CN107818973B - A transistor for increasing signal amplitude range - Google Patents
A transistor for increasing signal amplitude range Download PDFInfo
- Publication number
- CN107818973B CN107818973B CN201610819368.XA CN201610819368A CN107818973B CN 107818973 B CN107818973 B CN 107818973B CN 201610819368 A CN201610819368 A CN 201610819368A CN 107818973 B CN107818973 B CN 107818973B
- Authority
- CN
- China
- Prior art keywords
- doped well
- capacitance
- capacitor
- interface
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003071 parasitic effect Effects 0.000 claims abstract description 252
- 239000003990 capacitor Substances 0.000 claims abstract description 206
- 239000000758 substrate Substances 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 4
- 101100102849 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) VTH1 gene Proteins 0.000 description 3
- 101150088150 VTH2 gene Proteins 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/16—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种晶体管,尤指一种利用补偿电容增加信号振幅范围的晶体管。The invention relates to a transistor, in particular to a transistor which uses a compensation capacitance to increase the range of signal amplitude.
背景技术Background technique
当晶体管传送或接收一信号时,该信号的振幅会跨在该晶体管的汲(源)极的掺杂区和用以形成该晶体管的基板之间的所有接口寄生电容上,其中该所有接口寄生电容中对应该基板的接口寄生电容的电容值最小且承受的跨压会大于该所有接口寄生电容中其余寄生电容所承受的跨压。由于对应该基板的接口寄生电容的电容值最小且承受最大的跨压,所以对应该基板的寄生二极管很容易被导通,导致该信号的振幅大大地受限。因为该信号的振幅大大地受限,所以该信号所能携带的能量也将严重地受限。因此,如何设计一个可增加信号振幅范围的晶体管将成为一项重要课题。When a transistor transmits or receives a signal, the amplitude of the signal will straddle all interface parasitic capacitances between the doped region of the drain (source) of the transistor and the substrate on which the transistor is formed, wherein all interface parasitic Among the capacitors, the capacitance value corresponding to the interface parasitic capacitance of the substrate is the smallest and the cross-voltage withstood will be greater than the cross-voltage borne by the other parasitic capacitances of all the interface parasitic capacitances. Since the parasitic capacitance of the interface corresponding to the substrate has the smallest capacitance and bears the largest cross-voltage, the parasitic diode corresponding to the substrate is easily turned on, which greatly limits the amplitude of the signal. Since the amplitude of the signal is greatly limited, the amount of energy the signal can carry will also be severely limited. Therefore, how to design a transistor that can increase the signal amplitude range will become an important issue.
发明内容Contents of the invention
为了克服现有技术中晶体管信号振幅受限的技术问题,本发明提供了一种可增加信号振幅范围的晶体管。In order to overcome the technical problem of limited signal amplitude of the transistor in the prior art, the present invention provides a transistor capable of increasing the signal amplitude range.
本发明的一实施例提供一种用于增加信号振幅范围的晶体管。该晶体管包括一第一掺杂井、一第二掺杂井、一第一掺杂区、一第二掺杂区、一闸极层及至少一补偿电容。该第一掺杂井形成于一结构层内;该第二掺杂井形成于该结构层内,且该第二掺杂井形成于该第一掺杂井与该结构层之间;该第一掺杂区形成于该第一掺杂井中,用以传输一信号;该第二掺杂区形成于该第一掺杂井中,其中该第一掺杂区和该第二掺杂区具有一第一导电类型,且该第二掺杂井具有一第二导电类型;该闸极层是用以使一通道形成于该第一掺杂区和该第二掺杂区之间;该至少一补偿电容电性连接于该第一掺杂区与该第一掺杂井之间、或该第一掺杂井与该第二掺杂井之间、或该第二掺杂井与一第一参考电位之间;该第一掺杂区与该第一掺杂井间具有一第一接口寄生电容、该第一掺杂井与该第二掺杂井间具有一第二接口寄生电容、以及该第二掺杂井与该结构层间具有一第三接口寄生电容;且该至少一补偿电容是用以调整该第一接口寄生电容、该第二接口寄生电容或该第三接口寄生电容的跨压。An embodiment of the present invention provides a transistor for increasing signal amplitude range. The transistor includes a first doped well, a second doped well, a first doped region, a second doped region, a gate layer and at least one compensation capacitor. The first doping well is formed in a structural layer; the second doping well is formed in the structural layer, and the second doping well is formed between the first doping well and the structural layer; the first doping well is formed in the structural layer; A doped region is formed in the first doped well for transmitting a signal; the second doped region is formed in the first doped well, wherein the first doped region and the second doped region have a The first conductivity type, and the second doped well has a second conductivity type; the gate layer is used to form a channel between the first doped region and the second doped region; the at least one The compensation capacitor is electrically connected between the first doped region and the first doped well, or between the first doped well and the second doped well, or between the second doped well and a first doped well. Between reference potentials; there is a first interface parasitic capacitance between the first doped region and the first doped well, a second interface parasitic capacitance between the first doped well and the second doped well, and There is a third interface parasitic capacitance between the second doped well and the structure layer; and the at least one compensation capacitance is used to adjust the first interface parasitic capacitance, the second interface parasitic capacitance or the third interface parasitic capacitance across pressure.
与现有技术相比较,本发明所提供的技术方案是当晶体管传输信号时,分别施加不同预定电压至不同的掺杂井增加跨在每一接口寄生二极管的逆向偏压,或是利用至少一补偿电容补偿至少一接口寄生电容使至少一接口寄生电容之间的跨压的差异不大,所以相较于现有技术,本发明可增加信号振幅范围。Compared with the prior art, the technical solution provided by the present invention is to apply different predetermined voltages to different doped wells to increase the reverse bias across the parasitic diodes at each interface when the transistor transmits signals, or to use at least one The compensation capacitor compensates the parasitic capacitance of the at least one interface so that the difference in cross-voltage between the parasitic capacitances of the at least one interface is small, so compared with the prior art, the present invention can increase the signal amplitude range.
附图说明Description of drawings
关于本发明的优点与精神可以通过以下的发明详述及所附图式得到进一步的了解。The advantages and spirit of the present invention can be further understood through the following detailed description of the invention and the accompanying drawings.
图1是本发明的第一实施例说明一种用于增加信号振幅范围的晶体管的示意图;FIG. 1 is a schematic diagram illustrating a transistor for increasing the signal amplitude range according to the first embodiment of the present invention;
图2是说明对应图1的电路结构图的示意图;FIG. 2 is a schematic diagram illustrating a circuit structure diagram corresponding to FIG. 1;
图3是说明第一电压振幅等于第一临界值与第一逆向偏压的差,第二电压振幅等于第二临界值与第二逆向偏压的差,以及第三电压振幅等于第三临界值与第三逆向偏压的差的示意图;Fig. 3 illustrates that the first voltage amplitude is equal to the difference between the first critical value and the first reverse bias voltage, the second voltage amplitude is equal to the difference between the second critical value and the second reverse bias voltage, and the third voltage amplitude is equal to the third critical value Schematic diagram of the difference with the third reverse bias voltage;
图4是本发明的第二实施例说明一种用于增加信号振幅范围的晶体管的示意图;4 is a schematic diagram illustrating a transistor for increasing the signal amplitude range according to the second embodiment of the present invention;
图5是说明晶体管仅包括第一补偿电容的示意图;5 is a schematic diagram illustrating that the transistor only includes a first compensation capacitor;
图6是说明晶体管仅包括第二补偿电容的示意图;6 is a schematic diagram illustrating that the transistor only includes a second compensation capacitor;
图7是说明晶体管仅包括第三补偿电容的示意图;FIG. 7 is a schematic diagram illustrating that the transistor only includes a third compensation capacitor;
图8是说明对应图4的电路结构图的示意图;FIG. 8 is a schematic diagram illustrating the circuit structure diagram corresponding to FIG. 4;
图9是本发明的第三实施例说明一种用于增加信号振幅范围的晶体管的示意图;9 is a schematic diagram illustrating a transistor for increasing the signal amplitude range according to the third embodiment of the present invention;
图10是说明晶体管仅包括第四补偿电容的示意图。FIG. 10 is a schematic diagram illustrating that the transistor only includes the fourth compensation capacitor.
【主要图示说明】【Main icon description】
100、400、600 晶体管100, 400, 600 transistors
102 第一掺杂井102 First doping well
104 第二掺杂井104 second doping well
106 结构层106 Structural layers
108 第一掺杂区108 first doped region
110 第二掺杂区110 second doped region
112 闸极层112 gate layer
113 通道113 channels
114 第一轻掺杂区114 The first lightly doped region
116 第二轻掺杂区116 Second lightly doped region
118 第三掺杂区118 Third doped region
120 第一接口寄生电容120 Parasitic capacitance of the first interface
121 第一寄生二极管121 First parasitic diode
122 第二接口寄生电容122 Second interface parasitic capacitance
123 第二寄生二极管123 Second parasitic diode
124 第三接口寄生电容124 Parasitic capacitance of the third interface
125 第三寄生二极管125 Third parasitic diode
126 第一补偿电容126 The first compensation capacitor
128 第二补偿电容128 Second compensation capacitor
130 第三补偿电容130 The third compensation capacitor
132 第三掺杂井132 The third doping well
134 第四补偿电容134 The fourth compensation capacitor
136 第四接口寄生电容136 Parasitic capacitance of the fourth interface
137 第四寄生二极管137 Fourth parasitic diode
200 基底200 bases
GND 第一参考电位GND first reference potential
SI 信号SI signal
VG、VS、VD 电压VG, VS, VD voltage
VNEG 第一电压VNEG first voltage
VPEG 第二电压VPEG second voltage
VP 低参考电位VP low reference potential
VN 高参考电位VN High reference potential
VSW1 第一电压振幅VSW1 first voltage amplitude
VSW2 第二电压振幅VSW2 second voltage amplitude
VSW3 第三电压振幅VSW3 third voltage amplitude
VTH1 第一临界值VTH1 first critical value
VTH2 第二临界值VTH2 second critical value
VTH3 第三临界值VTH3 third critical value
VR1 第一逆向偏压VR1 first reverse bias
VR2 第二逆向偏压VR2 Second reverse bias voltage
VR3 第三逆向偏压VR3 Third reverse bias voltage
VFREF 第二参考电位VFREF Second reference potential
具体实施方式Detailed ways
下面结合附图详细说明本发明的具体实施例。然而,应当将本发明理解成并不局限于以下描述的这种实施方式,并且本发明的技术理念可以与其他公知技术或功能与那些公知技术相同的其他技术组合实施。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. However, the present invention should be understood as not limited to such embodiments described below, and the technical idea of the present invention can be implemented in combination with other known technologies or other technologies having the same functions as those known technologies.
下面结合附图详细说明本发明的具体实施例。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
请参照图1,图1是本发明的第一实施例说明一种用于增加信号振幅范围的晶体管100的示意图。如图1所示,晶体管100包括一第一掺杂井102、一第二掺杂井104、一结构层106、一第一掺杂区108、一第二掺杂区110、一闸极层112、一第一轻掺杂区114、一第二轻掺杂区116和一第三掺杂区118,其中结构层106可包括一基底(substrate),用以接收一第一参考电位(例如地端GND)。另外,第一掺杂区108可为晶体管100的源极以及第二掺杂区110可为晶体管100的汲极,或是第一掺杂区108可为晶体管100的汲极以及第二掺杂区110可为晶体管100的源极。第一掺杂井102和第二掺杂井104形成于结构层106内,且第二掺杂井104形成于第一掺杂井102与结构层106之间,例如第一掺杂井102形成于第二掺杂井104之内;第一掺杂区108、第二掺杂区110、第一轻掺杂区114和第二轻掺杂区116形成于第一掺杂井102中,其中第一掺杂区108是用以传输一信号SI。第一轻掺杂区114是形成于第一掺杂区108靠近闸极层112的一边,以及第二轻掺杂区116是形成于第二掺杂区110靠近闸极层112的一边。第三掺杂区118形成于结构层106中,环绕第一掺杂区108和第二掺杂区110,且电性连接第二掺杂井104,其中第一掺杂区108、第二掺杂区110、第一轻掺杂区114、第二轻掺杂区116、第二掺杂井104和第三掺杂区118具有一第一导电类型,以及第一掺杂井102和结构层106具有一第二导电类型。例如第一掺杂区108、第二掺杂区110、第一轻掺杂区114、第二轻掺杂区116、第二掺杂井104和第三掺杂区118具有N型导电类型,以及第一掺杂井102和结构层106具有P型导电类型。但本发明并不受限于此,上述的N型导电类型与P型导电类型亦可互换。另外,第一轻掺杂区114和第二轻掺杂区116的掺杂浓度是低于第一掺杂区108和第二掺杂区110的掺杂浓度,其中第一轻掺杂区114和第二轻掺杂区116是用以防止第一掺杂区108和第二掺杂区110之间出现短通道效应(short channel effect)。Please refer to FIG. 1 . FIG. 1 is a schematic diagram illustrating a transistor 100 for increasing a signal amplitude range according to a first embodiment of the present invention. As shown in Figure 1, the transistor 100 includes a first doped well 102, a second doped well 104, a structural layer 106, a first doped region 108, a second doped region 110, a gate layer 112, a first lightly doped region 114, a second lightly doped region 116 and a third doped region 118, wherein the structural layer 106 may include a substrate for receiving a first reference potential (for example ground terminal GND). In addition, the first doped region 108 can be the source of the transistor 100 and the second doped region 110 can be the drain of the transistor 100 , or the first doped region 108 can be the drain of the transistor 100 and the second doped Region 110 may be the source of transistor 100 . The first doped well 102 and the second doped well 104 are formed in the structural layer 106, and the second doped well 104 is formed between the first doped well 102 and the structural layer 106, for example, the first doped well 102 is formed Within the second doped well 104; the first doped region 108, the second doped region 110, the first lightly doped region 114 and the second lightly doped region 116 are formed in the first doped well 102, wherein The first doped region 108 is used to transmit a signal SI. The first lightly doped region 114 is formed on a side of the first doped region 108 close to the gate layer 112 , and the second lightly doped region 116 is formed on a side of the second doped region 110 close to the gate layer 112 . The third doped region 118 is formed in the structural layer 106, surrounds the first doped region 108 and the second doped region 110, and is electrically connected to the second doped well 104, wherein the first doped region 108, the second doped region The impurity region 110, the first lightly doped region 114, the second lightly doped region 116, the second doped well 104 and the third doped region 118 have a first conductivity type, and the first doped well 102 and the structural layer 106 has a second conductivity type. For example, the first doped region 108, the second doped region 110, the first lightly doped region 114, the second lightly doped region 116, the second doped well 104 and the third doped region 118 have an N-type conductivity type, And the first doped well 102 and the structural layer 106 have a P-type conductivity. However, the present invention is not limited thereto, and the above-mentioned N-type conductivity type and P-type conductivity type can also be interchanged. In addition, the doping concentration of the first lightly doped region 114 and the second lightly doped region 116 is lower than that of the first doped region 108 and the second doped region 110, wherein the first lightly doped region 114 and the second lightly doped region 116 are used to prevent short channel effect between the first doped region 108 and the second doped region 110 .
如图1所示,第一掺杂区108与第一掺杂井102间具有一第一接口寄生电容120和一第一寄生二极管121,第一掺杂井102与第二掺杂井104间具有一第二接口寄生电容122和一第二寄生二极管123,以及第二掺杂井104与结构层106间具有一第三接口寄生电容124和一第三寄生二极管125,其中晶体管100例如是一互补式金氧半制程的晶体管,第一接口寄生电容120、第二接口寄生电容122和第三接口寄生电容124的电容值是逐渐减少。另外,第一接口寄生电容120的第一电容值和第一寄生二极管121的第一临界值VTH1是由第一掺杂区108的截面积与掺杂浓度以及第一掺杂井102的截面积与掺杂浓度决定,第二接口寄生电容122的第二电容值和第二寄生二极管123的第二临界值VTH2是由第一掺杂井102的截面积与掺杂浓度以及第二掺杂井104的截面积与掺杂浓度决定,以及第三接口寄生电容124的第三电容值和第三寄生二极管125的第三临界值VTH3是由第二掺杂井104的截面积与掺杂浓度以及结构层106的截面积与掺杂浓度决定。As shown in Figure 1, there is a first interface parasitic capacitance 120 and a first parasitic diode 121 between the first doped region 108 and the first doped well 102, There is a second interface parasitic capacitance 122 and a second parasitic diode 123, and there is a third interface parasitic capacitance 124 and a third parasitic diode 125 between the second doped well 104 and the structural layer 106, wherein the transistor 100 is, for example, a For the CMOS process transistors, the capacitance values of the first interface parasitic capacitor 120 , the second interface parasitic capacitor 122 and the third interface parasitic capacitor 124 gradually decrease. In addition, the first capacitance value of the first interface parasitic capacitance 120 and the first critical value VTH1 of the first parasitic diode 121 are determined by the cross-sectional area and doping concentration of the first doped region 108 and the cross-sectional area of the first doped well 102 Determined by the doping concentration, the second capacitance value of the second interface parasitic capacitance 122 and the second critical value VTH2 of the second parasitic diode 123 are determined by the cross-sectional area and doping concentration of the first doping well 102 and the second doping well 104 is determined by the cross-sectional area and doping concentration, and the third capacitance value of the third interface parasitic capacitance 124 and the third critical value VTH3 of the third parasitic diode 125 are determined by the cross-sectional area and doping concentration of the second doping well 104 and The cross-sectional area of the structural layer 106 is determined by the doping concentration.
当第一掺杂区108传输信号SI时,第一接口寄生电容120、第二接口寄生电容122、第三接口寄生电容124的跨压总合会等于信号SI的振幅。因为第一接口寄生电容120、第二接口寄生电容122和第三接口寄生电容124的电容值是逐渐减少,且第一接口寄生电容120、第二接口寄生电容122、第三接口寄生电容124中的一接口寄生电容的跨压是和该接口寄生电容的电容值呈反向关系,所以第三接口寄生电容124的跨压会大于第一接口寄生电容120和第二接口寄生电容122的跨压。因此,在图1的实施例中,当第一掺杂区108传输信号SI时,闸极层112可接收适当的电压VG使一信道113形成于第一掺杂区108和第二掺杂区110之间以开启晶体管100,第一掺杂井102接收一第一电压VNEG,以及第二掺杂井104是通过第三掺杂区118接收一第二电压VPEG,其中电压VG是一正电压,第一电压VNEG是一负电压,第二电压VPEG是一正电压,以及第一掺杂区108和第二掺杂区110的电压VS、VD分别约为1/2VG。另外,对应图1的电路结构图可参考图2。如图2所示,第一掺杂区108的电压VS和第一掺杂井102所接收的第一电压VNEG可使一第一逆向偏压VR1(VR1=VNEG-VS)跨在第一寄生二极管121,第一掺杂井102所接收的第一电压VNEG和第二掺杂井104所接收的第二电压VPEG可使一第二逆向偏压VR2(VR2=VNEG-VPEG)跨在第二寄生二极管123,以及第二掺杂井104所接收的第二电压VPEG和结构层106所接收的第一参考电位(例如地端GND)可使一第三逆向偏压VR3(VR3=VGND-VPEG)跨在第三寄生二极管125,其中VGND是代表地端GND的电位。因此,如图3所示,由于第一逆向偏压VR1跨在第一寄生二极管121,所以第一寄生二极管121可承受的第一电压振幅VSW1会等于第一临界值VTH1与第一逆向偏压VR1的差;由于第二逆向偏压VR2跨在第二寄生二极管123,所以第二寄生二极管123可承受的第二电压振幅VSW2会等于第二临界值VTH2与第二逆向偏压VR2的差;由于第三逆向偏压VR3跨在第三寄生二极管125,所以第三寄生二极管125可承受的第三电压振幅VSW3会等于第三临界值VTH3与第三逆向偏压VR3的差。因此,如图3所示,因为第一逆向偏压VR1、第二逆向偏压VR2和第三逆向偏压VR3可分别增加第一电压振幅VSW1、第二电压振幅VSW2以及第三电压振幅VSW3,所以当第一掺杂区108传输信号SI时,第一掺杂井102所接收的第一电压VNEG以及第二掺杂井104所接收的第二电压VPEG可有效防止第一寄生二极管121、第二寄生二极管123和第三寄生二极管125被开启,亦即晶体管100可增加信号SI的振幅范围。When the first doped region 108 transmits the signal SI, the cross-voltage sum of the first interface parasitic capacitance 120 , the second interface parasitic capacitance 122 , and the third interface parasitic capacitance 124 is equal to the amplitude of the signal SI. Because the capacitance values of the first interface parasitic capacitance 120, the second interface parasitic capacitance 122, and the third interface parasitic capacitance 124 gradually decrease, and the first interface parasitic capacitance 120, the second interface parasitic capacitance 122, and the third interface parasitic capacitance 124 The cross-voltage of an interface parasitic capacitance is inversely related to the capacitance value of the interface parasitic capacitance, so the cross-voltage of the third interface parasitic capacitance 124 will be greater than the cross-voltage of the first interface parasitic capacitance 120 and the second interface parasitic capacitance 122 . Therefore, in the embodiment of FIG. 1, when the first doped region 108 transmits the signal SI, the gate layer 112 can receive an appropriate voltage VG to form a channel 113 in the first doped region 108 and the second doped region. 110 to turn on the transistor 100, the first doped well 102 receives a first voltage VNEG, and the second doped well 104 receives a second voltage VPEG through the third doped region 118, wherein the voltage VG is a positive voltage , the first voltage VNEG is a negative voltage, the second voltage VPEG is a positive voltage, and the voltages VS and VD of the first doped region 108 and the second doped region 110 are about 1/2VG respectively. In addition, reference may be made to FIG. 2 for the circuit structure diagram corresponding to FIG. 1 . As shown in FIG. 2, the voltage VS of the first doped region 108 and the first voltage VNEG received by the first doped well 102 can make a first reverse bias voltage VR1 (VR1=VNEG-VS) across the first parasitic The diode 121, the first voltage VNEG received by the first doped well 102 and the second voltage VPEG received by the second doped well 104 can make a second reverse bias voltage VR2 (VR2=VNEG-VPEG) across the second The parasitic diode 123, and the second voltage VPEG received by the second doped well 104 and the first reference potential (such as the ground terminal GND) received by the structural layer 106 can make a third reverse bias voltage VR3 (VR3=VGND−VPEG ) across the third parasitic diode 125, wherein VGND represents the potential of the ground terminal GND. Therefore, as shown in FIG. 3, since the first reverse bias voltage VR1 is across the first parasitic diode 121, the first voltage amplitude VSW1 that the first parasitic diode 121 can withstand will be equal to the first critical value VTH1 and the first reverse bias voltage The difference of VR1; since the second reverse bias voltage VR2 spans the second parasitic diode 123, the second voltage amplitude VSW2 that the second parasitic diode 123 can withstand will be equal to the difference between the second critical value VTH2 and the second reverse bias voltage VR2; Since the third reverse bias voltage VR3 is across the third parasitic diode 125 , the third voltage amplitude VSW3 that the third parasitic diode 125 can bear is equal to the difference between the third threshold VTH3 and the third reverse bias voltage VR3 . Therefore, as shown in FIG. 3, since the first reverse bias voltage VR1, the second reverse bias voltage VR2 and the third reverse bias voltage VR3 can respectively increase the first voltage amplitude VSW1, the second voltage amplitude VSW2 and the third voltage amplitude VSW3, Therefore, when the first doped region 108 transmits the signal SI, the first voltage VNEG received by the first doped well 102 and the second voltage VPEG received by the second doped well 104 can effectively prevent the first parasitic diode 121, the second The second parasitic diode 123 and the third parasitic diode 125 are turned on, that is, the transistor 100 can increase the amplitude range of the signal SI.
请参照图4,图4是本发明的第二实施例说明一种用于增加信号振幅范围的晶体管400的示意图。如图4所示,晶体管400和晶体管100的差别在于晶体管400另具有一第一补偿电容126、一第二补偿电容128和一第三补偿电容130,第一掺杂井102电性连接于一低参考电位VP,以及第二掺杂井104电性连接于一高参考电位VN,其中第一补偿电容126电性连接于第一掺杂区108与第一掺杂井102之间,用于补偿第一接口寄生电容120;第二补偿电容128电性连接于第一掺杂井102与第二掺杂井104之间,用于补偿第二接口寄生电容122;第三补偿电容130电性连接于第二掺杂井104与第一参考电位(例如地端GND)之间,用于补偿第三接口寄生电容124;第一补偿电容126、第二补偿电容128和第三补偿电容130是金属-绝缘体-金属(metal-insulator-metal,MIM)电容。另外,第一补偿电容126的电容值、第二补偿电容128的电容值以及第三补偿电容130的电容值至少是由第一接口寄生电容120的电容值、第二接口寄生电容122的电容值和第三接口寄生电容124的电容值所决定。亦即第一补偿电容126的电容值可参考式(1):Please refer to FIG. 4 . FIG. 4 is a schematic diagram illustrating a transistor 400 for increasing a signal amplitude range according to a second embodiment of the present invention. As shown in FIG. 4, the difference between the transistor 400 and the transistor 100 is that the transistor 400 has a first compensation capacitor 126, a second compensation capacitor 128 and a third compensation capacitor 130, and the first doped well 102 is electrically connected to a The low reference potential VP, and the second doped well 104 are electrically connected to a high reference potential VN, wherein the first compensation capacitor 126 is electrically connected between the first doped region 108 and the first doped well 102 for Compensate the parasitic capacitance 120 of the first interface; the second compensation capacitor 128 is electrically connected between the first doped well 102 and the second doped well 104 for compensating the parasitic capacitance 122 of the second interface; the third compensation capacitor 130 is electrically connected Connected between the second doped well 104 and the first reference potential (such as the ground terminal GND), used to compensate the third interface parasitic capacitance 124; the first compensation capacitor 126, the second compensation capacitor 128 and the third compensation capacitor 130 are Metal-insulator-metal (metal-insulator-metal, MIM) capacitors. In addition, the capacitance value of the first compensation capacitor 126, the capacitance value of the second compensation capacitor 128, and the capacitance value of the third compensation capacitor 130 are at least the capacitance value of the first interface parasitic capacitance 120, the capacitance value of the second interface parasitic capacitance 122 and the capacitance value of the parasitic capacitance 124 of the third interface. That is to say, the capacitance value of the first compensation capacitor 126 can refer to formula (1):
Cj为第一补偿电容126的电容值,εs为介电常数,NA为第一掺杂区108以及第一掺杂井102的受体浓度,ND为第一掺杂区108以及第一掺杂井102的施体浓度,Vbi为内建电位(built-in potential),以及VR为外接电压。另外,第二补偿电容128和第三补偿电容130的电容值可参考式(1),在此不再赘述。C j is the capacitance value of the first compensation capacitor 126, ε s is the dielectric constant, N A is the acceptor concentration of the first doped region 108 and the first doped well 102, N D is the first doped region 108 and The donor concentration of the first doped well 102, V bi is the built-in potential, and VR is the external voltage. In addition, the capacitance values of the second compensation capacitor 128 and the third compensation capacitor 130 can refer to formula (1), which will not be repeated here.
而在另一实施例中,还可额外再根据信号SI的振幅所决定。因为第一接口寄生电容120、第二接口寄生电容122、第三接口寄生电容124中的单一接口寄生电容的跨压分别是和该接口寄生电容的电容值呈反向关系,所以晶体管400可利用第一补偿电容126补偿第一接口寄生电容120、第二补偿电容128补偿第二接口寄生电容122以及第三补偿电容130补偿第三接口寄生电容124,以减少第一接口寄生电容120的跨压、第二接口寄生电容122的跨压以及第三接口寄生电容124的跨压之间的差异。亦即当第一掺杂区108传输信号SI时,晶体管400可利用第一补偿电容126、第二补偿电容128和第三补偿电容130补偿对应的第一接口寄生电容120、第二接口寄生电容122及第三接口寄生电容124,而同时调整第一接口寄生电容120、第二接口寄生电容122及第三接口寄生电容124因信号SI而分别分配到的跨压,并减少这些接口寄生电容彼此之间分配到的跨压的差异,以防止第一寄生二极管121、第二寄生二极管123和第三寄生二极管125被开启。因此,晶体管100可利用第一补偿电容126、第二补偿电容128和第三补偿电容130增加信号SI的振幅范围。另外,本发明并不受限于晶体管400需同时具有第一补偿电容126、第二补偿电容128和第三补偿电容130,亦即晶体管400可根据第一接口寄生电容120、第二接口寄生电容122、第三接口寄生电容124的跨压而调整补偿电容的数目,所以在本发明的另一实施例中,晶体管400可仅包括第一补偿电容126、第二补偿电容128和第三补偿电容130的至少其中之一、或者是仅包括任两者,即可补偿对应的接口寄生电容,而同时调整第一接口寄生电容120、第二接口寄生电容122及第三接口寄生电容124的跨压,并减少这些接口寄生电容彼此之间分配到的跨压的差异。本发明的其他实施例如第5-7图所示,其中图5是说明晶体管400仅包括第一补偿电容126、图6是说明晶体管400仅包括第二补偿电容128以及图7是说明晶体管400仅包括第三补偿电容130。另外,对应图4的电路结构图可参考图8。In another embodiment, it can be additionally determined according to the amplitude of the signal SI. Because the cross-voltage of a single interface parasitic capacitance in the first interface parasitic capacitance 120, the second interface parasitic capacitance 122, and the third interface parasitic capacitance 124 is respectively inversely related to the capacitance value of the interface parasitic capacitance, the transistor 400 can be used The first compensation capacitor 126 compensates the parasitic capacitance 120 of the first interface, the second compensation capacitor 128 compensates the parasitic capacitance 122 of the second interface, and the third compensation capacitor 130 compensates the parasitic capacitance 124 of the third interface, so as to reduce the cross voltage of the parasitic capacitance 120 of the first interface , the difference between the cross voltage of the second interface parasitic capacitance 122 and the cross voltage of the third interface parasitic capacitance 124 . That is, when the first doped region 108 transmits the signal SI, the transistor 400 can use the first compensation capacitor 126 , the second compensation capacitor 128 and the third compensation capacitor 130 to compensate the corresponding first interface parasitic capacitance 120 and the second interface parasitic capacitance 122 and the third interface parasitic capacitance 124, and at the same time adjust the cross voltages assigned to the first interface parasitic capacitance 120, the second interface parasitic capacitance 122 and the third interface parasitic capacitance 124 due to the signal SI, and reduce the interaction between these interface parasitic capacitances To prevent the first parasitic diode 121 , the second parasitic diode 123 and the third parasitic diode 125 from being turned on. Therefore, the transistor 100 can utilize the first compensation capacitor 126 , the second compensation capacitor 128 and the third compensation capacitor 130 to increase the amplitude range of the signal SI. In addition, the present invention is not limited to the need for the transistor 400 to have the first compensation capacitor 126, the second compensation capacitor 128, and the third compensation capacitor 130 at the same time, that is, the transistor 400 can 122. The number of compensation capacitors is adjusted by the cross-voltage of the third interface parasitic capacitor 124, so in another embodiment of the present invention, the transistor 400 may only include the first compensation capacitor 126, the second compensation capacitor 128, and the third compensation capacitor At least one of 130, or only any two of them, can compensate the corresponding interface parasitic capacitance, and at the same time adjust the cross voltage of the first interface parasitic capacitance 120, the second interface parasitic capacitance 122 and the third interface parasitic capacitance 124 , and reduce the difference in the cross-voltage assigned to each other by these interface parasitic capacitances. Other embodiments of the present invention are shown in Figures 5-7, wherein Figure 5 illustrates that the transistor 400 only includes the first compensation capacitor 126, Figure 6 illustrates that the transistor 400 only includes the second compensation capacitor 128, and Figure 7 illustrates that the transistor 400 only includes A third compensation capacitor 130 is included. In addition, reference may be made to FIG. 8 for the circuit structure diagram corresponding to FIG. 4 .
另外,在本发明的另一实施例中,第一补偿电容126、第二补偿电容128和第三补偿电容130的至少其中之一是用以使第一接口寄生电容120的电容值与第一补偿电容126的电容值的和、第二接口寄生电容122的电容值与第二补偿电容128的电容值的和、与第三接口寄生电容124的电容值中与第三补偿电容130的电容值的和,其中的至少两者互相相等。举例来说,如果第一接口寄生电容120的电容值大于第二接口寄生电容122的电容值,以及第二接口寄生电容122的电容值大于第三接口寄生电容124的电容值,则第一接口寄生电容120不补偿,第二接口寄生电容122的电容值以及第二补偿电容128的电容值的和等于第一接口寄生电容120的电容值,以及第三接口寄生电容124的电容值以及第三补偿电容130的电容值的和等于第一接口寄生电容120的电容值。也就是说当第一接口寄生电容120的电容值大于第二接口寄生电容122的电容值,以及第二接口寄生电容122的电容值大于第三接口寄生电容124的电容值时,第二补偿电容128的电容值补偿第二接口寄生电容122的电容值以及第三补偿电容130补偿第三接口寄生电容124的电容值到等于第一接口寄生电容120的电容值。In addition, in another embodiment of the present invention, at least one of the first compensation capacitor 126, the second compensation capacitor 128, and the third compensation capacitor 130 is used to make the capacitance value of the first interface parasitic capacitor 120 the same as that of the first interface parasitic capacitor 120. The sum of the capacitance value of the compensation capacitor 126, the sum of the capacitance value of the second interface parasitic capacitor 122 and the capacitance value of the second compensation capacitor 128, and the capacitance value of the third interface parasitic capacitor 124 and the capacitance value of the third compensation capacitor 130 , at least two of which are equal to each other. For example, if the capacitance value of the parasitic capacitance 120 of the first interface is greater than the capacitance value of the parasitic capacitance 122 of the second interface, and the capacitance value of the parasitic capacitance 122 of the second interface is greater than the capacitance value of the parasitic capacitance 124 of the third interface, then the first interface The parasitic capacitance 120 does not compensate, and the sum of the capacitance value of the second interface parasitic capacitance 122 and the capacitance value of the second compensation capacitance 128 is equal to the capacitance value of the first interface parasitic capacitance 120, and the capacitance value of the third interface parasitic capacitance 124 and the third The sum of the capacitance values of the compensation capacitors 130 is equal to the capacitance value of the parasitic capacitance 120 of the first interface. That is to say, when the capacitance value of the parasitic capacitance 120 of the first interface is greater than the capacitance value of the parasitic capacitance 122 of the second interface, and the capacitance value of the parasitic capacitance 122 of the second interface is greater than the capacitance value of the parasitic capacitance 124 of the third interface, the second compensation capacitance The capacitance value of 128 compensates the capacitance value of the second interface parasitic capacitance 122 and the third compensation capacitor 130 compensates the capacitance value of the third interface parasitic capacitance 124 to be equal to the capacitance value of the first interface parasitic capacitance 120 .
而在本发明的另一实施例中,第一接口寄生电容120、第二接口寄生电容122及第三接口寄生电容124三者其中之一的第N接口寄生电容具有最小的电容值,第M接口寄生电容具有不同于该第N接口寄生电容的电容值(例如是最大的电容值),则第N接口寄生电容所对应的第N补偿电容的电容值为第M接口寄生电容的电容值与第N接口寄生电容的电容值的差。也就是说当N为一时,第一补偿电容126的电容值为第M接口寄生电容的电容值与第一接口寄生电容120的电容值的差;当N为二时,第二补偿电容128的电容值为第M接口寄生电容的电容值与第二接口寄生电容122的电容值的差;当N为三时,第三补偿电容130的电容值为第M接口寄生电容的电容值与第三接口寄生电容124的电容值的差。举例来说,如果第一接口寄生电容120、第二接口寄生电容122及第三接口寄生电容124三者其中之一中的第三接口寄生电容124具有最大的电容值X,第一接口寄生电容120具有最小的电容值Y,则第一接口寄生电容120所对应的第一补偿电容126的电容值为第三接口寄生电容124的电容值X与第一接口寄生电容120的电容值Y的差=X-Y。此外,第N补偿电容并不限于只包括单一电容,亦可为一个或多个互相连接的电子组件所形成的第N等效补偿电容,只要第N补偿电容与第N等效补偿电容的等效电容值相同即可。In another embodiment of the present invention, the Nth interface parasitic capacitance of one of the first interface parasitic capacitance 120, the second interface parasitic capacitance 122, and the third interface parasitic capacitance 124 has the smallest capacitance value, and the Mth interface parasitic capacitance has the smallest capacitance value. The interface parasitic capacitance has a capacitance value different from the Nth interface parasitic capacitance (for example, the largest capacitance value), then the capacitance value of the Nth compensation capacitor corresponding to the Nth interface parasitic capacitance is equal to the capacitance value of the Mth interface parasitic capacitance The capacitance difference of the parasitic capacitance of the Nth interface. That is to say, when N is one, the capacitance value of the first compensation capacitor 126 is the difference between the capacitance value of the Mth interface parasitic capacitance and the capacitance value of the first interface parasitic capacitance 120; when N is two, the capacitance value of the second compensation capacitor 128 The capacitance value is the difference between the capacitance value of the Mth interface parasitic capacitance and the capacitance value of the second interface parasitic capacitance 122; when N is three, the capacitance value of the third compensation capacitor 130 is the capacitance value of the Mth interface parasitic capacitance and the third The difference in the capacitance value of the interface parasitic capacitance 124 . For example, if the third interface parasitic capacitance 124 in one of the first interface parasitic capacitance 120, the second interface parasitic capacitance 122 and the third interface parasitic capacitance 124 has the largest capacitance value X, the first interface parasitic capacitance 120 has the smallest capacitance value Y, then the capacitance value of the first compensation capacitor 126 corresponding to the first interface parasitic capacitance 120 is the difference between the capacitance value X of the third interface parasitic capacitance 124 and the capacitance value Y of the first interface parasitic capacitance 120 =X-Y. In addition, the Nth compensation capacitor is not limited to include only a single capacitor, and can also be an Nth equivalent compensation capacitor formed by one or more interconnected electronic components, as long as the Nth compensation capacitor is equal to the Nth equivalent compensation capacitor The effective capacitor value is the same.
请参照图9,图9是本发明的第三实施例说明一种用于增加信号振幅范围的晶体管600的示意图。如图9所示,晶体管600和晶体管400的差别在于晶体管600的结构层106另包括一第三掺杂井132以及一基底200,以及晶体管600另具有一第四补偿电容134。如图9所示,第三掺杂井132与基底200之间具有一第四接口寄生电容136和一第四寄生二极管137,以及第三掺杂井132介于第二掺杂井104与基底200之间,例如第二掺杂井104形成于第三掺杂井132之内,其中第三掺杂井132具有该第二导电类型,一第二参考电位VFREF电性连接于第三掺杂井132,该第一参考电位(例如地端GND)电性连接于结构层106,第四补偿电容134电性连接于第三掺杂井132与该第一参考电位之间,以及第四补偿电容134是用以补偿第四接口寄生电容136。因为晶体管600具有第四补偿电容134,所以第一补偿电容126的电容值、第二补偿电容128的电容值、第三补偿电容130的电容值以及第四补偿电容134的电容值至少是由第一接口寄生电容120的电容值、第二接口寄生电容122的电容值、第三接口寄生电容124的电容值和第四接口寄生电容136的电容值所决定,而在另一实施例中,还可额外再根据信号SI的振幅所决定。亦即当第一掺杂区108传输信号SI时,晶体管600可利用第一补偿电容126、第二补偿电容128、第三补偿电容130和第四补偿电容134补偿对应的第一接口寄生电容120、第二接口寄生电容122、第三接口寄生电容124和第四接口寄生电容136,而同时调整第一接口寄生电容120、第二接口寄生电容122、第三接口寄生电容124和第四接口寄生电容136因信号SI而分别分配到的跨压,并减少这些接口寄生电容彼此之间分配到的跨压的差异,以防止第一寄生二极管121、第二寄生二极管123、第三寄生二极管125和第四寄生二极管137被开启。另外,本发明并不受限于晶体管600需同时具有第一补偿电容126、第二补偿电容128、第三补偿电容130和第四补偿电容134,亦即晶体管600可根据第一接口寄生电容120、第二接口寄生电容122、第三接口寄生电容124和第四接口寄生电容136的跨压而调整补偿电容的数目,所以在本发明的另一实施例中,晶体管600可仅包括第一补偿电容126、第二补偿电容128、第三补偿电容130和第四补偿电容134的至少其中之一、或者是仅包括任两者,即可补偿对应的接口寄生电容,而同时调整第一接口寄生电容120、第二接口寄生电容122、第三接口寄生电容124和第四接口寄生电容136的跨压,并减少这些接口寄生电容彼此之间分配到的跨压的差异。本发明的其他实施例如图10所示,晶体管600仅包括第四补偿电容134。Please refer to FIG. 9 . FIG. 9 is a schematic diagram illustrating a transistor 600 for increasing the signal amplitude range according to the third embodiment of the present invention. As shown in FIG. 9 , the difference between the transistor 600 and the transistor 400 is that the structural layer 106 of the transistor 600 further includes a third doped well 132 and a substrate 200 , and the transistor 600 further has a fourth compensation capacitor 134 . As shown in Figure 9, there is a fourth interface parasitic capacitance 136 and a fourth parasitic diode 137 between the third doped well 132 and the substrate 200, and the third doped well 132 is between the second doped well 104 and the substrate Between 200, for example, the second doped well 104 is formed in the third doped well 132, wherein the third doped well 132 has the second conductivity type, and a second reference potential VFREF is electrically connected to the third doped well 132. Well 132, the first reference potential (such as the ground terminal GND) is electrically connected to the structural layer 106, the fourth compensation capacitor 134 is electrically connected between the third doped well 132 and the first reference potential, and the fourth compensation The capacitor 134 is used to compensate the parasitic capacitance 136 of the fourth interface. Because the transistor 600 has the fourth compensation capacitor 134, the capacitance value of the first compensation capacitor 126, the capacitance value of the second compensation capacitor 128, the capacitance value of the third compensation capacitor 130 and the capacitance value of the fourth compensation capacitor 134 are at least determined by the first compensation capacitor 134. The capacitance value of the parasitic capacitance 120 of the first interface, the capacitance value of the parasitic capacitance 122 of the second interface, the capacitance value of the parasitic capacitance 124 of the third interface and the capacitance value of the parasitic capacitance 136 of the fourth interface are determined, and in another embodiment, also It can be additionally determined according to the amplitude of the signal SI. That is, when the first doped region 108 transmits the signal SI, the transistor 600 can use the first compensation capacitor 126 , the second compensation capacitor 128 , the third compensation capacitor 130 and the fourth compensation capacitor 134 to compensate the corresponding parasitic capacitance 120 of the first interface. , the second interface parasitic capacitance 122, the third interface parasitic capacitance 124, and the fourth interface parasitic capacitance 136, while simultaneously adjusting the first interface parasitic capacitance 120, the second interface parasitic capacitance 122, the third interface parasitic capacitance 124, and the fourth interface parasitic capacitance Capacitor 136 is assigned to the cross-voltage due to the signal SI, and reduces the difference in the cross-voltage distributed between these interface parasitic capacitances, so as to prevent the first parasitic diode 121, the second parasitic diode 123, the third parasitic diode 125 and The fourth parasitic diode 137 is turned on. In addition, the present invention is not limited to the need for the transistor 600 to have the first compensation capacitor 126, the second compensation capacitor 128, the third compensation capacitor 130, and the fourth compensation capacitor 134, that is, the transistor 600 can , the second interface parasitic capacitance 122, the third interface parasitic capacitance 124 and the fourth interface parasitic capacitance 136 to adjust the number of compensation capacitors, so in another embodiment of the present invention, the transistor 600 may only include the first compensation At least one of the capacitor 126, the second compensation capacitor 128, the third compensation capacitor 130, and the fourth compensation capacitor 134, or only any two of them, can compensate the corresponding interface parasitic capacitance, while adjusting the first interface parasitic capacitance. The capacitor 120 , the second interface parasitic capacitance 122 , the third interface parasitic capacitance 124 and the fourth interface parasitic capacitance 136 , and reduce the difference of the cross voltage allocated among these interface parasitic capacitances. Other embodiments of the present invention are shown in FIG. 10 , where the transistor 600 only includes the fourth compensation capacitor 134 .
除此之外,在本发明的其他实施例中,结构层106亦可另包括一第四掺杂井与一第五补偿电容,其中该第四掺杂井形成于第三掺杂井132与基底200之间,该第四掺杂井具有与第三掺杂井132不同的导电类型,一第三参考电位电性连接于该第四掺杂井,该第四掺杂井与基底200之间具有一第五接口寄生电容,且一第五补偿电容电性连接于该第四掺杂井与该第一参考电位之间,用于补偿该第五接口寄生电容。Besides, in other embodiments of the present invention, the structural layer 106 may further include a fourth doped well and a fifth compensation capacitor, wherein the fourth doped well is formed between the third doped well 132 and the third doped well 132 Between the substrate 200, the fourth doped well has a conductivity type different from that of the third doped well 132, a third reference potential is electrically connected to the fourth doped well, and the fourth doped well is connected to the substrate 200. There is a fifth interface parasitic capacitance between them, and a fifth compensation capacitance is electrically connected between the fourth doped well and the first reference potential for compensating the fifth interface parasitic capacitance.
另外,在本发明的其他实施例中,结构层106更包括复数个掺杂井,该复数个掺杂井形成于第三掺杂井132与基底200之间,其中该复数个掺杂井中的第J掺杂井具有与该复数个掺杂井中的第(J-1)掺杂井不同的导电类型,且一第(J-1)参考电位电性连接于该第J掺杂井,该第(J-1)掺杂井与该第J掺杂井之间具有一第J接口寄生电容,该第J掺杂井与该复数个掺杂井中的第(J+1)掺杂井之间具有一第(J+1)接口寄生电容,该复数个掺杂井中的最后一掺杂井与基底200之间具有一相对应的接口寄生电容,且一第(J+1)补偿电容,电性连接于该第J掺杂井与该第一参考电位之间,用于补偿该第(J+1)接口寄生电容,其中J可为大于或等于四的正整数。In addition, in other embodiments of the present invention, the structural layer 106 further includes a plurality of doping wells, and the plurality of doping wells are formed between the third doping well 132 and the substrate 200, wherein the doping wells in the plurality of doping wells are The J-th doped well has a conductivity type different from that of the (J-1)-th doped well of the plurality of doped wells, and a (J-1)-th reference potential is electrically connected to the J-th doped well, and the J-th doped well is electrically connected to the J-th doped well. There is a J-th interface parasitic capacitance between the (J-1)th doped well and the J-th doped well, the J-th doped well and the (J+1)-th doped well among the plurality of doped wells There is a (J+1)th interface parasitic capacitance between them, there is a corresponding interface parasitic capacitance between the last doping well of the plurality of doping wells and the substrate 200, and a (J+1)th compensation capacitance, It is electrically connected between the Jth doped well and the first reference potential for compensating the (J+1)th interface parasitic capacitance, wherein J can be a positive integer greater than or equal to four.
类似地,第一接口寄生电容120、第二接口寄生电容122、第三接口寄生电容124及第四接口寄生电容136其中之一的第N接口寄生电容具有最小的电容值,第M接口寄生电容具有不同于该第N接口寄生电容的电容值(例如是最大的电容值),则第N接口寄生电容所对应的第N补偿电容的电容值为第M接口寄生电容的电容值与第N接口寄生电容的电容值的差。此外,第N补偿电容并不限于只包括实体上的单一电容,亦可为一个或多个互相连接的电子组件所形成的第N等效补偿电容,只要第N补偿电容与第N等效补偿电容的等效电容值相同即可。Similarly, the Nth interface parasitic capacitance of one of the first interface parasitic capacitance 120, the second interface parasitic capacitance 122, the third interface parasitic capacitance 124, and the fourth interface parasitic capacitance 136 has the smallest capacitance value, and the Mth interface parasitic capacitance has a capacitance value different from the Nth interface parasitic capacitance (for example, the maximum capacitance value), then the capacitance value of the Nth compensation capacitor corresponding to the Nth interface parasitic capacitance is the same as the capacitance value of the Nth interface parasitic capacitance. The difference in the capacitance value of the parasitic capacitance. In addition, the Nth compensation capacitor is not limited to only include a single physical capacitor, but can also be an Nth equivalent compensation capacitor formed by one or more interconnected electronic components, as long as the Nth compensation capacitor is the same as the Nth equivalent compensation capacitor. It is sufficient that the equivalent capacitance values of the capacitors are the same.
综上所述,因为本发明是当晶体管传输信号时,分别施加不同预定电压至不同的掺杂井增加跨在每一接口寄生二极管的逆向偏压,或是利用至少一补偿电容补偿至少一接口寄生电容使至少一接口寄生电容之间的跨压的差异不大,所以相较于现有技术,本发明可增加信号振幅范围。To sum up, because the present invention applies different predetermined voltages to different doped wells to increase the reverse bias voltage across the parasitic diodes of each interface when the transistor transmits signals, or uses at least one compensation capacitor to compensate at least one interface The parasitic capacitance makes the cross-voltage difference between the parasitic capacitances of at least one interface small, so compared with the prior art, the present invention can increase the signal amplitude range.
如无特别说明,本文中出现的类似于“第一”、“第二”的限定语并非是指对时间顺序、数量、或者重要性的限定,而仅仅是为了将本技术方案中的一个技术特征与另一个技术特征相区分。同样地,本文中出现的类似于“一”的限定语并非是指对数量的限定,而是描述在前文中未曾出现的技术特征。同样地,本文中在数词前出现的类似于“大约”、“近似地”的修饰语通常包含本数,并且其具体的含义应当结合上下文意理解。同样地,除非是有特定的数量量词修饰的名词,否则在本文中应当视作即包含单数形式又包含复数形式,在该技术方案中即可以包括单数个该技术特征,也可以包括复数个该技术特征。Unless otherwise specified, the qualifiers similar to "first" and "second" appearing in this article do not refer to the limitation of time sequence, quantity, or importance, but are only for the purpose of combining one technology in this technical solution A characteristic is distinguished from another technical characteristic. Similarly, the qualifiers similar to "a" appearing in this article do not refer to a limitation on quantity, but describe technical features that have not appeared above. Likewise, modifiers like "about" and "approximately" that appear before numerals in this article generally include the original number, and their specific meanings should be understood in conjunction with the context. Similarly, unless it is a noun modified by a specific quantitative quantifier, it should be deemed to include both the singular form and the plural form in this article. In this technical solution, the singular number of the technical features can also be included. technical characteristics.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610819368.XA CN107818973B (en) | 2016-09-13 | 2016-09-13 | A transistor for increasing signal amplitude range |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610819368.XA CN107818973B (en) | 2016-09-13 | 2016-09-13 | A transistor for increasing signal amplitude range |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107818973A CN107818973A (en) | 2018-03-20 |
CN107818973B true CN107818973B (en) | 2019-12-10 |
Family
ID=61601364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610819368.XA Active CN107818973B (en) | 2016-09-13 | 2016-09-13 | A transistor for increasing signal amplitude range |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107818973B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1707813A (en) * | 2004-06-08 | 2005-12-14 | 赛芬半导体有限公司 | MOS capacitors with reduced parasitic capacitance |
CN103457585A (en) * | 2012-05-31 | 2013-12-18 | 立积电子股份有限公司 | Rf switch and rf switch system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008018832A1 (en) * | 2006-08-08 | 2008-02-14 | Agency For Science, Technology And Research | Cmos power oscillator with frequency modulation |
US8288829B2 (en) * | 2006-09-21 | 2012-10-16 | Nanyang Technological University | Triple well transmit-receive switch transistor |
US8330530B2 (en) * | 2010-06-07 | 2012-12-11 | Skyworks Solutions, Inc. | Apparatus and method for disabling well bias |
-
2016
- 2016-09-13 CN CN201610819368.XA patent/CN107818973B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1707813A (en) * | 2004-06-08 | 2005-12-14 | 赛芬半导体有限公司 | MOS capacitors with reduced parasitic capacitance |
CN103457585A (en) * | 2012-05-31 | 2013-12-18 | 立积电子股份有限公司 | Rf switch and rf switch system |
Also Published As
Publication number | Publication date |
---|---|
CN107818973A (en) | 2018-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018006588A1 (en) | Fingerprint recognition unit circuit, control method therefor, and fingerprint recognition apparatus | |
US7817385B2 (en) | Semiconductor device including ESD protection field effect transistor with adjustable back gate potential | |
US9734382B2 (en) | Fingerprint sensor having ESD protection | |
US20100254549A1 (en) | Amplifier circuit of capacitor microphone | |
US20090128992A1 (en) | Mos capacitor structure and linearization method for reduced variation of the capacitance | |
EP3637234A1 (en) | Display device | |
US8907373B2 (en) | Electronic device for protecting from electrostatic discharge | |
WO2014169535A1 (en) | Touch display circuit structure and driving method thereof, array substrate and display device | |
US10431647B2 (en) | Apparatuses and methods for semiconductor circuit layout | |
CN111341263B (en) | Pixel circuit, silicon-based display panel and display device | |
TWI595653B (en) | Transistor for increasing the amplitude range of the signal | |
CN108806594B (en) | Light-emitting unit and driving method thereof, and display device | |
JP2007053265A (en) | Semiconductor device, electro-optical device and electronic apparatus | |
KR20150009792A (en) | Electro static discharge protection circuit and electronic device having the same | |
CN107818973B (en) | A transistor for increasing signal amplitude range | |
US20130175591A1 (en) | Capacitive device, semiconductor unit, and electronic apparatus | |
JP2005129909A (en) | Optical sensor device and electronic apparatus | |
US7247918B2 (en) | MOS capacitor type semiconductor device and crystal oscillation device using the same | |
US9455689B2 (en) | Current source array | |
WO2016155193A1 (en) | Pixel circuit and drive method therefor, and display device | |
WO2019210584A1 (en) | Sampling switch based on p-well floating technology, and control method | |
CN111402805B (en) | Pixel circuit, silicon-based display panel and display device | |
TWI676787B (en) | Sensing apparatus | |
US20200059092A1 (en) | Esd protection circuit with reduced parasite capacitance and method for reducing esd parasite capacitance | |
US20210358412A1 (en) | Pixel circuit and driving method thereof, display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |