解池4的冷却管路、燃料电池8的冷却管路、循环泵11、供热换热器12;其中,电解池4的冷却管路和燃料电池8的冷却管路并联连接,电解池4和燃料电池8的冷却管路出口与循环泵11入口连接,循环泵11的出口与供热换热器12高温侧的管道进口相连,供热换热器12高温侧的管道出口与电解池4、燃料电池8的冷却管进口相连。
优选地,所述储氢罐7和储氧罐5能够承受1.5MPa以上气体压力;储氢罐7和储氧罐5中的气体均为高压气体,温度接近于环境温度。
本发明公开的可再生燃料电池/膨胀机混合循环的冷热电联供系统,在使用时:
可再生能源发电设备1产生的电能通过发电输出电路送达供电母线3上,并通过供电母线3满足供电母线上的电负荷,若可再生能源发电设备3输出的电量大于总电负荷,则多出来的电量被储存在电化学储能设备2中。
当电解池4有直流电流通过时,电解池4中水在催化剂作用下被分解为氢气和氧气,其中氢气和氧气分别产生于电解质两侧的阴极和阳极,氢气经氢气出口管道进入储氢罐7储存,氧气经氧气出口管道进入储氧罐5储存。储氧罐5和储氢罐7均为高压气体,温度接近于环境温度。电解池4工作过程中产生热量,通过一冷却管路对电解池4进行冷却,冷却管路的循环介质为液态流体,冷却管路循环介质在循环泵11推动下,不断将电解池4工作过程中产生热量输运到供热换热器12中,在供热换热器12中,热量被释放满足供热需求。
储氧罐5中高压氧气经管道进入引射器6,高压氧气在引射器6中喷射出来,吸入周围空气进入引射器6,混合气体压力在引射器6扩压管段稳定后与压气机9出口的空气混合后进入燃料电池8阳极气体入口,燃料电池8阳极出口气体进入膨胀机13膨胀做功,气体膨胀做功过程带动发电机组产生电能,产生的电能输送到供电母线上满足电负荷需求或储存在电化学储能设备2中。气体在膨胀机13中膨胀做功过程中,内能减少,温度下降,温度下降后的混合气体经管道进入水气分离器10,温度下降后,混合气体中的水蒸汽凝结出来,生成的液态水在水气分离器10中汇集,液态水由水气分离10液体出口排出,并通过管道流入电解池4。水气分离器10出口的气体是低温气体,可送往冷藏间或空调房间满足冷负荷需求。
储氢罐7中氢气经管道进入燃料电池8阳极,氢气与燃料电池8阴极空气中的氧气发生电化学反应,并在燃料电池8阴极生成水。氢气和氧气电化学反应过程产生电流,燃料电池8产生的电能通过供电母线3满足电负荷需求或存储在电化学储能设备2中。燃料电池8内部电化学反应过程为放热过程,通过一冷却管路对燃料电池8进行冷却,冷却管路的循环介质为液态流体,燃料电池8冷却管路与电解池4冷却管路为并联连接,冷却循环在循环泵11推动下,不断将燃料电池8中热量输运到供热换热器12中,在供热换热器12中,热量被释放满足供热需求。

Claims (9)

1.一种基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,其特征在于,包括可再生能源发电设备(1)、化学储能设备(2)、供电母线(3)、电解池(4)、燃料电池(8)、压气机(9)及膨胀机(13);
供电母线(3)通过导电线路分别与可再生能源发电设备(1)、化学储能设备(2)、电解池(4)的电源输入端、燃料电池(8)的发电输出端、压气机(9)的供电端以及膨胀机(13)的发电输出端相连;其中,可再生能源发电设备(1)产生的电能通过发电输出电路送达至供电母线(3)满足与供电母线(3)相连的电负荷需求,可再生能源发电设备(1)产生的多余电量被储存在化学储能设备(2)中;
当电解池(4)中有电流通过时,电解池(4)中的水被电解为氧气和氢气,电解池(4)的氧气输出端通过管路连接至膨胀机(13)并形成制冷通路,氢气输出端通过管路连接至燃料电池(8)的阳极气体入口,电解池(4)和燃料电池(8)的冷却管路与热负荷形成闭环连接并形成供热通路;
所述供热通路由电解池(4)的冷却管路、燃料电池(8)的冷却管路、循环泵(11)及供热换热器(12)构成;
其中,电解池(4)和燃料电池(8)中的冷却管路为并联连接,循环介质为液态流体,电解池(4)和燃料电池(8)的冷却管出口与循环泵(11)入口相连,循环泵(11)的出口与供热换热器(12)高温侧的管道进口相连,供热换热器(12)高温侧的管道出口与电解池(4)、燃料电池(8)的冷却管进口相连。
2.根据权利要求1所述的基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,其特征在于,所述制冷通路包括与电解池(4)的氧气出口相连的储氧罐(5),储氧罐(5)的气体出口通过管路连接有引射器(6),引射器(6)的气体出口通过管路与压气机(9)的气体出口相连,两股气体混合后连接至燃料电池(8)阴极气体入口,燃料电池(8)阴极气体出口通过管路与膨胀机(13)的气体入口相连,膨胀机(13)的气体出口端连接水气分离器(10)的气体入口,水气分离器(10)的液态水出口通过管路与电解池(4)的水入口相连,水气分离器(10)出口的气体送往冷藏间或空调房间。
3.根据权利要求2所述的基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,其特征在于,所述引射器(6)为单级引射器或多级引射器。
4.根据权利要求2所述的基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,其特征在于,在电解池(4)的氢气输出端与燃料电池(8)相连的管路上设有储氢罐(7),储氢罐(7)和储氧罐(5)能够承受1.5MPa以上气体压力;储氢罐(7)和储氧罐(5)中的气体均为高压气体,温度接近于环境温度。
5.根据权利要求1~4中任意一项所述的基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,其特征在于,所述可再生能源发电设备(1)为一个或多个,采用太阳能光伏发电设备、风力发电设备或潮汐能发电设备。
6.根据权利要求1~4中任意一项所述的基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,其特征在于,所述化学储能设备(2)为一个或多个,采用锂电池、铅酸电池或超级电容器。
7.根据权利要求1~4中任意一项所述的基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,其特征在于,所述电解池(4)为质子交换膜电解池或碱性电解池,当加载电流时电解池(4)能够将水分解为氢气和氧气,能够承受大于1.5倍大气压的工作压力;所述燃料电池(8)为质子交换膜燃料电池或碱性燃料电池。
8.根据权利要求1~4中任意一项所述的基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,其特征在于,所述膨胀机(13)为气体膨胀机,包括容积型膨胀机和速度型膨胀机;其中,容积型膨胀机包括涡旋式、活塞式、螺杆式和旋叶式;速度型膨胀机包括离心式和轴流式。
9.根据权利要求1~4中任意一项所述的基于可再生燃料电池/膨胀机混合循环的冷热电联供系统,其特征在于,所述压气机(9)包括容积型压气机和速度型压气机;其中,容积型压气机包括涡旋式、活塞式、螺杆式和旋叶式;速度型压气机包括离心式和轴流式;
压气机(9)驱动方式包括两种,第一种是供电母线(3)通过供电给电机驱动压气机(9)工作,第二种是膨胀机(13)通过轴带动压气机(9)工作。
CN201711071272.0A 2017-11-03 2017-11-03 基于可再生燃料电池/膨胀机混合循环的冷热电联供系统 Active CN107819139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711071272.0A CN107819139B (zh) 2017-11-03 2017-11-03 基于可再生燃料电池/膨胀机混合循环的冷热电联供系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711071272.0A CN107819139B (zh) 2017-11-03 2017-11-03 基于可再生燃料电池/膨胀机混合循环的冷热电联供系统

Publications (2)

Publication Number Publication Date
CN107819139A CN107819139A (zh) 2018-03-20
CN107819139B true CN107819139B (zh) 2020-03-17

Family

ID=61604711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711071272.0A Active CN107819139B (zh) 2017-11-03 2017-11-03 基于可再生燃料电池/膨胀机混合循环的冷热电联供系统

Country Status (1)

Country Link
CN (1) CN107819139B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108791942A (zh) * 2018-06-20 2018-11-13 送飞实业集团有限公司 一种新型新能源机场灯光系统及其实施方法
CN110571461A (zh) * 2019-09-11 2019-12-13 哈尔滨锅炉厂有限责任公司 一种质子交换膜燃料电池热电联供系统
CN113851670B (zh) * 2021-08-25 2023-12-08 东南大学 一种基于质子交换膜燃料电池的冷热电联供方法
CN113915667B (zh) * 2021-11-18 2022-08-09 上海交通大学 基于全热交换器和热泵技术的燃料电池热回收及供热系统
CN117293367B (zh) * 2023-08-18 2024-09-06 中国电建集团河南省电力勘测设计院有限公司 一种适用于质子膜氢燃料电池的新型空气进气系统
CN117393816B (zh) * 2023-12-11 2024-03-12 武汉氢能与燃料电池产业技术研究院有限公司 一种燃料电池热电联供装置及供热方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546842A (zh) * 2008-03-24 2009-09-30 昆山太得隆机械有限公司 太阳能光伏水储能装置
CN102088099A (zh) * 2010-12-16 2011-06-08 西安交通大学 一种固体氧化物燃料电池驱动的冷热电联供循环系统
CN102324538A (zh) * 2011-07-12 2012-01-18 浙江银轮机械股份有限公司 基于固体氧化物燃料电池余热回收的有机郎肯循环发电系统
CN107014110A (zh) * 2017-03-24 2017-08-04 西安交通大学 分布式水汽冷热电联供装置及方法
CN107246739A (zh) * 2017-06-02 2017-10-13 北京理工大学 氢内燃机汽车高压氢气制冷装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160281604A1 (en) * 2015-03-27 2016-09-29 General Electric Company Turbine engine with integrated heat recovery and cooling cycle system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546842A (zh) * 2008-03-24 2009-09-30 昆山太得隆机械有限公司 太阳能光伏水储能装置
CN102088099A (zh) * 2010-12-16 2011-06-08 西安交通大学 一种固体氧化物燃料电池驱动的冷热电联供循环系统
CN102324538A (zh) * 2011-07-12 2012-01-18 浙江银轮机械股份有限公司 基于固体氧化物燃料电池余热回收的有机郎肯循环发电系统
CN107014110A (zh) * 2017-03-24 2017-08-04 西安交通大学 分布式水汽冷热电联供装置及方法
CN107246739A (zh) * 2017-06-02 2017-10-13 北京理工大学 氢内燃机汽车高压氢气制冷装置

Also Published As

Publication number Publication date
CN107819139A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
CN107819139B (zh) 基于可再生燃料电池/膨胀机混合循环的冷热电联供系统
CN108365235B (zh) 基于有机朗肯循环的燃料电池余热利用系统
CN108533476B (zh) 一种热泵超临界空气储能系统
CN110544786A (zh) 高温质子交换膜燃料电池冷热电三联供系统及其工作方法
CN114243056B (zh) 一种具有能量回收模块的燃料电池系统
CN113530667B (zh) 基于太阳能甲醇分解合成循环的零碳排放冷热电联供系统和方法
CN113851670B (zh) 一种基于质子交换膜燃料电池的冷热电联供方法
CN102760900B (zh) 结合吹扫气集成otm的加压co2零排放sofc/gt/at/st复合动力系统
CN114413503B (zh) 可再生能源驱动的零碳高效的分布式供能系统及运行方法
CN105089849A (zh) 排气余热温差热电系统
CN102201586B (zh) 燃料电池系统
CN115654768A (zh) 一种利用压缩热的冷热电三联产储能系统
CN112983583B (zh) 一种油田联合站分布式联供系统
CN116316724B (zh) 压缩空气储能发电热回收系统及方法
CN216342361U (zh) 一种空气膨胀发电系统
CN116111131A (zh) 集熔融盐蓄换热与rsoc的发电储能一体化系统及工作方法
CN115450721A (zh) 适用于压缩空气储能系统变工况运行的压缩机联合运行系统及方法
CN210984860U (zh) 一种燃料电池的空气系统
CN115333248A (zh) 用于岛礁的液态二氧化碳储能系统及微电网系统
CN112161319A (zh) 一种便携式铝-空燃料电池和热泵耦合循环制热系统及使用方法
CN220491922U (zh) 一种可再生能源耦合燃料电池的冷电联供系统
CN116247827B (zh) 工业园区综合能源系统及其运行方法
CN218915437U (zh) 一种用于冷电联产和碳封存的地热能利用系统
CN213811217U (zh) 一种便携式铝-空燃料电池和热泵耦合循环制热系统
CN216198322U (zh) 一种高压储氢能量回收系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant