CN107819046A - 基于单根孪晶结构GaN纳米线的紫外光电探测器及制备方法 - Google Patents

基于单根孪晶结构GaN纳米线的紫外光电探测器及制备方法 Download PDF

Info

Publication number
CN107819046A
CN107819046A CN201610818729.9A CN201610818729A CN107819046A CN 107819046 A CN107819046 A CN 107819046A CN 201610818729 A CN201610818729 A CN 201610818729A CN 107819046 A CN107819046 A CN 107819046A
Authority
CN
China
Prior art keywords
nano wire
gan nano
twin structure
structure gan
single twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610818729.9A
Other languages
English (en)
Other versions
CN107819046B (zh
Inventor
姜辛
刘宝丹
张兴来
刘青云
贾文博
刘鲁生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201610818729.9A priority Critical patent/CN107819046B/zh
Publication of CN107819046A publication Critical patent/CN107819046A/zh
Application granted granted Critical
Publication of CN107819046B publication Critical patent/CN107819046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测器领域,特别是指一种基于单根孪晶结构GaN纳米线的紫外光电探测器及其制备方法。该探测器自下而上依次为Si衬底、SiO2绝缘层,绝缘层上的单根孪晶结构GaN纳米线,覆盖在单根孪晶结构GaN纳米线两端的金属电极。本发明中孪晶结构GaN纳米线具有很高的比表面积,并且孪晶结构可以有效实现光生载流子的分离以及快速输运,具有很高的光响应度、外量子效率和光电流增益。更重要的是,该紫外探测器对UV‑A波段的紫外光有着非常高的选择性。器件制作工艺简单、成本低、灵敏度高、性能稳定。

Description

基于单根孪晶结构GaN纳米线的紫外光电探测器及制备方法
技术领域
本发明属于光电探测器领域,特别是指一种基于单根孪晶结构GaN纳米线的紫外光电探测器及其制备方法。
背景技术
一维半导体纳米线由于其有着巨大的比表面积、较小的特征尺寸、超高的光吸收效率和优异的结晶质量,被认为是构筑高性能纳米光电器件最有前景的基本单元。一维半导体纳米线被广泛应用在太阳能电池、场效应晶体管、纳米发电机、光电探测器等众多领域。在这些半导体器件中,紫外光电探测器因为其在导弹追踪、二进制开关、安全通讯、火焰报警、环境污染检测、未来信息存储等重要技术领域的应用,受到了人们广泛的关注。
基于不同波长,紫外波段的光波可以进一步分为三个典型的光谱区:UV-A(400-320nm),UV-B(320~280nm)和UV-C(280~200nm)。大部分的UV-B紫外光和所有的UV-C紫外光可以被平流臭氧层和遮光剂中的分子吸收。然而,UV-A紫外线则可以很容易的穿透臭氧层到达地球的表面。长时间暴露在UV-A射线中可能会导致人体提前衰老或者皮肤癌等各种健康疾病。因此,不仅有必要建立有效的策略去避免UV-A紫外线损伤,而且有必要制备高性能、高选择度的紫外光电探测器来监控UV-A紫外线。
作为第三代半导体材料的氮化镓(GaN)属于直接带隙半导体,因其物理化学性质稳定、电子饱和速度高、禁带宽度大、带隙可调、熔点高等优点,已经成为发光二极管、场效应晶体管和紫外光探测器领域的主流材料和研究热点。目前,GaN薄膜基紫外光电探测器已经产业化应用。然而,基于GaN纳米材料的紫外光电探测器还存在着制备复杂、波长选择度差、光响应度和外量子效率不高等缺点,难以产业化。
发明内容
为了解决现有技术存在的上述问题,本发明的目的在于提供一种成本低廉、UV-A紫外光波段选择度好、响应时间快、光响应度和外量子效率超高的基于单根孪晶结构GaN纳米线的紫外光探测器及其制备方法。
为了实现上述目的,本发明的技术方案如下:
一种基于单根孪晶结构GaN纳米线的紫外光电探测器,自下至上依次包括Si衬底(1)、SiO2绝缘层(2),SiO2绝缘层(2)上设置单根孪晶结构GaN纳米线(3)、金属电极(4),金属电极(4)分别覆盖在单根孪晶结构GaN纳米线(3)的两端,且形成欧姆接触。
所述的孪晶结构GaN纳米线(3)的晶体结构为孪晶,并且孪晶面平行于纳米线的轴向方向;所述的孪晶结构GaN纳米线(3)长度为100纳米至1毫米,直径为10纳米至10微米。
所述的金属电极(4)为Ag、Ti/Au、Cr/Au、Ni/Au、Ti/Al/Ti/Au或Ti/Al/Ni/Au;所述的金属电极(4)厚度为20至200纳米,金属电极(4)的间距为100纳米至1毫米。
所述的基于单根孪晶结构GaN纳米线的紫外光电探测器的制备方法,包括以下步骤:
步骤1:将用于生长GaN纳米线的基底依次置于丙酮溶液、酒精溶液和去离子水中超声清洗,每步清洗5~15分钟,清洗后用氮气吹干;
步骤2:利用沉积的方法在基底上沉积一层Au薄膜;
步骤3:将装有Ga2O3粉末的石英坩埚放置高温管式炉的中央,再将沉积有Au薄膜的基底放至高温管式炉的下游位置;然后,向管式炉中通入惰性气氛来去除管式炉腔体中残余的氧气;
步骤4:将高温管式炉的腔体加热,当温度升至900℃±20℃时关闭惰性气氛并通入NH3气;继续升温,直到温度升至孪晶结构GaN纳米线生长所需的温度;恒温一定时间后停止加热,关闭NH3气,通入惰性气氛,使管式炉自然冷却至室温,得到孪晶结构GaN纳米线阵列;
步骤5:利用物理剥离的方法将孪晶结构GaN纳米线阵列从基底转移至酒精溶液,超声震荡4~6分钟;然后,利用旋涂的方法将纳米线转移并分散至SiO2绝缘层;
步骤6:利用光刻和电子束蒸发的方法在单根孪晶结构GaN纳米线两端制备一层金属电极,形成最终的基于单根孪晶结构GaN纳米线的紫外光电探测器。
所述的沉积的方法为电子束蒸发、热蒸发或磁控溅射,Au薄膜的厚度为3至20纳米。
所述的基底为蓝宝石或者硅片,所述的惰性气氛为氩气或者氮气。
所述的孪晶结构GaN纳米线的生长温度为1050至1150℃,NH3气的气体流量为180~220mL/min,恒温一定时间为25~35min。
与现有技术相比,本发明基于单根孪晶结构GaN纳米线的紫外光电探测器的优点在于:
1)相比于GaN薄膜,GaN纳米线具有更大的比表面积,更高的吸光系数以及更好的晶体质量。
2)更重要的是,本发明所选用的GaN纳米线是具有沿着纳米线轴向镜面对称的孪晶结构,并且两个晶畴都是单晶。因此,此孪晶结构纳米线有着很高的载流子迁移率。并且,此孪晶结构纳米线可以给光生载流子提供两个独立的传输通道,大大降低了光生载流子的复合效率,可使光电探测器的性能大幅提高。
3)本发明对UV-A波段的紫外光有着非常好的选择特性。并且有着超高的光谱响应度、外量子效率和探测灵敏度,以及较快的响应时间、较大的开关比和优异的光电流稳定性。
附图说明
图1是基于单根孪晶结构GaN纳米线的紫外光电探测器的三维结构示意图。图中,1、Si衬底;2、SiO2绝缘层;3、单根孪晶结构GaN纳米线;4、金属电极。
图2是孪晶结构GaN纳米线阵列的扫描电子显微镜(SEM)图像。(a)是45度角俯视图;(b)是剖面图。
图3中,(a)是单根孪晶结构GaN纳米线的透射电子显微镜(TEM)图像;(b)是单根孪晶结构GaN纳米线的高分辨透射电子显微镜(HRTEM)图像。
图4是基于单根孪晶结构GaN纳米线的紫外光电探测器在不同波长光照下的I-V特性曲线。
图5中,(a)是在3V偏压测试条件下,基于单根孪晶结构GaN纳米线的紫外光电探测器的光电流与入射光波长的关系曲线;(b)是在3V偏压下测试条件下,基于单根孪晶结构GaN纳米线的紫外光电探测器的光响应度与入射光波长的关系曲线。
图6是基于单根孪晶结构GaN纳米线的紫外光电探测器在360nm光照条件下,不同入射光功率的I-V特性曲线。
图7是基于单根孪晶结构GaN纳米线的紫外光电探测器的开关特性曲线。
图8是在5V偏压、360nm光照条件下,基于单根孪晶结构GaN纳米线的紫外光电探测器的光电流与时间的关系曲线。
具体实施方式:
下面结合附图和具体实施例对本发明做进一步说明。
参照图1,本发明的基于单根孪晶结构GaN纳米线的紫外光电探测器,自下而上依次有Si衬底1、SiO2绝缘层2、单根孪晶结构GaN纳米线3、金属电极4,单根孪晶结构GaN纳米线3、金属电极4设置于SiO2绝缘层2上,金属电极4分别覆盖在单根孪晶结构GaN纳米线3的两端,且形成欧姆接触。
实施例:
本实施例中,基于单根孪晶结构GaN纳米线的紫外光电探测器的制备方法,具体步骤如下:
1)将用于生长GaN纳米线的蓝宝石基底依次置于丙酮溶液、酒精溶液和去离子水中超声清洗,每步清洗10分钟,清洗后用氮气吹干。
2)利用电子束蒸发的方法在蓝宝石基底上沉积一层5nm厚的Au薄膜。
3)将装有Ga2O3粉末的石英坩埚放置高温管式炉的中央,再将沉积有5nm厚Au薄膜的蓝宝石基底放至高温管式炉的下游位置。然后,向高温管式炉中通入氩气来去除管式炉腔体中残余的氧气。
4)对高温管式炉进行升温,当腔体温度升至900℃时关闭氩气并通入NH3气,NH3气的气体流量为200mL/min。继续升温至1100℃,然后恒温30分钟后停止加热,通入氩气并关闭NH3气使管式炉自然降温至室温,得到孪晶结构GaN纳米线阵列。
5)将孪晶结构GaN纳米线阵列从蓝宝石基底剥落后转移至酒精溶液中,并超声震荡5分钟。然后,利用旋涂的方法将纳米线转移并分散至SiO2绝缘层。
6)在光学显微镜下,在SiO2绝缘层上寻找一根孪晶结构GaN纳米线,利用传统光刻和电子束蒸发的方法在单根孪晶结构GaN纳米线两端沉积一层Ti/Au电极,Ti的厚度为40nm,Au的厚度为60nm,形成最终的基于单根孪晶结构GaN纳米线的紫外光电探测器。
参照图2,从孪晶结构GaN纳米线阵列的SEM图像可以看出,本发明的孪晶结构GaN纳米线有着很好的择优生长取向,尺寸均一、形貌整齐、可重复性高。
参照图3,从单根孪晶结构GaN纳米线的TEM图像(a)可以看出,GaN纳米线是由两个沿着纳米线轴向晶面对称的晶畴组成。而且,通过孪晶结构GaN纳米线顶部的Au颗粒可以判断,孪晶结构GaN纳米线的生长机制是气-液-固(VLS)生长机制。通过对单根孪晶结构GaN纳米线HRTEM图像(b)的进一步分析,我们可以进一步确定,GaN纳米线是孪晶结构,并且两个对称的晶畴都是单晶结构。
参照图4,从基于单根孪晶结构GaN纳米线的紫外光电探测器在不同波长光照下的I-V特性曲线可以看出,本发明的紫外光电探测器在没有光照和500nm光照条件下都显示出很小的电流,1.3nA(5V偏压)。当光照达到400nm时,电流有着微弱的增加。然而,进一步降低入射波长至370nm时,电流显著增加。最大光电流出现在当光照波长为360nm时,光电流可达到246nA(5V偏压),显示出探测器较大的光电流增益及良好的紫外光响应特性。
参照图5,从基于单根孪晶结构GaN纳米线的紫外光电探测器的光电流与入射光波长的关系曲线(a)以及光响应度与入射光波长的关系曲线(b)可以看出,光电流的最大值和光响应度的最大值都出现在360nm光照条件下,其最大光响应度可达到1.74×107A/W。并且,探测器只对UV-A紫外光波段有相应,对UV-B、UV-A和可见光波段几乎没有响应。显示出本发明的紫外光电探测器非常优异的UV-A选择特性。
参照图6,从基于单根孪晶结构GaN纳米线的紫外光电探测器在不同入射光功率的I-V特性曲线可以看出,随着入射光功率的增加光电流也逐渐增加,表明本发明的紫外光电探测器对UV-A波长的光的强弱非常敏感。通过计算,本发明的紫外光电探测器的外量子效率高达6.08×109%,探测灵敏度高达2.82×1014Jones。
参照图7,从基于单根孪晶结构GaN纳米线的紫外光电探测器的开关特性曲线可以看出,本发明的紫外光电探测器的光、暗电流稳定、响应时间快(144ms)、开光重复性高、光暗电流比值大(大于两个数量级),显示出极其优异的光电信号转换特性和开关特性。
参照图8,从基于单根孪晶结构GaN纳米线的紫外光电探测器的光电流与时间的关系曲线可以看出,在4000s的光照时间内,探测器的光电流几乎没有衰减,光电流的波动范围小于7%。显示出极为优异的光电流稳定性。
实施例结果表明,相比于传统的紫外光电探测器,本发明的基于单根孪晶结构GaN纳米线的紫外探测器有着超高的外量子效率、响应度和探测灵敏度,对UV-A波长的紫外光选择性好。其制作工艺简单、成本低、有利于在纳米器件领域广泛应用。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换,都应涵盖在本发明的包含范围内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (7)

1.一种基于单根孪晶结构GaN纳米线的紫外光电探测器,其特征在于,自下至上依次包括Si衬底(1)、SiO2绝缘层(2),SiO2绝缘层(2)上设置单根孪晶结构GaN纳米线(3)、金属电极(4),金属电极(4)分别覆盖在单根孪晶结构GaN纳米线(3)的两端,且形成欧姆接触。
2.根据权利要求1所述的基于单根孪晶结构GaN纳米线的紫外光电探测器,其特征在于:所述的孪晶结构GaN纳米线(3)的晶体结构为孪晶,并且孪晶面平行于纳米线的轴向方向;所述的孪晶结构GaN纳米线(3)长度为100纳米至1毫米,直径为10纳米至10微米。
3.根据权利要求1所述的基于单根孪晶结构GaN纳米线的紫外光电探测器,其特征在于:所述的金属电极(4)为Ag、Ti/Au、Cr/Au、Ni/Au、Ti/Al/Ti/Au或Ti/Al/Ni/Au;所述的金属电极(4)厚度为20至200纳米,金属电极(4)的间距为100纳米至1毫米。
4.一种权利要求1所述的基于单根孪晶结构GaN纳米线的紫外光电探测器的制备方法,其特征在于,包括以下步骤:
步骤1:将用于生长GaN纳米线的基底依次置于丙酮溶液、酒精溶液和去离子水中超声清洗,每步清洗5~15分钟,清洗后用氮气吹干;
步骤2:利用沉积的方法在基底上沉积一层Au薄膜;
步骤3:将装有Ga2O3粉末的石英坩埚放置高温管式炉的中央,再将沉积有Au薄膜的基底放至高温管式炉的下游位置;然后,向管式炉中通入惰性气氛来去除管式炉腔体中残余的氧气;
步骤4:将高温管式炉的腔体加热,当温度升至900℃±20℃时关闭惰性气氛并通入NH3气;继续升温,直到温度升至孪晶结构GaN纳米线生长所需的温度;恒温一定时间后停止加热,关闭NH3气,通入惰性气氛,使管式炉自然冷却至室温,得到孪晶结构GaN纳米线阵列;
步骤5:利用物理剥离的方法将孪晶结构GaN纳米线阵列从基底转移至酒精溶液,超声震荡4~6分钟;然后,利用旋涂的方法将纳米线转移并分散至SiO2绝缘层;
步骤6:利用光刻和电子束蒸发的方法在单根孪晶结构GaN纳米线两端制备一层金属电极,形成最终的基于单根孪晶结构GaN纳米线的紫外光电探测器。
5.根据权利要求4所述的基于单根孪晶结构GaN纳米线的紫外光电探测器的制备方法,其特征在于:所述的沉积的方法为电子束蒸发、热蒸发或磁控溅射,Au薄膜的厚度为3至20纳米。
6.根据权利要求4所述的基于单根孪晶结构GaN纳米线的紫外光电探测器的制备方法,其特征在于:所述的基底为蓝宝石或者硅片,所述的惰性气氛为氩气或者氮气。
7.根据权利要求4所述的基于单根孪晶结构GaN纳米线的紫外光电探测器的制备方法,其特征在于:所述的孪晶结构GaN纳米线的生长温度为1050至1150℃,NH3气的气体流量为180~220mL/min,恒温一定时间为25~35min。
CN201610818729.9A 2016-09-12 2016-09-12 基于单根孪晶结构GaN纳米线的紫外光电探测器及制备方法 Active CN107819046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610818729.9A CN107819046B (zh) 2016-09-12 2016-09-12 基于单根孪晶结构GaN纳米线的紫外光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610818729.9A CN107819046B (zh) 2016-09-12 2016-09-12 基于单根孪晶结构GaN纳米线的紫外光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN107819046A true CN107819046A (zh) 2018-03-20
CN107819046B CN107819046B (zh) 2019-10-22

Family

ID=61601179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610818729.9A Active CN107819046B (zh) 2016-09-12 2016-09-12 基于单根孪晶结构GaN纳米线的紫外光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN107819046B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969075A (zh) * 2020-07-15 2020-11-20 中国科学院金属研究所 一种宽光谱响应的GaN:ZnO固溶体纳米线光电探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544136A (zh) * 2012-01-12 2012-07-04 南京大学 一种纳米材料电子与光电子器件及制备方法
CN105556680A (zh) * 2013-05-22 2016-05-04 王士原 微结构增强型吸收光敏装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544136A (zh) * 2012-01-12 2012-07-04 南京大学 一种纳米材料电子与光电子器件及制备方法
CN105556680A (zh) * 2013-05-22 2016-05-04 王士原 微结构增强型吸收光敏装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAODAN LIU,ETC.: "《Needlelike Bicrystalline GaN Nanowires with Excellent Field Emission Properties》", 《JOURNAL PHYSICS CHEMISTRY B》 *
LORENZO RIGUTTI,MARIA TCHERNYCHEVA: "《GaN Nanowire-based Ultraviolet photodetectors》", 《WIDE BAND GAP SEMICONDUCTOR NANOWIRES 2: HETEROSTRUCTURES AND OPTOELECTRONIC DEVICES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969075A (zh) * 2020-07-15 2020-11-20 中国科学院金属研究所 一种宽光谱响应的GaN:ZnO固溶体纳米线光电探测器及其制备方法
CN111969075B (zh) * 2020-07-15 2024-03-08 中国科学院金属研究所 一种宽光谱响应的GaN:ZnO固溶体纳米线光电探测器及其制备方法

Also Published As

Publication number Publication date
CN107819046B (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
Guo et al. Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films
Wang et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers
Prabhu et al. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique
Inamdar et al. ZnO based visible–blind UV photodetector by spray pyrolysis
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
Humayun et al. Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors
CN110265504B (zh) 一种紫外光电探测器及其制备方法
Hanna et al. Low temperature-processed ZnO thin films for p–n junction-based visible-blind ultraviolet photodetectors
Alsultany et al. Effects of ZnO seed layer thickness on catalyst-free growth of ZnO nanostructures for enhanced UV photoresponse
Hadi et al. Rapid laser fabrication of Nickel oxide nanoparticles for UV detector
Upadhyay et al. BiFeO 3/CH 3 NH 3 PbI 3 perovskite heterojunction based near-infrared photodetector
Chakrabartty et al. ${\rm TiO} _ {2} $ Nanoparticles Arrays Ultraviolet-A Detector With Au Schottky Contact
Parthasarathy Synthesis and UV detection characteristics of TiO2 thin film prepared through sol gel route
Tetseo et al. CuO nanowire-based metal semiconductor metal infrared photodetector
Martin et al. Arrays of thermally evaporated PbSe infrared photodetectors deposited on Si substrates operating at room temperature
Shougaijam et al. Enhancement of broad light detection based on annealed Al-NPs assisted TiO2-NWs deposited on p-Si by GLAD technique
CN112133777A (zh) 一种核-壳结构量子点宽光谱光电探测器及其制备方法
Luo et al. High-performance mid-infrared photodetection based on Bi2Se3 maze and free-standing nanoplates
CN107819046B (zh) 基于单根孪晶结构GaN纳米线的紫外光电探测器及制备方法
Liu et al. High-performance of Al nanoparticle enhanced 4H-SiC MSM photodiodes for deep ultraviolet detection
Sekertekin et al. Ultraviolet photodiode fabricated from TiO2 nanorods/p-silicon heterojunction
CN107768463A (zh) 一种自驱动光电探测器及其制备方法
Zeng et al. Ultraviolet-infrared dual-color photodetector based on vertical GaN nanowire array and graphene
Ismail et al. Novel route to prepare lanthanum oxide nanoparticles for optoelectronic devices
CN111063751A (zh) 一种超薄无机窄带异质结光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant