CN107818066B - 数据通信系统 - Google Patents

数据通信系统 Download PDF

Info

Publication number
CN107818066B
CN107818066B CN201610827245.0A CN201610827245A CN107818066B CN 107818066 B CN107818066 B CN 107818066B CN 201610827245 A CN201610827245 A CN 201610827245A CN 107818066 B CN107818066 B CN 107818066B
Authority
CN
China
Prior art keywords
voltage
communication device
interface
electrically connected
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610827245.0A
Other languages
English (en)
Other versions
CN107818066A (zh
Inventor
李东声
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tendyron Technology Co Ltd
Original Assignee
Tendyron Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tendyron Technology Co Ltd filed Critical Tendyron Technology Co Ltd
Priority to CN201610827245.0A priority Critical patent/CN107818066B/zh
Priority to CA3036753A priority patent/CA3036753C/en
Priority to EP17850195.3A priority patent/EP3514691B1/en
Priority to PCT/CN2017/100211 priority patent/WO2018049993A1/zh
Priority to US16/333,212 priority patent/US10817038B2/en
Publication of CN107818066A publication Critical patent/CN107818066A/zh
Application granted granted Critical
Publication of CN107818066B publication Critical patent/CN107818066B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本发明提供了一种数据通信系统,包括:主通信设备和从通信设备,其中,主通信设备包括:供电接口,与直流供电电源连接;第一有线通信接口,由第一通信子接口和第二通信子接口组成,其中,第一通信子接口与供电接口电连接,第二通信子接口与主通信设备的地端电连接;第一储能组件,其第一端与第一通信子接口与供电接口的连接点电连接;第一主控芯片的控制端口与第一储能组件的第二端电连接;从通信设备包括:第二有线通信接口,由所述从通信设备的第一通信子接口和从通信设备的第二通信子接口组成;第二信号采集电路,其输入端与所述从通信设备的第一通信子接口电连接;第二主控芯片的检测端口与第二信号采集电路的输出端电连接。

Description

数据通信系统
技术领域
本发明涉及一种电子技术领域,尤其涉及一种数据通信系统。
背景技术
目前电子类产品发展迅速,外部接口混杂,对于存在主芯片的产品,一般存在对外接口,同时具备充电与通信功能。目前,一般电子产品的有线通信接口中充电接口与有线通信接口是分离的,即分别使用不同的信号线来实现通信和充电,至少需要三线以上,需要很多硬件支持,浪费资源,且大多不支持反接功能。随着产品舒适性的不断提高,方便用户使用,不限正反的接口通信亦越来越重要。
发明内容
本发明旨在解决上述问题。
本发明的主要目的在于提供一种应用于主端的数据通信系统。
为达到上述目的,本发明提供了以下技术方案:
根据本发明的一个方面,提供了一种数据系统,包括:主通信设备和从通信设备,其中,所述主通信设备包括:供电接口,与直流供电电源连接;第一有线通信接口,由第一通信子接口和第二通信子接口组成,其中,所述第一通信子接口与所述供电接口电连接,所述第二通信子接口与所述主通信设备的地端电连接;第一储能组件,其第一端与所述第一通信子接口与所述供电接口的连接点电连接;第一主控芯片包括:控制端口,其中,所述控制端口与所述第一储能组件的第二端电连接;所述第一主控芯片,用于在所述主通信设备发送低电平信号时,从所述控制端口输出第一信号;所述第一储能组件,用于在所述第一信号的控制下,将所述第一储能组件的第一端的电压置为第一电压,其中,所述第一电压低于所述供电接口处的电压值且大于零;所述从通信设备包括:第二有线通信接口,由从通信设备的第一通信子接口和从通信设备的第二通信子接口组成,其中,所述从通信设备的第一通信子接口与所述主通信设备的第一通信子接口电连接,所述从通信设备的第二通信子接口与所述主通信设备的第二通信子接口电连接;第二信号采集电路,其输入端与所述从通信设备的第一通信子接口电连接;第二主控芯片,包括检测端口,所述检测端口与所述第二信号采集电路的输出端电连接;所述第二信号采集电路包括:第一负载组件、第二负载组件、电容组件、第三负载组件和电压比较器;所述第一负载组件的第一端与所述第二负载组件的第一端电连接,所述第一负载组件与所述第二负载组件的连接点即为所述第二信号采集电路的输入端;所述第一负载组件的第二端与所述电压比较器的正向输入端电连接;所述第二负载组件的第二端、所述电容组件的第一端以及所述第三负载组件的第一端分别与所述电压比较器的反向输入端电连接,所述电容组件的第二端和所述第三负载组件的第二端分别与所述从通信设备的地端电连接;所述电压比较器的输出端即为所述第二信号采集电路的输出端。
可选地,所述从通信设备还包括:第二储能组件;所述第二主控芯片还包括:控制端口;所述主通信设备通过所述主通信设备的第一有线通信接口对所述从通信设备进行供电;所述第二主控芯片用于在所述从通信设备发送低电平信号时,从所述第二主控芯片的控制端口输出第三信号;所述第二储能组件,其第一端与所述从通信设备的第一通信子接口电连接,其第二端与所述第二主控芯片的控制端口电连接,所述第二储能组件用于在所述第三信号的控制下,将所述第二储能组件的第一端的电压置为第三电压,其中,所述第三电压低于所述主通信设备提供的供电电压的电压值且大于零。
根据本发明的另一个方面,还提供另一种数据系统,包括:主通信设备和从通信设备,其中,所述主通信设备包括:供电接口,与直流供电电源连接;第一有线通信接口,由第一通信子接口和第二通信子接口组成,其中,所述第一通信子接口与所述供电接口电连接,所述第二通信子接口与所述主通信设备的地端电连接;第一储能组件,其第一端与所述第一通信子接口与所述供电接口的连接点电连接;第一主控芯片包括控制端口,所述控制端口与所述第一储能组件的第二端电连接;所述第一主控芯片,用于在所述主通信设备发送低电平信号时,从所述控制端口输出第一信号;所述第一储能组件,用于在所述第一信号的控制下,将所述第一储能组件的第一端的电压置为第一电压,其中,所述第一电压低于所述供电接口处的电压值且大于零;所述从通信设备包括:第二有线通信接口,由所述从通信设备的第一通信子接口和从通信设备的第二通信子接口组成;防反接模块,包括:第一输入输出端口、第二输入输出端口、接地端和输出端,其中,所述第一输入输出接口与所述从通信设备的第一通信子接口电连接,所述第二输入输出端与所述从通信设备的第二通信子接口电连接,所述接地端与所述从通信设备的地端电连接,所述防反接模块的输出端与第二信号采集电路的输入端电连接,所述防反接模块用于将从所述第一输入输出端口和所述第二输入输出端口中的一个至所述防反接模块的输出端的通路导通,将从所述接地端到所述第一输入输出端口和所述第二输入输出端口中的另一个的通路导通;第二主控芯片包括检测端口,所述第二主控芯片的检测端口与所述第二信号采集电路的输出端电连接;所述第二信号采集电路包括:第一负载组件、第二负载组件、电容组件、第三负载组件和电压比较器;其中,所述第一负载组件的第一端与所述第二负载组件的第一端电连接,所述第一负载组件与所述第二负载组件的连接点即为所述第二信号采集电路的输入端;所述第一负载组件的第二端与所述电压比较器的正向输入端电连接;所述第二负载组件的第二端、所述电容组件的第一端以及所述第三负载组件的第一端分别与所述电压比较器的反向输入端电连接,所述电容组件的第二端和所述第三负载组件的第二端分别与所述从通信设备的地端电连接;所述电压比较器的输出端即为所述第二信号采集电路的输出端。
可选地,所述从通信设备还包括:第二储能组件;所述第二主控芯片还包括:控制端口;所述主通信设备通过所述第一有线通信接口对所述从通信设备进行供电;所述第二主控芯片用于在所述从通信设备发送低电平信号时,从所述第二主控芯片的控制端口输出第三信号;所述第二储能组件,其第一端与所述所述防反接模块的输出端电连接,其第二端与所述第二主控芯片的控制端口电连接,用于在所述第三信号的控制下,将所述第二储能组件的第一端的电压置为第三电压,其中,所述第三电压低于所述主通信设备提供的供电电压的电压值且大于零。
可选地,所述第一储能组件为电容;所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述供电接口处的电压值;所述第一主控芯片还用于在所述主通信设备发送高电平信号时,从所述控制端口输出第二信号,其中,所述第二信号为电压值为所述第二电压的电平信号。
可选地,所述主通信设备还包括:第一电压产生电路;所述第一储能组件为电容;所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述供电接口处的电压值;所述第一电压产生电路的输入端与所述供电接口电连接,所述第一电压产生电路的输出端与所述第一储能组件的第二端电连接,所述第一电压产生电路用于输出电压值为所述第二电压的电平信号至所述第一储能组件的第二端。
可选地,所述第一电压产生电路包括第一分压组件和第二分压组件,所述第一分压组件的第一端为所述第一电压产生电路的输入端,所述第一分压组件的第二端与所述第二分压组件的第一端电连接,所述第一分压组件和第二分压组件的连接点为所述第一电压产生电路的输出端,所述第二分压组件的第二端与所述主通信设备的地端电连接;所述主通信设备,还包括:稳压模块,连接在所述供电接口与所述第一电压产生电路的输入端之间。
可选地,所述主通信设备还包括:第一开关组件,电连接在所述第一储能组件的第二端与所述主通信设备的地端之间;所述控制端口,具体通过所述第一开关组件与所述第一储能组件的第二端电连接,用于在所述主通信设备发送低电平信号时,导通所述第一储能组件的第二端和所述主通信设备的地端之间的通路。
可选地,所述主通信设备还包括:第一信号采集电路;所述第一通信子接口还与所述第一信号采集电路的输入端电连接;所述第一主控芯片还包括检测端口,所述第一主控芯片的检测端口与所述第一信号采集电路的输出端电连接;所述第一信号采集电路包括:第一负载组件、第二负载组件、电容组件、第三负载组件和电压比较器;所述第一信号采集电路的第一负载组件的第一端与所述第一信号采集电路的第二负载组件的第一端电连接,所述第一信号采集电路的第一负载组件与所述第一信号采集电路的第二负载组件的连接点即为所述第一信号采集电路的输入端;所述第一信号采集电路的第一负载组件的第二端与所述第一信号采集电路的电压比较器的正向输入端电连接;所述第一信号采集电路的第二负载组件的第二端、所述第一信号采集电路的电容组件的第一端以及所述第一信号采集电路的第三负载组件的第一端分别与所述第一信号采集电路的电压比较器的反向输入端电连接,所述第一信号采集电路的电容组件的第二端和所述第一信号采集电路的第三负载组件的第二端分别与所述主通信设备的地端电连接;所述第一信号采集电路的电压比较器的输出端即为所述第一信号采集电路的输出端。
可选地,所述主通信设备还包括:毛刺过滤组件,连接在所述第一信号采集电路的第一负载组件的第二端和所述第一信号采集电路的电压比较器的输出端之间。
可选地,所述第二储能组件为电容;所述第三信号为电压值低于第四电压的电平信号,其中,所述第四电压小于所述主通信设备提供的供电电压的电压值;所述第二主控芯片还用于在所述从通信设备发送高电平信号时,从所述第二主控芯片的控制端口输出第四信号,其中,所述第四信号为电压值为所述第四电压的电平信号。
可选地,所述从通信设备还包括:第二电压产生电路;所述第二储能组件为电容;所述第三信号为电压值低于第四电压的电平信号,其中,所述第四电压小于所述主通信设备提供的供电电压的电压值;所述第二电压产生电路的输入端与所述从通信设备的第一通信子接口电连接,所述第二电压产生电路的输出端与所述第二储能组件的第二端电连接,所述第二电压产生电路用于输出电压值为所述第四电压的电平信号至所述第二储能组件的第二端。
可选地,所述从通信设备还包括:第二电压产生电路;所述第二储能组件为电容;所述第三信号为电压值低于第四电压的电平信号,其中,所述第四电压小于所述主通信设备提供的供电电压的电压值;所述第二电压产生电路的输入端与所述防反接模块的输出电连接,所述第二电压产生电路的输出端与所述第二储能组件的第二端电连接,所述第二电压产生电路用于输出电压值为所述第四电压的电平信号至所述第二储能组件的第二端。
可选地,所述第二电压产生电路包括第一分压组件和第二分压组件,所述第一分压组件的第一端为所述第二电压产生电路的输入端,所述第一分压组件的第二端与所述第二分压组件的第一端电连接,所述第一分压组件和第二分压组件的连接点为所述第二电压产生电路的输出端,所述第二分压组件的第二端与所述地端电连接。
可选地,所述第二主控芯片还包括:供电端口,与所述从通信设备的第一通信子接口电连接。
可选地,所述第二主控芯片还包括:供电端口,与所述防反接模块的输出端电连接。
可选地,所述从通信设备还包括:第二开关组件,电连接在所述第二储能组件的第二端与所述从通信设备的地端之间;所述第二主控芯片的控制端口,具体通过所述第二开关组件与所述第二储能组件的第二端电连接,用于在所述从通信设备发送低电平信号时,导通所述第二储能组件的第二端和所述从通信设备的地端之间的通路。
由上述本发明提供的技术方案可以看出,本发明提供了一种数据通信系统,其中主通信设备和从通信设备分别设有两线通信接口,通过本实施例可以实现通信设备通过两线通信接口进行数据发送,可选的从通信设备还能够支持防反接的功能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例1提供的的一种数据通信系统的架构示意图;
图2为本发明实施例2提供的一种主通信设备的结构示意图;
图3为本发明实施例3提供的一种主通信设备的结构示意图;
图4为本发明实施例4提供的一种主通信设备的结构示意图;
图5为本发明实施例4提供的又一种主通信设备的结构示意图;
图6为本发明实施例4提供的一种带有毛刺信号的信号波形示意图;
图7为本发明实施例5提供的一种主通信设备的结构示意图;
图8为本发明实施例5提供的另一种主通信设备的结构示意图;
图9为本发明实施例5提供的又一种主通信设备的结构示意图;
图10为本发明实施例6提供的一种从通信设备的结构示意图;
图11为本发明实施例6提供的另一种从通信设备的结构示意图;
图12为本发明实施例6提供的又一种从通信设备的结构示意图;
图13为本发明实施例6提供的又一种从通信设备的结构示意图;
图14为本发明实施例6提供的又一种从通信设备的结构示意图;
图15为本发明实施例7提供的一种从通信设备的结构示意图;
图16为本发明实施例7提供的一种防反接模块的结构示意图;
图17为本发明实施例7提供的另一种从通信设备的结构示意图;
图18为本发明实施例7提供的又一种从通信设备的结构示意图;
图19为本发明实施例7提供的又一种从通信设备的结构示意图;
图20为本发明实施例7提供的又一种从通信设备的结构示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或数量或位置。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面将结合附图对本发明实施例作进一步地详细描述。
实施例1
本实施例提供了一种数据通信系统。
图1为本实施例提供的一种数据通信系统的架构示意图,如图1所示,本实施例提供的数据通信系统主要包括:主通信设备10和从通信设备20。如图1所示,本实施例中,主通信设备10与从通信设备20通过两线通信接口进行数据通信,主通信设备10与从通信设备20通过两线通信接口正向相连时,亦即该主通信设备10的第一通信子接口和从通信设备20的第一通信子接口电连接,主通信设备10的第二通信子接口和从通信设备20的第二通信子接口电连接。主通信设备10可以通过其第一通信子接口向从通信设备20发送数据,从通信设备20通过其第一通信子接口,可以检测到主通信设备10发送的数据。另外,从通信设备20可以通过其第一通信子接口向主通信设备10发送数据,主通信设备10通过其第一通信子接口,可以检测到从通信设备20发送的数据。反之,主通信设备10与从通信设备20通过两线通信接口反向相连时,亦即该主通信设备10的第一通信子接口和从通信设备20的第二通信子接口电连接,主通信设备10的第二通信子接口和从通信设备20的第一通信子接口电连接。主通信设备10可以通过其第一通信子接口向从通信设备20发送数据,从通信设备20通过其第二通信子接口,可以检测到主通信设备10发送的数据。另外,从通信设备20可以通过其第二通信子接口向主通信设备10发送数据,主通信设备10通过其第一通信子接口,可以检测到从通信设备20发送的数据。
此外,主通信设备10还可以通过主通信设备10的第一通信子接口还可以向从通信设备20供电。
在本实施例提供的数据通信系统中,在通信过程中,主通信设备10的第一有线通信接口与从通信设备20的第二有线通信接口有线连接,主通信设备10在发送数据时,可以通过改变主通信设备10的第一通信子接口处的电平高低变化来发送数据,由于主通信设备10的第一通信子接口与从通信设备20的其中一个通信子接口电连接,主通信设备10的第一通信子接口处的电平高低变化,将引起从通信设备20的两个通信子接口中与主通信设备的第一通信子接口连接的通信子接口的电平变化,从通信设备20通过检测与主通信设备的第一通信子接口连接的通信子接口的电平变化,进而检测到主通信设备10发送的数据,
从通信设备20在发送数据时,可以通过改变从通信设备20的与主通信设备的第一通信子接口连接的通信子接口处的电平高低变化来发送数据,由于从通信设备20的该通信子接口与主通信设备10的第一通信子接口电连接,从通信设备20的该通信子接口处的电平高低变化引起主通信设备10的第一通信子接口的电平变化,主通信设备10通过检测第一通信子接口的电平变化,进而检测到从通信设备20发送的数据,达到数据传输的目的。
在具体应用中,主通信设备10可以采用实施例2至5中各个实施方式所描述的结构,具体参见实施例2的描述,从通信设备20可以分别采用实施例6和7中各个实施方式所描述的结构,具体参见实施例3和4的描述,在此不再赘述,且实施例2至5中任一实施方式所描述的主通信设备可以与实施例6和7中任一实施方式所描述的从通信设备进行组合,得到本实施例所提供的数据通信系统。
实施例2
本实施例提供了一种主通信设备10,图2为本实施例提供的一种主通信设备10的结构示意图。如图2所示,该主通信设备10包括:与直流供电电源连接的供电接口100、第一有线通信接口110、第一主控芯片130、第一储能组件140;其中,所述第一有线通信接口110由第一通信子接口111和第二通信子接口112组成;所述供电接口100与所述第一通信子接口111电连接,所述第一储能组件140的第一端与所述供电接口100与所述第一通信子接口111的连接点电连接;所述第二通信子接口112与所述主通信设备10的接地端GND_M电连接;所述第一主控芯片130包括控制端口,所述控制端口与所述第一储能组件140的第二端电连接;所述第一主控芯片130,用于在所述主通信设备10发送低电平信号时,从所述控制端口输出第一信号;所述第一储能组件140,用于在所述第一信号的控制下,将所述第一储能组件140的第一端的电压置为第一电压,其中,所述第一电压低于所述供电接口100处的电压值且大于零。
其中,所述第一有线通信接口110由第一通信子接口和第二通信子接口组成。由于该第一有线通信接口由两个接口组成,因而,该第一有线通信接口也称为两线通信接口。主通信设备10通过该两线通信接口与从通信设备20进行有线连接,从而为从通信设备20供电,并与从通信设备20进行数据通信。
本实施例中,由于该主通信设备10的第一通信子接口与供电接口电连接,在没有低电平信号传输时,第一通信子接口处的电平可以维持在供电接口处的电压值。在所述主通信设备10发送低电平信号时,第一主控芯片130从所述控制端口输出第一信号,第一储能组件140在所述第一信号的控制下,将所述第一储能组件140的第一端的电压置为第一电压,由于所述第一电压低于所述供电接口处的电压值且大于零,使得第一通信子接口处的电平降低以产生电平变化,进而通过第一通信子接口处的电平变化实现数据发送。而不是采用现有技术中的方案将发送端口的电平接地下降到零,来实现数据发送。
本实施例的一种可选实施方式中,所述供电接口100还可以与第一主控芯片130的供电端口电连接,用于实现对第一主控芯片130的供电。当然,该供电接口100还可以与所述主通信设备10中其他负载元件的供电端口电连接,以实现对主通信设备10中其他负载元件的供电。
作为本发明实施例的一个可选实施方式,主通信设备10还可以包括:稳流组件(图未示),连接在供电接口100与供电接口100与第一通信子接口111的连接点之间。其中,在具体实施时,作为一种可选方式,稳流组件可以包括:电感元件。稳流组件可以利用电感的特性,保证电路电流没有突变。
此外,作为本发明实施例的一个可选实施方式,主通信设备10还可以包括:续流组件(图未示),反向并联在电感的两端,该续流组件单向导通,导通的方向与电感中电路通路方向相反。在具体实施时,作为一种可选方式,续流组件可以为二极管或其他可以续流的元件,本实施例不做限制。以二极管为例,二极管的正极作为第一端,负极作为第二端,即,二极管可以反向并联在电感的两端。当电路出现不稳定时,稳流组件中的电感两端的电动势并不立即消失,波形的波峰或波谷出现振荡(有毛刺),而残余的电动势会对电路中的元件产生反向电压,进而烧毁元件,反向并联在电感两端的二极管,可以将残余的电动势释放(起这种作用的二极管就叫续流二极管),从而保护了电路中的其它元件的安全,进一步地,通过该续流组件可以消除快速下降沿的振荡(即,得到平稳的波形),以输出平稳的电压(高电平或低电平)。
实施例3
本实施例提供了另一种主通信设备10,本实施例提供的主通信设备10与实施例2的区别在于:本实施例中,所述第一主控芯片130还用于在所述主通信设备10发送高电平信号时,从所述控制端口输出第二信号。
本实施例中,所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述供电接口处的电压值;所述第二信号为电压值为所述第二电压的电平信号。
如图3所示,第一储能组件可以为电容(图3所示的C1)。该第一储能组件的第一端分别与供电接口(图3所示的V_MPWR)、第一通信子接口(图3所示的标号11中的1口为第一通信子接口,标号11中的2口为第二通信子接口)电连接,第二端与第一主控芯片的控制端口电连接。
在所述主通信设备10发送高电平信号时,由于第一储能组件140的第一端可以维持在供电接口提供的电压,使得第一通信子接口的电平也维持在高电平信号,该高电平信号为供电接口提供的电压信号。第一主控芯片的控制端口输出第二信号,使得第一储能组件的第二端的电平大小维持在第二电压,所述第二信号为电压值为所述第二电压的电平信号,该第二电压低于供电接口处的电压值,例如,供电接口处电压为5v,第二电压可以为3v。本实施例中,第二信号的作用为:使得第一储能组件两端的压差可以维持在供电接口处电压和第二电压的差值,当下次需要发送低电平信号时,第一储能组件的第二端输入低于第二电压的第一信号时,第一储能组件两端的压差增大,使得电容瞬间充电,根据电容隔直通交的特性,第一储能组件的第一端电平瞬间被拉低,使得第一通信子接口的电平被拉低,以实现低电平信号的发送。
在所述主通信设备10发送低电平信号时,第一主控芯片的控制端口输出第一信号,所述第一信号为电压值低于第二电压的电平信号,例如第二电压为3v,第一信号的电压值可以为2v,或者1v,或者0v等,电容两端的压差增大,使得电容瞬间充电,根据电容隔直通交的特性,电容的第一端电平瞬间被拉低,使得第一通信子接口的电平被拉低,从而产生电平变化实现数据的发送。借助该电容,可以控制第一通信子接口处的电平下降到第一电压,该第一电压为非零电压值,从而实现数据的发送,而不是采用现有技术中的方案将发送端口的电平接地下降到零,来实现数据发送。
本实施例的一种可选实施方式中,控制端口输出第一信号的一种实现方式可以为:由第一主控芯片内部产生第一信号,并通过控制端口输出;可选的,控制端口输出第一信号的另一种实现方式为:控制端口通过控制开关的通断,以控制第一储能组件的第二端接地,使得控制端口处产生第一信号。此时,所述设备还包括:第一开关组件电连接在所述第一储能组件的第二端与所述主通信设备的地端之间;所述第一主控芯片的控制端口,具体通过所述第一开关组件与所述第一储能组件的第二端电连接,用于在所述主通信设备发送低电平信号时,导通所述第一储能组件的第二端和所述主通信设备的地端之间的通路,从而使第一储能组件的第二端的电平为零,进行使得第一储能组件(即电容)两端的电压差增加,第一储能组件导通,进而使得第一通信子接口111的电平瞬间被拉低(即主通信设备10输出低电平),另外,由于第一储能组件为电容,其在第一开关组件导通之前,进行了充电,在第一开关组件导通时,由于电容的特性,第一储能组件的第一端的电压瞬间被拉低到第一开关组件导通前第一储能组件两端的电压差,即供电接口提供的电压与第二信号的电压差,而不是为零。
实施例4
本实施例提供了又一种主通信设备,如图4所示,本实施例提供的主通信设备在实施例2、实施例3以及下面的实施5的基础上增加了第一信号采集电路150,第一主控芯片还包括检测端口。其中,第一信号采集电路150的输入端与供电接口100与第一通信子接口111的连接点电连接,第一信号采集电路150的输出端与第一主控芯片130的检测端口电连接。
如图4所示,所述第一信号采集电路150可以包括:第一负载组件(图4中以R1表示)、第二负载组件(图4中以R2表示)、电容组件(图4中以C2表示)、第三负载组件(图4中以R3表示)和电压比较器(图4中以A1表示);其中,所述第一负载组件的第一端与所述第二负载组件的第一端电连接,所述第一负载组件与所述第二负载组件的连接点即为所述第一信号采集电路的输入端;所述第一负载组件的第二端与所述电压比较器的正向输入端电连接;所述第二负载组件的第二端、所述电容的第一端以及所述第三负载组件的第一端分别与所述电压比较器的反向输入端电连接,所述电容组件的第二端和所述第三负载组件的第二端分别与所述接地端电连接;所述电压比较器的输出端即为所述第一信号采集电路的输出端。
第一负载组件、第二负载组件和第三负载组件例如可以为电阻,当然也可以为其他可以等效为电阻的元件,在此不作限制。
第一信号采集电路实现信号采集的工作原理如下:
主通信设备10通过第一通信子接口接收到高电平信号时,第一信号采集电路的输入端接入高电平信号,高电平信号分别经过第一负载组件和第二负载组件后产生压降,如果没有电容和第三负载组件的存在,那么第一负载组件的第二端和第二负载组件的第二端的高电平信号对应的电压值将相同,电压比较器无法正常输出信号。由于电容和第三负载组件的存在,电容会进行充电以到达电能平衡,到达第二负载组件的第二端的高电平信号对应的电压会被第三负载组件拉低之后接入电压比较器的反向输入端,到达第一负载组件的第二端的高电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值高于反向输入端的电压值,电压比较器输出端输出高电平信号。第一主控芯片的检测端采集到电压比较器输出端输出的高电平信号,可以得知主通信设备10接收到高电平信号。
主通信设备10通过第一通信子接口接收到低电平信号时,第一信号采集电路的输入端接入低电平信号,低电平信号分别经过第一负载组件和第二负载组件后,如果没有电容和第三负载组件的存在,那么第一负载组件的第二端和第二负载组件的第二端的低电平信号对应的电压值将相同,电压比较器无法正常输出信号。由于电容和第三负载组件的存在,电容两端压差变小会进行放电以到达电能平衡,在电容放电的情形下到达第二负载组件的第二端的低电平信号会被短暂升高之后之后接入电压比较器的反向输入端,到达第一负载组件的第二端的低电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值低于反向输入端的电压值,电压比较器输出端输出低电平信号。第一主控芯片的检测端采集到电压比较器输出端输出的低电平信号,可以得知主通信设备10接收到低电平信号。
需要说明的是,主通信设备10通过第一通信子接口接收到的高电平信号和低电平信号的大小是相对而言的。该低电平信号对应的电压值与该高电平信号对应的电压值之间的电压差值可以很小,通常第一主控芯片的检测端无法直接检测出电压差值较小的电平变化,通过本实施例提供的第一信号采集电路可以将较小的电压差值放大,使得第一主控芯片的检测端实现电压变化差值较小的电平变化的检测。
本实施例的一种可选实施方式中,如图5所示,所述主通信设备10还包括:毛刺过滤组件(图5所示的R6),连接在所述第一负载组件的第二端和所述电压比较器的输出端之间。
其中,毛刺过滤组件可以是电阻。当然也可以为其他可以等效为电阻的元件,在此不作限制。
由于电路不稳定或信号存在干扰等因素,第一信号采集电路的输入端接入的电平信号中可能会存在毛刺信号,该毛刺信号通常也为低电平信号,如图6所示,一段带有毛刺信号的电平信号,其中,X点-Y点为毛刺信号,Y点之后为携带有正常数据的电平信号。如果不设置毛刺过滤组件,当X点-Y点之间的低电平信号接入第一信号采集电路的输入端后,根据上述第一信号采集电路的工作原路,可以得知,到达第二负载组件的第二端的低电平信号对应的电压,在电容放电的情形下会被短暂升高之后接入电压比较器的反向输入端,到达第一负载组件的第二端的低电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值低于反向输入端的电压值,电压比较器输出端输出低电平信号,此时主通信设备10会认为已经接收到携带有正常数据的低电平信号了。实际上携带有正常数据的电平信号是从Y点之后开始的。
为了对毛刺信号进行有效过滤,本实施例在主通信设备10中设置了毛刺过滤组件。当X点-Y点之间的低电平信号接入第一信号采集电路的输入端后,由于电容和第三负载组件的存在,电容会进行放电以到达电能平衡,到达第二负载组件的第二端的低电平信号对应的电压,在电容放电的情形下低电平信号会被短暂升高之后接入电压比较器的反向输入端,由于毛刺过滤组件的存在,电压比较器的输出端的电压会短暂反向流向第一负载组件的第二端,使得到达第一负载组件的第二端的低电平信号也可以被短暂升高之后接入电压比较器的正向输入端,电压比较器的输出端通过毛刺过滤组件反向提供给电压比较器的正向输入端的短暂升高电压要比电容放电提供给电压比较器的反向输入端的电压高,此时,电压比较器的正向输入端的电压值将短暂高于反向输入端的电压值,电压比较器输出端输出高电平信号。第一主控芯片的检测端采集到电压比较器输出端输出的高电平信号,可以得知目前没有接收到正常携带数据的低电平信号,也就是将毛刺信号带来的干扰过滤了。由于毛刺过滤组件向电压比较器的正向输入端带来的电压升高是短暂的,电压比较器的输出端通过毛刺过滤组件反向提供升高电压的时间远远小于电容放电的时间,因而当Y点的低电平信号到来时,毛刺过滤组件向电压比较器的正向输入端带来的电压升高已经消失,而电容放电还在持续,根据第一信号采集电路的原理,到达第二负载组件的第二端的低电平信号对应的电压,在电容放电的情形下低电平信号会被短暂升高之后之后接入电压比较器的反向输入端,到达第一负载组件的第二端的低电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值低于反向输入端的电压值,电压比较器输出端输出低电平信号。第一主控芯片的检测端采集到电压比较器输出端输出的低电平信号,可以得知接收到携带有正常数据的低电平信号。
通过本实施例提供的主通信设备10,可以通过检测主通信设备10的第一通信子接口111的电平变化来检测从通信设备20发送的数据,从而实现从通信设备20通过两线通信接口向主通信设备发送数据。
需要说明的是,本发明的各实施例中的主通信设备10和从通信设备20都只能单向通信,即,在发送数据时不能接收数据,在接收数据时不能发送数据。在主通信设备10发送数据时,从通信设备20只能接收数据,不能发送数据,当主通信设备10发送数据结束后,会向从通信设备20发送数据发送结束的指示,从通信设备20结束接收数据,可以开始发送数据;此时,主通信设备10可以检测到从通信设备20发送的数据,主通信设备10进入接收数据的状态。同样地,从通信设备20发送数据时,主通信设备10也只能接收数据,不能发送数据,当从通信设备20发送数据结束后,会向主通信设备10发送数据发送结束的指示,主通信设备10结束接收数据,可以开始发送数据;此时,从通信设备20可以检测到主通信设备10发送的数据,从通信设备20进入接收数据的状态。
实施例5
本实施例提供一种主通信设备10,图7和图8为本实施例提供的一种主通信设备的结构示意图,如图7所示,该主通信设备10与实施例3提供的主通信设备10的区别在于:实施例3中第二信号由第一主控芯片的控制端口提供,而在本实施例中,第二信号由第一电压产生电路160提供。
本实施例中,所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述供电接口处的电压值;如图7所示,所述第一电压产生电路160的输入端与所述供电接口100电连接,所述第一电压产生电路160的输出端与所述第一储能组件140的第二端电连接,所述电压产生电路160用于输出电压值为所述第二电压的电平信号至所述第一储能组件的第二端。
如图8所示,第一储能组件可以为电容(图8所示的C1)。该第一储能组件的第一端分别与供电接口100、第一通信子接口(图8所示的标号110中的1口为第一通信子接口,标号110中的2口为第二通信子接口)电连接,第二端与电压产生电路的输出端电连接。
在所述主通信设备10发送高电平信号时,由于第一储能组件140的第一端可以维持在供电接口提供的电压,使得第一通信子接口的电平也维持在高电平信号,该高电平信号为供电接口提供的电压信号。第一主控芯片的控制端口不再输出第一信号,第一储能组件的第二端的电平大小等于第一电压产生电路160的输出端的电压,即第二电压,该第二电压低于供电接口处的电压值,例如,供电接口处电压为5v,第二电压可以为3v。本实施例中,第二信号的作用为:使得第一储能组件两端的压差可以维持在供电接口处电压和第二电压的差值,当下次需要发送低电平信号时,第一储能组件的第二端输入低于第二电压的第一信号时,第一储能组件两端的压差增大,使得电容瞬间充电,根据电容隔直通交的特性,第一储能组件的第一端电平瞬间被拉低,使得第一通信子接口的电平被拉低,以实现低电平信号的发送。。
在所述主通信设备10发送低电平信号时,第一主控芯片的控制端口输出第一信号,所述第一信号为电压值低于第二电压的电平信号,例如第二电压为3v,第一信号的电压值可以为2v,或者1v,或者0v等,电容两端的压差增大,使得电容瞬间充电,根据电容隔直通交的特性,电容的第一端电平瞬间被拉低,使得第一通信子接口的电平被拉低,从而产生电平变化实现数据的发送。借助该电容,可以控制第一通信子接口处的电平下降到第一电压,该第一电压为非零电压值,从而实现数据的发送,而不是采用现有技术中的方案将发送端口的电平接地下降到零,来实现数据发送。
本实施例的一种可选实施方式中,控制端口输出第一信号的一种实现方式可以为:由第一主控芯片内部产生第一信号,并通过控制端口输出;可选的,控制端口输出第一信号的另一种实现方式为:控制端口通过控制开关的通断,以控制第一储能组件的第二端接地,使得控制端口处产生第一信号。此时,所述设备还包括:第一开关组件(图未示)电连接在所述第一储能组件的第二端与所述主通信设备的地端之间;所述控制端口,具体通过所述第一开关组件与所述第一储能组件的第二端电连接,用于在所述主通信设备发送低电平信号时,导通所述第一储能组件的第二端和所述主通信设备的地端之间的通路,使得第一储能组件的第二端的电压变为零,即输入低于第二电压的第一信号。在具体应用中,开关组件可以通过PMOS、NMOS等元器件实现。采用这种实施方式,可以方便的将储能组件240的第二端的电压瞬间降到0,电路实现简单,对第二主控芯片的要求也不高。
本发明实施例的一个可选实施方式,如图8所示,所述第一电压产生电路包括第一分压组件(图8所示的R7)和第二分压组件(图8所示的R8),所述第一分压组件的第一端为所述电压产生电路的输入端,所述第一分压组件的第二端与所述第二分压组件的第一端电连接,所述第一分压组件和第二分压组件的连接点为所述电压产生电路的输出端,所述第二分压组件的第二端与所述接地端电GND_M连接;
其中,第一分压组件和第二分压组件可以为电阻,在主通信设备10中设置第一分压组件和第二分压组件,通过调节第一分压组件和第二分压组件的阻值大小,可以将电压产生电路接入的电压(即供电电源提供的电压)调节成第二电压的电平信号(第二信号),以便于提供给第一储能组件的第二端。
本发明实施例的一个可选实施方式,所述主通信设备10,还可以包括:稳压模块(图未示),连接在所述供电接口100与所述第一电压产生电路的输入端之间。该稳压模块可以是稳压器,用于将输入的电压调节成稳定的电压并输出,保证电压产生电路可以接入稳定的电压。
本发明实施例的一个可选实施方式,本实施例提供的主通信设备可以包括第一信号采集电路,如图9所示,所述第一信号采集电路可以包括:第一负载组件(图9所示的R1)、第二负载组件(图9所示的R2)、电容组件(图9所示的C2)、第三负载组件(图9所示的R3)和电压比较器(图9所示的A1);其中:所述第一负载组件的第一端与所述第二负载组件的第一端电连接,所述第一负载组件与所述第二负载组件的连接点即为所述第一信号采集电路的输入端;所述第一负载组件的第二端与所述电压比较器的正向输入端电连接;所述第二负载组件的第二端、所述电容的第一端以及所述第三负载组件的第一端分别与所述电压比较器的反向输入端电连接,所述电容组件的第二端和所述第三负载组件的第二端分别与所述接地端电连接;所述电压比较器的输出端即为所述第一信号采集电路的输出端。
在本实施例中,第一负载组件、第二负载组件和第三负载组件例如可以为电阻,当然也可以为其他可以等效为电阻的元件,在此不作限制。
关于第一信号采集电路的具体描述可以参见实施例4中相关描述,在此不再赘述。
主通信设备10通过第一通信子接口接收到的高电平信号和低电平信号的大小是相对而言的。该低电平信号对应的电压值与该高电平信号对应的电压值之间的电压差值可以很小,通常第一主控芯片的检测端无法直接检测出电压差值较小的电平变化,通过本实施例提供的第一信号采集电路可以将较小的电压差值放大,使得第一主控芯片的检测端实现电压变化差值较小的电平变化的检测。
实施例6
本实施例提供一种从通信设备20,图10为本实施例提供的一种从通信设备20的结构示意图,如图10所示,从通信设备20包括:第二有线通信接口210、第二主控芯片230、第二信号采集电路250;所述第二有线通信接口210由从通信设备20的第一通信子接口211和从通信设备20的第二通信子接口212组成;其中,所述第二通信子接口211与所述从通信设备20的接地端GND_S电连接;所述第一通信子接口212与所述第二信号采集电路250的输入端电连接;所述第二主控芯片230包括检测端口,所述检测端口与所述第二信号采集电路250的输出端电连接;如图11所示,所述第二信号采集电路包括:第一负载组件(参见图11中的R1)、第二负载组件(参见图11中的R2)、电容组件(参见图11中的C2)、第三负载组件(参见图11中的R3)和电压比较器(参见图11中的A1);其中,所述第一负载组件的第一端与所述第二负载组件的第一端电连接,所述第一负载组件与所述第二负载组件的连接点即为所述第二信号采集电路的输入端;所述第一负载组件的第二端与所述电压比较器的正向输入端电连接;所述第二负载组件的第二端、所述电容组件的第一端以及所述第三负载组件的第一端分别与所述电压比较器的反向输入端电连接,所述电容组件的第二端和所述第三负载组件的第二端分别与所述接地端GND_S电连接;所述电压比较器的输出端即为所述第二信号采集电路的输出端。
在本实施例中,第一负载组件、第二负载组件和第三负载组件例如可以为电阻,当然也可以为其他可以等效为电阻的元件,在此不作限制。
第二信号采集电路实现信号采集的工作原理如下:
从通信设备20接收到高电平信号时,第二信号采集电路的输入端接入高电平信号,高电平信号分别经过第一负载组件和第二负载组件后产生压降,如果没有电容组件和第三负载组件的存在,那么第一负载组件的第二端和第二负载组件的第二端的高电平信号对应的电压值将相同,电压比较器无法正常输出信号。由于电容组件和第三负载组件的存在,电容组件会进行充电以到达电能平衡,到达第二负载组件的第二端的高电平信号对应的电压会被第三负载组件拉低之后接入电压比较器的反向输入端,到达第一负载组件的第二端的高电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值高于反向输入端的电压值,电压比较器输出端输出高电平信号。第二主控芯片的检测端采集到电压比较器输出端输出的高电平信号,可以得知从通信设备20接收到高电平信号。
从通信设备20接收到低电平信号时,第二信号采集电路的输入端接入低电平信号,低电平信号分别经过第一负载组件和第二负载组件后,如果没有电容组件和第三负载组件的存在,那么第一负载组件的第二端和第二负载组件的第二端的低电平信号对应的电压值将相同,电压比较器无法正常输出信号。由于电容组件和第三负载组件的存在,电容组件两端压差变小会进行放电以到达电能平衡,在电容组件放电的情形下到达第二负载组件的第二端的低电平信号会被短暂升高之后之后接入电压比较器的反向输入端,到达第一负载组件的第二端的低电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值低于反向输入端的电压值,电压比较器输出端输出低电平信号。第二主控芯片的检测端采集到电压比较器输出端输出的低电平信号,可以得知从通信设备20接收到低电平信号。
需要说明的是,从通信设备20接收到的高电平信号和低电平信号的大小是相对而言的。该低电平信号对应的电压值与该高电平信号对应的电压值之间的电压差值可以很小,通常第二主控芯片的检测端无法直接检测出电压差值较小的电平变化,通过本实施例提供的第二信号采集电路可以将较小的电压差值放大,使得第二主控芯片的检测端实现电压变化差值较小的电平变化的检测。
本实施例的一种可选实施方式中,如图12所示,所述从通信设备设备还可以包括:毛刺过滤组件(参见图12中的R6),连接在所述第一负载组件(图12所示的R1)的第二端和所述电压比较器(图12所示的A1)的输出端之间。
其中,毛刺过滤组件可以是电阻。当然也可以为其他可以等效为电阻的元件,在此不作限制。
由于电路不稳定或信号存在干扰等因素,第二信号采集电路的输入端接入的电平信号中可能会存在毛刺信号,该毛刺信号通常也为低电平信号,参见实施例4中的图6所示,一段带有毛刺信号的电平信号,其中,X点-Y点为毛刺信号,Y点之后为携带有正常数据的电平信号。如果不设置毛刺过滤组件,当X点-Y点之间的低电平信号接入第二信号采集电路的输入端后,根据上述第二信号采集电路的工作原路,可以得知,由于电容和第三负载组件的存在,电容组件会进行放电以到达电能平衡,到达第二负载组件的第二端的低电平信号对应的电压,在电容组件放电的情形下会被短暂升高之后接入电压比较器的反向输入端,到达第一负载组件的第二端的低电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值低于反向输入端的电压值,电压比较器输出端输出低电平信号,此时从通信设备20会认为已经接收到携带有正常数据的低电平信号了。实际上携带有正常数据的电平信号是从Y点之后开始的。
为了对毛刺信号进行有效过滤,本实施例在从通信设备20中设置了毛刺过滤组件。当X点-Y点之间的低电平信号接入第二信号采集电路的输入端后,由于电容组件和第三负载组件的存在,电容组件会进行放电以到达电能平衡,到达第二负载组件的第二端的低电平信号对应的电压,在电容组件放电的情形下低电平信号会被短暂升高之后接入电压比较器的反向输入端,由于毛刺过滤组件的存在,电压比较器的输出端的电压会短暂反向流向第一负载组件的第二端,使得到达第一负载组件的第二端的低电平信号也可以被短暂升高之后接入电压比较器的正向输入端,电压比较器的输出端通过毛刺过滤组件反向提供给电压比较器的正向输入端的短暂升高电压要比电容放电提供给电压比较器的反向输入端的电压高,此时,电压比较器的正向输入端的电压值将短暂高于反向输入端的电压值,电压比较器输出端输出高电平信号。第二主控芯片的检测端采集到电压比较器输出端输出的高电平信号,可以得知目前没有接收到正常携带数据的低电平信号,也就是将毛刺信号带来的干扰过滤了。由于毛刺过滤组件向电压比较器的正向输入端带来的电压升高是短暂的,电压比较器的输出端通过毛刺过滤组件反向提供升高电压的时间远远小于电容放电的时间,因而当Y点的低电平信号到来时,毛刺过滤组件向电压比较器的正向输入端带来的电压升高已经消失,而电容放电还在持续,根据第二信号采集电路的原理,到达第二负载组件的第二端的低电平信号对应的电压,在电容放电的情形下低电平信号会被短暂升高之后之后接入电压比较器的反向输入端,到达第一负载组件的第二端的低电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值低于反向输入端的电压值,电压比较器输出端输出低电平信号。第二主控芯片的检测端采集到电压比较器输出端输出的低电平信号,可以得知接收到携带有正常数据的低电平信号。
本实施例的一种可选实施方式中,所述第二主控芯片还包括:供电端口;所述供电端口与所述第一通信子接口211电连接。所述第一通信子接口211还可以与从通信设备20中其他负载元件的供电端口电连接,用于实现对从通信设备20中其他负载元件的供电。可选的,所述第一通信子接口211与从通信设备20中第二主控芯片230的供电端口之间还设有稳压组件,在主通信设备10的供电电压不平稳时,用于消除电压振荡,输出稳定电压。所述稳压组件可以为电容,该电容一端分别与所述所述第一通信子接口211、第二主控芯片的供电端口电连接,另一端与从通信设备20的接地端电连接。
本实施例的一种可选实施方式中,从通信设备20还可以向主通信设备10发送数据,所述第二有线通信接口用于与主通信设备10连接,由所述主通信设备10对所述从通信设备20供电;在该可选实施方式中,所述从通信设备还包括:第二储能组件;所述第一通信子接口211还与所述第二储能组件的第一端电连接;所述第二主控芯片包括控制端口,所述第二主控芯片的控制端口与所述第二储能组件的第二端电连接;所述第二主控芯片,用于在所述从通信设备20发送低电平信号时,从所述第二主控芯片的控制端口输出第一信号;所述第二储能组件,用于在所述第一信号的控制下,将所述第二储能组件的第一端的电压置为第一电压,其中,所述第一电压低于所述主通信设备10提供的供电电压的电压值且大于零。
本实施例中从通信设备20可以从主通信设备10获取供电电压,主通信设备10与从通信设备20之间没有低电平信号传输时,第二储能组件的第一端的电压可以维持在主通信设备10提供的供电电压的电压值。在所述从通信设备20发送低电平信号时,第二主控芯片从所述控制端口输出第一信号,第二储能组件在所述第一信号的控制下,将所述第二储能组件的第一端的电压置为第一电压,由于所述第一电压低于主通信设备10提供的供电电压且大于零,使得第一通信子接口处的电平降低以产生电平变化,进而通过第一通信子接口处的电平变化进行数据发送。而不是采用现有技术中的方案将发送端口的电平接地下降到零,来实现数据发送。
本实施例的一种可选实施方式中,从通信设备20向主通信设备10发送数据时,第一信号的一种生成实现方式可以为:由第二主控芯片内部产生第一信号,并通过控制端口输出;可选的,第一信号的另一种生成实现方式为:控制端口通过控制开关的通断,以控制第二储能组件的第二端接地,使得控制端口处产生第一信号,第一信号为接地信号。此时,所述设备还包括:开关组件(图未示),电连接在所述储能组件240的第二端与所述从通信设备的地端之间;所述控制端口,具体通过所述开关组件与所述储能组件的第二端电连接,用于在所述从通信设备20发送低电平信号时,导通所述储能组件的第二端和所述从通信设备的地端之间的通路,在具体应用中,开关组件可以通过PMOS、NMOS等元器件实现。采用这种实施方式,可以方便的将储能组件240的第二端的电压瞬间降到0,电路实现简单,对第二主控芯片的要求也不高。
本实施例的一种可选实施方式中,从通信设备20向主通信设备10发送数据时,第二信号可以由第二主控芯片的控制端口提供,此时如图13所示,所述第二储能组件可以为电容(参见图13中的C1);所述第二主控芯片还用于在所述从通信设备20发送高电平信号时,从所述第二主控芯片控制端口输出第二信号,其中,所述第二信号为电压值为所述第二电压的电平信号。
本实施例中,所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述主通信设备10提供的供电电压的电压值。
在所述从通信设备20发送高电平信号时,由于第二储能组件的第一端可以维持在主通信设备提供的供电电压,使得第一通信子接口的电平也维持在高电平信号,该高电平信号为外部设备提供的供电电压信号。第二主控芯片的控制端口输出第二信号,使得该电容的第二端的电平大小维持在第二电压,所述第二信号为电压值为所述第二电压的电平信号,该第二电压低于外部设备提供的供电电压的电压值,例如,主通信设备提供的供电电压的电压值为5v,第二电压可以为3v。本实施例中,第二信号的作用为:使得第二储能组件两端的压差可以维持在主通信设备提供的供电电压和第二电压的差值,当下次需要发送低电平信号时,第二主控芯片的控制端口输出低于第二电压的第一信号时,第二储能组件两端的压差增大,使得电容瞬间充电,根据电容隔直通交的特性,储能组件的第一端电平瞬间被拉低,使得第一通信子接口的电平被拉低,以实现低电平信号的发送。
在所述从通信设备20发送低电平信号时,第二主控芯片的控制端口输出第一信号,所述第一信号为电压值低于第二电压的电平信号,例如第二电压为3v,第一信号的电压值可以为2v,或者1v,或者0v等,电容两端的压差增大,使得从通信设备20的第一通信子接口的电平瞬间被拉低,然后,从通信设备20需要发送高电平信号,第二主控芯片230的控制端口输出第二信号,所述第二信号的电压值为第二电压,例如第二电压为3v,电容两端的压差增大,使得电容放电,从通信设备20的第一通信子接口的电平等于主通信设备10提供的供电电平,例如,5V,从而产生电平变化实现数据的发送。借助该电容,可以控制第一通信子接口处的电平下降到第一电压,该第一电压为非零电压值,从而实现数据的发送,而不是采用现有技术中的方案将发送端口的电平接地下降到零,来实现数据发送。
本实施例的一种可选实施方式中,从通信设备20向主通信设备10发送数据时,第二信号还可以由电压产生电路提供,如图14所示,在该可选实施方式中所述从通信设备还包括:第二电压产生电路;所述第二储能组件为电容;所述第二电压产生电路的输入端与所述第一通信子接口(图14所示的标号210中的1口为第一通信子接口,2口为第二通信子接口)电连接,所述电压产生电路的输出端与所述第二储能组件(图14所示的C1)的第二端电连接,所述电压产生电路用于输出电压值为所述第二电压的电平信号至所述第二储能组件的第二端。
本实施例中,所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述主通信设备10提供的供电电压的电压值;
本实施例的一种可选实施方式中,如图14所示,所述电压产生电路包括第一分压组件(图14所示的R7)和第二分压组件(图14所示的R8),所述第一分压组件的第一端为所述电压产生电路的输入端,所述第一分压组件的第二端与所述第二分压组件的第一端电连接,所述第一分压组件和第二分压组件的连接点为所述电压产生电路的输出端,所述第二分压组件的第二端与所述接地端电连接。
其中,第一分压组件和第二分压组件可以为电阻,在主通信设备10中设置第一分压组件和第二分压组件,通过调节第一分压组件和第二分压组件的阻值大小,可以将电压产生电路接入的电压调节成第二电压的电平信号(即第二信号),以便于提供给第二储能组件的第二端。
实施例7
本实施例提供另一种从通信设备20,图15为本实施例提供的从通信设备20的结构示意图,如图15所示,本实施例提供的从通信设备20设有防反接模块220,通过该防反接模块可以实现防反接的功能。
如图15所示,本实施例提供的从通信设备20包括:第二有线通信接口210、防反接模块220、第二主控芯片230、第二信号采集电路250;所述第二有线通信接口210由第一通信子接口211和第二通信子接口212组成;所述第一通信子接口211与所述防反接模块220的第一输入输出端电连接,所述第二通信子接口212与所述防反接模块220的第二输入输出端电连接,所述防反接模块220的接地端与所述从通信设备20的接地端GND_S电连接,所述防反接模块220的输出端与所述第二信号采集电路250的输入端电连接;所述防反接模块220用于将从所述第一输入输出端和所述第二输入输出端中的一个端口至所述防反接模块的输出端的通路导通,将从所述接地端到所述第一输入输出端和所述第二输入输出端中的另一个端口的通路导通。
所述第二主控芯片230包括检测端口,所述检测端口与所述第二信号采集电路250的输出端电连接。
如图17所示,所述第二信号采集电路包括:第一负载组件(图17所示的R1)、第二负载组件(图17所示的R2)、电容组件(图17所示的C2)、第三负载组件(图17所示的R3)和电压比较器(图17所示的A1);所述第一负载组件的第一端与所述第二负载组件的第一端电连接,所述第一负载组件与所述第二负载组件的连接点即为所述第二信号采集电路的输入端;所述第一负载组件的第二端与所述电压比较器的正向输入端电连接;所述第二负载组件的第二端、所述电容组件的第一端以及所述第三负载组件的第一端分别与所述电压比较器的反向输入端电连接,所述电容组件的第二端和所述第三负载组件的第二端分别与所述接地端电连接;所述电压比较器的输出端即为所述第二信号采集电路的输出端。
在实际使用中,主通信设备10与从通信设备20可能正向连接,也可能反向连接。正向连接是指主通信设备10的第一通信子接口与从通信设备20的第一通信子接口连接,主通信设备10的第二通信子接口与从通信设备20的第二通信子接口连接。反向连接则相反,主通信设备10的第一通信子接口与从通信设备20的第二通信子接口连接,主通信设备10的第二通信子接口与从通信设备20的第一通信子接口连接。通常情况下,主通信设备10与从通信设备20正向连接时,可以进行正常通信。如果主通信设备10与从通信设备20反向连接,且从通信设备20不支持防反接的功能时,则主通信设备10与从通信设备20无法进行通信。本实施例提供一种支持防反接功能的从通信设备20,通过防反接模块可以将从所述第一通信子接口和所述第二通信子接口中的一个接口至所述防反接模块的输出端的通路导通,将从所述接地端到所述第一通信子接口和所述第二通信子接口中的另一个接口的通路导通,无论主通信设备10与从通信设备20是正向连接还是反向连接,都可以保证数据正常通信。
第一负载组件、第二负载组件和第三负载组件例如可以为电阻,当然也可以为其他可以等效为电阻的元件,在此不作限制。
第二信号采集电路实现信号采集的工作原理如下:
从通信设备20接收到高电平信号时,第二信号采集电路的输入端接入高电平信号,高电平信号分别经过第一负载组件和第二负载组件后产生压降,如果没有电容和第三负载组件的存在,那么第一负载组件的第二端和第二负载组件的第二端的高电平信号对应的电压值将相同,电压比较器无法正常输出信号。由于电容和第三负载组件的存在,电容会进行充电以到达电能平衡,到达第二负载组件的第二端的高电平信号对应的电压会被第三负载组件拉低之后接入电压比较器的反向输入端,到达第一负载组件的第二端的高电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值高于反向输入端的电压值,电压比较器输出端输出高电平信号。第二主控芯片的检测端采集到电压比较器输出端输出的高电平信号,可以得知从通信设备20接收到高电平信号。
从通信设备20接收到低电平信号时,第二信号采集电路的输入端接入低电平信号,低电平信号分别经过第一负载组件和第二负载组件后,如果没有电容和第三负载组件的存在,那么第一负载组件的第二端和第二负载组件的第二端的低电平信号对应的电压值将相同,电压比较器无法正常输出信号。由于电容和第三负载组件的存在,电容两端压差变小会进行放电以到达电能平衡,在电容放电的情形下到达第二负载组件的第二端的低电平信号会被短暂升高之后之后接入电压比较器的反向输入端,到达第一负载组件的第二端的低电平信号直接接入电压比较器的正向输入端,此时,电压比较器的正向输入端的电压值低于反向输入端的电压值,电压比较器输出端输出低电平信号。第二主控芯片的检测端采集到电压比较器输出端输出的低电平信号,可以得知从通信设备20接收到低电平信号。
需要说明的是,从通信设备20通过第一通信子接口接收到的高电平信号和低电平信号的大小是相对而言的。该低电平信号对应的电压值与该高电平信号对应的电压值之间的电压差值可以很小,通常第二主控芯片的检测端无法直接检测出电压差值较小的电平变化,通过本实施例提供的第二信号采集电路可以将较小的电压差值放大,使得第二主控芯片的检测端实现电压变化差值较小的电平变化的检测。
本实施例一种可选实施方式中,防反接模块的结构如图16所示,所述防反接模块的第一输入输出端S1与所述第一通信子接口电连接,所述防反接模块的第二输入输出端S2与所述第二有线通信接口的第二通信子接口电连接,所述防反接模块的接地端S3与所述从通信设备20的接地端电连接,所述防反接模块的输出端S4分别与所述第二储能组件的第一端、所述第二信号采集电路的输入端电连接。所述防反接模块220用于将从所述第一输入输出端和所述第二输入输出端中的一个端口至所述防反接模块的输出端的通路导通,将从所述接地端到所述第一输入输出端和所述第二输入输出端中的另一个端口的通路导通。
当该从通信设备20与主通信设备10正向连接时,所述防反接模块的第一输入输出端S1接入电平信号,所述防反接模块的第二输入输出端S2依次通过从通信设备20的第二通信子接口以及主通信设备10的第二通信子接口,之后与该主通信设备10的接地端电连接。根据NMOS的导通原理可知,此时,Q1截止,Q2导通,电流走向为:S1→D1→S4→S3→Q2→S2。
当该从通信设备20与主通信设备10反向连接时,所述防反接模块的第一输入输出端S1依次通过从通信设备20的第二通信子接口以及主通信设备10的第二通信子接口,之后与该主通信设备10的接地端电连接,所述防反接模块的第二输入输出端S2接入电平信号,根据NMOS的导通原理可知,此时,Q1导通,Q2截止,电流走向为:S2→D2→S4→S3→Q1→S1。
当然现有还有多种防反接模块的实现结构,本实施例不限定具体采用哪种结构的防反接模块,只要可以实现防反接功能即可,在此不作限制。
本实施例的一种可选实施方式中,如图17所示,防反接模块的结构中将图16中的二极管D1替换为电阻R4,二极管D2替换为电阻R5。所述防反接模块的第一输入输出端S1与所述第一通信子接口(图17中标号210的1口)电连接,所述防反接模块的第二输入输出端S2与所述第二有线通信接口的第二通信子接口(图17中标号210的2口)电连接,所述防反接模块的接地端S3与所述从通信设备20的接地端(图17中GND_S)电连接,所述防反接模块的输出端S4分别与所述第二储能组件(图17中C1)的第一端、所述第二信号采集电路的输入端(图17中R1和R2的连接点)电连接。
当该从通信设备20与主通信设备10正向连接时,所述防反接模块的第一输入输出端接入电平信号,所述防反接模块的第二输入输出端依次通过从通信设备20的第二通信子接口以及主通信设备10的第二通信子接口,之后与该主通信设备10的接地端电连接。根据NMOS的导通原理可知,此时,Q1截止,Q2导通,电流走向为:S1→R4→S4→GND_S→Q2→S2。另外,由于第二信号采集电路支持的检测电压范围可能与接入的电平信号对应的电压不匹配,图20中的电阻R4还可以将第一通信子接口接入的电平信号分压,以便于输出合适电压的电平信号至第二信号采集电路,保证第二信号采集电路可以进行正常的信号采集工作。
当该从通信设备20与主通信设备10反向连接时,所述防反接模块的第一输入输出端S1依次通过从通信设备20的第二通信子接口以及主通信设备10的第二通信子接口,之后与该主通信设备10的接地端电连接,所述防反接模块的第二输入输出端S2接入电平信号,根据NMOS的导通原理可知,此时,Q1导通,Q2截止,电流走向为:S2→R5→S4→GND_S→Q1→S1。另外,由于第二信号采集电路支持的检测电压范围可能与接入的电平信号对应的电压不匹配,图17中的电阻R5还可以将第二通信子接口接入的电平信号分压,以便于输出合适电压的电平信号至第二信号采集电路,保证第二信号采集电路可以进行正常的信号采集工作。
如图18所示,所述从通信设备还包括:毛刺过滤组件(图18所示的R6),连接在所述第一负载组件(图18所示的R1)的第二端和所述第二电压比较器(图18所示的A1)的输出端之间。
其中,毛刺过滤组件可以是电阻。当然也可以为其他可以等效为电阻的元件,在此不作限制。
本实施例中的毛刺过滤组件的功能实现同实施例4中的毛刺过滤组件相同,具体可以参见实施例4中毛刺过滤组件的相关描述,在此不再赘述。
本实施例的一种可选实施方式中,所述第二主控芯片还包括:供电端口;所述供电端口与所述防反接模块的输出端电连接。
本实施例的一种可选实施方式中,所述防反接模块220的输出端还可以与从通信设备20中其他负载元件的供电端口电连接,用于实现对从通信设备20中其他负载元件的供电。
可选的,防反接模块220的输出端与第二主控芯片的供电端口之间还设有稳压组件,在从通信设备20从主通信设备10接收到的供电电压不平稳时,用于消除电压振荡,输出稳定电压。所述稳压组件可以为电容,该电容一端分别与所述所述防反接模块220的输出端、第二主控芯片的供电端口电连接,另一端与从通信设备20的接地端电连接。
本实施例的一种可选实施方式中,从通信设备20作为从通信设备20还可以向主通信设备10发送数据,所述第二有线通信接口用于与主通信设备10连接,由所述主通信设备10对所述从通信设备20供电;在该可选实施方式中,所述从通信设备还可以包括:第二储能组件;所述防反接模块的输出端还与所述第二储能组件的第一端电连接;所述第二主控芯片包括控制端口,所述控制端口与所述第二储能组件的第二端电连接;所述第二主控芯片,用于在所述从通信设备20发送低电平信号时,从所述控制端口输出第一信号;所述第二储能组件,用于在所述第一信号的控制下,将所述第二储能组件的第一端的电压置为第一电压,其中,所述第一电压低于所述主通信设备10提供的供电电压的电压值且大于零。
本实施例中从通信设备20作为从通信设备20,该从通信设备20可以从主通信设备10获取供电电压,主通信设备10与从通信设备20之间没有低电平信号传输时,第二储能组件的第一端的电压可以维持在主通信设备10提供的供电电压的电压值。在所述从通信设备20发送低电平信号时,第二主控芯片从所述控制端口输出第一信号,第二储能组件在所述第一信号的控制下,将所述第二储能组件的第一端的电压置为第一电压,由于所述第一电压低于主通信设备10提供的供电电压的电压值且大于零,使得第一通信子接口处的电平降低以产生电平变化,进而通过第一通信子接口处的电平变化进行数据发送。而不是采用现有技术中的方案将发送端口的电平接地下降到零,来实现数据发送。
本实施例的一种可选实施方式中,从通信设备20作为从通信设备20实现向主通信设备10发送数据时,第一信号的一种生成实现方式可以为:由第二主控芯片内部产生第一信号,并通过控制端口输出;可选的,第一信号的另一种生成实现方式为:控制端口通过控制开关的通断,以控制第二储能组件的第二端接地,使得控制端口处产生第一信号。此时,所述设备还包括:开关组件(图未示);所述控制端口,具体通过所述开关组件与所述第二储能组件的第二端电连接,所述开关组件还与所述接地端电连接,所述控制端口,具体用于在所述从通信设备20发送低电平信号时,导通所述第二储能组件的第二端和所述接地端之间的通路。
本实施例的一种可选实施方式中,从通信设备20作为从通信设备20实现向主通信设备10发送数据时,第二信号可以由第二主控芯片的控制端口提供,如图19所示,所述第二储能组件为电容(参见图19中的C1);所述第二主控芯片还用于在所述从通信设备20发送高电平信号时,从所述控制端口输出第二信号,其中,所述第二信号为电压值为所述第二电压的电平信号。
本实施例中,所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述主通信设备10提供的供电电压的电压值。
在所述从通信设备20发送高电平信号时,由于第一储能组件的第一端可以维持在外部设备提供的供电电压,在主从通信设备正向连接时,使得第一通信子接口的电平维持在高电平信号,在主从通信设备反向连接时,使得第二通信子接口的电平维持在高电平信号,该高电平信号为主通信设备提供的供电电压信号。第二储能组件的第二端输入电压值为第二电压的第二信号,使得第二储能组件的第二端的电平大小维持在第二电压,该第二电压低于外部设备提供的供电电压的的电压值,例如,主通信设备提供的供电电压的电压为5v,第二电压可以为3v。本实施例中,第二信号的作用为:使得第二储能组件两端的压差可以维持在主通信设备提供的供电电压和第二电压的差值,当下次需要发送低电平信号时,第二主控芯片的控制端口输出低于第二电压的第一信号时,电容两端的压差增大,使得电容瞬间充电,根据电容隔直通交的特性,第二储能组件的第一端电平瞬间被拉低,在主从通信设备正向连接时,使得第一通信子接口的电平被拉低,在主从通信设备反向连接时,使得第二通信子接口的电平被拉低,以实现低电平信号的发送。
在所述从通信设备20发送低电平信号时,第二储能组件的第二端输入电压值低于第二电压的第一信号,例如第二电压为3v,第一信号的电压值可以为2v,或者1v,或者0v等,电容两端的压差增大,使得电容瞬间充电,根据电容隔直通交的特性,电容的第一端电平瞬间被拉低,使得第一通信子接口的电平被拉低,从而产生电平变化实现数据的发送。借助该电容,可以控制第一通信子接口处的电平下降到第一电压,该第一电压为非零电压值,从而实现数据的发送,而不是采用现有技术中的方案将发送端口的电平接地下降到零,来实现数据发送。
本实施例的一种可选实施方式中,从通信设备20作为从通信设备20还可以向主通信设备10发送数据,第二信号还可以由电压产生电路提供,所述从通信设备还可以包括:第二电压产生电路;在该可选实施方式中,所述第二储能组件为电容;所述第二电压产生电路的输入端与所述从通信设备的第一通信子接口电连接,所述第二电压产生电路的输出端与所述第二储能组件的第二端电连接,所述第二电压产生电路用于输出电压值为所述第二电压的电平信号至所述第二储能组件的第二端。
本实施例中,所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述主通信设备10提供的供电电压的电压值。
本实施例的一种可选实施方式中,如图20所示,所述电压产生电路包括第一分压组件(图20所示的R7)和第二分压组件(图20所示的R8),所述第一分压组件的第一端为所述电压产生电路的输入端,所述第一分压组件的第二端与所述第二分压组件的第一端电连接,所述第一分压组件和第二分压组件的连接点为所述电压产生电路的输出端,所述第二分压组件的第二端与所述接地端电连接。
其中,第一分压组件和第二分压组件可以为电阻,在主通信设备10中设置第一分压组件和第二分压组件,通过调节第一分压组件和第二分压组件的阻值大小,可以将电压产生电路接入的电压调节成第二电压的电平信号(即第二信号),以便于提供给第二储能组件的第二端。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。本发明的范围由所附方案及其等同限定。

Claims (17)

1.一种数据系统,其特征在于,包括:主通信设备和从通信设备,其中,
所述主通信设备包括:
供电接口,与直流供电的电源连接;
第一有线通信接口,由第一通信子接口和第二通信子接口组成,其中,所述第一通信子接口与所述供电接口电连接,所述第二通信子接口与所述主通信设备的地端电连接,在没有低电平信号传输时,所述第一通信子接口处的电平维持在所述供电接口处的电压值,实现对所述从通信设备的供电;
第一储能组件,包括:第一端,所述第一通信子接口与所述供电接口的连接点和所述第一端电连接;
第一主控芯片包括:控制端口,其中,所述控制端口与所述第一储能组件的第二端电连接;
所述第一主控芯片,用于在所述主通信设备通过所述第一通信子接口发送低电平信号时,从所述控制端口输出第一信号;
所述第一储能组件,用于在所述第一信号的控制下,将所述第一储能组件的第一端的电压置为第一电压,其中,所述第一电压低于所述供电接口处的电压值且大于零,使得所述第一通信子接口处的电平降低以产生电平变化,进而通过所述第一通信子接口处的电平变化实现数据发送;
所述从通信设备包括:
第二有线通信接口,由从通信设备的第一通信子接口和从通信设备的第二通信子接口组成,其中,所述从通信设备的第一通信子接口与所述主通信设备的第一通信子接口电连接,所述从通信设备的第二通信子接口与所述主通信设备的第二通信子接口电连接;
第二信号采集电路,其输入端与所述从通信设备的第一通信子接口电连接;
第二主控芯片,包括检测端口,所述检测端口与所述第二信号采集电路的输出端电连接;
所述第二信号采集电路包括:第一负载组件、第二负载组件、电容组件、第三负载组件和电压比较器;
所述第一负载组件的第一端与所述第二负载组件的第一端电连接,所述第一负载组件与所述第二负载组件的连接点即为所述第二信号采集电路的输入端;
所述第一负载组件的第二端与所述电压比较器的正向输入端电连接;
所述第二负载组件的第二端、所述电容组件的第一端以及所述第三负载组件的第一端分别与所述电压比较器的反向输入端电连接,所述电容组件的第二端和所述第三负载组件的第二端分别与所述从通信设备的地端电连接;
所述电压比较器的输出端即为所述第二信号采集电路的输出端;
其中,所述第二主控芯片的检测端口根据所述信号采集电路的输出端的高电平信号,判定所述从通信设备接收到高电平信号,或者,所述第二主控芯片的检测端口根据所述信号采集电路的输出端的低电平信号,判定所述从通信设备接收到低电平信号。
2.根据权利要求1所述的系统,其特征在于,
所述从通信设备还包括:第二储能组件;
所述第二主控芯片还包括:控制端口;
所述主通信设备通过所述主通信设备的第一有线通信接口对所述从通信设备进行供电;
所述第二主控芯片用于在所述从通信设备发送低电平信号时,从所述第二主控芯片的控制端口输出第三信号;
所述第二储能组件,其第一端与所述从通信设备的第一通信子接口电连接,其第二端与所述第二主控芯片的控制端口电连接,所述第二储能组件用于在所述第三信号的控制下,将所述第二储能组件的第一端的电压置为第三电压,其中,所述第三电压低于所述主通信设备提供的供电电压的电压值且大于零。
3.一种数据系统,其特征在于,包括:主通信设备和从通信设备,其中,
所述主通信设备包括:
供电接口,与直流供电电源连接;
第一有线通信接口,由第一通信子接口和第二通信子接口组成,其中,所述第一通信子接口与所述供电接口电连接,所述第二通信子接口与所述主通信设备的地端电连接,在没有低电平信号传输时,所述第一通信子接口处的电平维持在所述供电接口处的电压值,实现对所述从通信设备的供电;
第一储能组件,包括:第一端,所述第一通信子接口与所述供电接口的连接点和所述第一端电连接;
第一主控芯片包括控制端口,所述控制端口与所述第一储能组件的第二端电连接;
所述第一主控芯片,用于在所述主通信设备通过所述第一通信子接口发送低电平信号时,从所述控制端口输出第一信号;
所述第一储能组件,用于在所述第一信号的控制下,将所述第一储能组件的第一端的电压置为第一电压,其中,所述第一电压低于所述供电接口处的电压值且大于零,使得所述第一通信子接口处的电平降低以产生电平变化,进而通过所述第一通信子接口处的电平变化实现数据发送;
所述从通信设备包括:
第二有线通信接口,由所述从通信设备的第一通信子接口和从通信设备的第二通信子接口组成;
防反接模块,包括:第一输入输出端口、第二输入输出端口、接地端和输出端,其中,所述第一输入输出接口与所述从通信设备的第一通信子接口电连接,所述第二输入输出端与所述从通信设备的第二通信子接口电连接,所述接地端与所述从通信设备的地端电连接,所述防反接模块的输出端与第二信号采集电路的输入端电连接,所述防反接模块用于将从所述第一输入输出端口和所述第二输入输出端口中的一个至所述防反接模块的输出端的通路导通,将从所述接地端到所述第一输入输出端口和所述第二输入输出端口中的另一个的通路导通;
第二主控芯片包括检测端口,所述第二主控芯片的检测端口与所述第二信号采集电路的输出端电连接;
所述第二信号采集电路包括:第一负载组件、第二负载组件、电容组件、第三负载组件和电压比较器;其中,所述第一负载组件的第一端与所述第二负载组件的第一端电连接,所述第一负载组件与所述第二负载组件的连接点即为所述第二信号采集电路的输入端;所述第一负载组件的第二端与所述电压比较器的正向输入端电连接;所述第二负载组件的第二端、所述电容组件的第一端以及所述第三负载组件的第一端分别与所述电压比较器的反向输入端电连接,所述电容组件的第二端和所述第三负载组件的第二端分别与所述从通信设备的地端电连接;所述电压比较器的输出端即为所述第二信号采集电路的输出端;
其中,所述第二主控芯片的检测端口根据所述信号采集电路的输出端的高电平信号,判定所述从通信设备接收到高电平信号,或者,所述第二主控芯片的检测端口根据所述信号采集电路的输出端的低电平信号,判定所述从通信设备接收到低电平信号。
4.根据权利要求3所述的系统,其特征在于,
所述从通信设备还包括:第二储能组件;
所述第二主控芯片还包括:控制端口;
所述主通信设备通过所述第一有线通信接口对所述从通信设备进行供电;
所述第二主控芯片用于在所述从通信设备发送低电平信号时,从所述第二主控芯片的控制端口输出第三信号;
所述第二储能组件,其第一端与所述防反接模块的输出端电连接,其第二端与所述第二主控芯片的控制端口电连接,用于在所述第三信号的控制下,将所述第二储能组件的第一端的电压置为第三电压,其中,所述第三电压低于所述主通信设备提供的供电电压的电压值且大于零。
5.根据权利要求1至4任一项所述的系统,其特征在于,
所述第一储能组件为电容;
所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述供电接口处的电压值;
所述第一主控芯片还用于在所述主通信设备发送高电平信号时,从所述控制端口输出第二信号,其中,所述第二信号为电压值为所述第二电压的电平信号。
6.根据权利要求1至4任一项所述的系统,其特征在于,
所述主通信设备还包括:第一电压产生电路;
所述第一储能组件为电容;
所述第一信号为电压值低于第二电压的电平信号,其中,所述第二电压小于所述供电接口处的电压值;
所述第一电压产生电路的输入端与所述供电接口电连接,所述第一电压产生电路的输出端与所述第一储能组件的第二端电连接,所述第一电压产生电路用于输出电压值为所述第二电压的电平信号至所述第一储能组件的第二端。
7.根据权利要求6所述的系统,其特征在于,所述第一电压产生电路包括第一分压组件和第二分压组件,所述第一分压组件的第一端为所述第一电压产生电路的输入端,所述第一分压组件的第二端与所述第二分压组件的第一端电连接,所述第一分压组件和第二分压组件的连接点为所述第一电压产生电路的输出端,所述第二分压组件的第二端与所述主通信设备的地端电连接;
所述主通信设备,还包括:稳压模块,连接在所述供电接口与所述第一电压产生电路的输入端之间。
8.根据权利要求1至4任一项所述的系统,其特征在于,
所述主通信设备还包括:第一开关组件,电连接在所述第一储能组件的第二端与所述主通信设备的地端之间;
所述控制端口,具体通过所述第一开关组件与所述第一储能组件的第二端电连接,用于在所述主通信设备发送低电平信号时,导通所述第一储能组件的第二端和所述主通信设备的地端之间的通路。
9.根据权利要求1至4任一项所述的系统,其特征在于,所述主通信设备还包括:第一信号采集电路;
所述第一通信子接口还与所述第一信号采集电路的输入端电连接;
所述第一主控芯片还包括检测端口,所述第一主控芯片的检测端口与所述第一信号采集电路的输出端电连接;
所述第一信号采集电路包括:第一负载组件、第二负载组件、电容组件、第三负载组件和电压比较器;
所述第一信号采集电路的第一负载组件的第一端与所述第一信号采集电路的第二负载组件的第一端电连接,所述第一信号采集电路的第一负载组件与所述第一信号采集电路的第二负载组件的连接点即为所述第一信号采集电路的输入端;
所述第一信号采集电路的第一负载组件的第二端与所述第一信号采集电路的电压比较器的正向输入端电连接;
所述第一信号采集电路的第二负载组件的第二端、所述第一信号采集电路的电容组件的第一端以及所述第一信号采集电路的第三负载组件的第一端分别与所述第一信号采集电路的电压比较器的反向输入端电连接,所述第一信号采集电路的电容组件的第二端和所述第一信号采集电路的第三负载组件的第二端分别与所述主通信设备的地端电连接;
所述第一信号采集电路的电压比较器的输出端即为所述第一信号采集电路的输出端。
10.根据权利要求9所述的系统,其特征在于,所述主通信设备还包括:毛刺过滤组件,连接在所述第一信号采集电路的第一负载组件的第二端和所述第一信号采集电路的电压比较器的输出端之间。
11.根据权利要求2或4所述的系统,其特征在于,
所述第二储能组件为电容;
所述第三信号为电压值低于第四电压的电平信号,其中,所述第四电压小于所述主通信设备提供的供电电压的电压值;
所述第二主控芯片还用于在所述从通信设备发送高电平信号时,从所述第二主控芯片的控制端口输出第四信号,其中,所述第四信号为电压值为所述第四电压的电平信号。
12.根据权利要求2所述的系统,其特征在于,所述从通信设备还包括:第二电压产生电路;
所述第二储能组件为电容;
所述第三信号为电压值低于第四电压的电平信号,其中,所述第四电压小于所述主通信设备提供的供电电压的电压值;
所述第二电压产生电路的输入端与所述从通信设备的第一通信子接口电连接,所述第二电压产生电路的输出端与所述第二储能组件的第二端电连接,所述第二电压产生电路用于输出电压值为所述第四电压的电平信号至所述第二储能组件的第二端。
13.根据权利要求4所述的系统,其特征在于,所述从通信设备还包括:第二电压产生电路;
所述第二储能组件为电容;
所述第三信号为电压值低于第四电压的电平信号,其中,所述第四电压小于所述主通信设备提供的供电电压的电压值;
所述第二电压产生电路的输入端与所述防反接模块的输出电连接,所述第二电压产生电路的输出端与所述第二储能组件的第二端电连接,所述第二电压产生电路用于输出电压值为所述第四电压的电平信号至所述第二储能组件的第二端。
14.根据权利要求12或13所述的设备,其特征在于,所述第二电压产生电路包括第一分压组件和第二分压组件,所述第一分压组件的第一端为所述第二电压产生电路的输入端,所述第一分压组件的第二端与所述第二分压组件的第一端电连接,所述第一分压组件和第二分压组件的连接点为所述第二电压产生电路的输出端,所述第二分压组件的第二端与所述地端电连接。
15.根据权利要求2所述的系统,其特征在于,所述第二主控芯片还包括:供电端口,与所述从通信设备的第一通信子接口电连接。
16.根据权利要求4所述的系统,其特征在于,所述第二主控芯片还包括:供电端口,与所述防反接模块的输出端电连接。
17.根据权利要求2或4所述的系统,其特征在于,
所述从通信设备还包括:第二开关组件,电连接在所述第二储能组件的第二端与所述从通信设备的地端之间;
所述第二主控芯片的控制端口,具体通过所述第二开关组件与所述第二储能组件的第二端电连接,用于在所述从通信设备发送低电平信号时,导通所述第二储能组件的第二端和所述从通信设备的地端之间的通路。
CN201610827245.0A 2016-09-14 2016-09-14 数据通信系统 Active CN107818066B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201610827245.0A CN107818066B (zh) 2016-09-14 2016-09-14 数据通信系统
CA3036753A CA3036753C (en) 2016-09-14 2017-09-01 Data communication device and system
EP17850195.3A EP3514691B1 (en) 2016-09-14 2017-09-01 Data communication device and system
PCT/CN2017/100211 WO2018049993A1 (zh) 2016-09-14 2017-09-01 一种数据通信设备及系统
US16/333,212 US10817038B2 (en) 2016-09-14 2017-09-01 Data communication device and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610827245.0A CN107818066B (zh) 2016-09-14 2016-09-14 数据通信系统

Publications (2)

Publication Number Publication Date
CN107818066A CN107818066A (zh) 2018-03-20
CN107818066B true CN107818066B (zh) 2020-02-11

Family

ID=61601355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610827245.0A Active CN107818066B (zh) 2016-09-14 2016-09-14 数据通信系统

Country Status (1)

Country Link
CN (1) CN107818066B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109640207B (zh) 2018-12-24 2020-05-01 歌尔科技有限公司 一种通信控制方法、装置、系统、充电盒及无线耳机
TWI819716B (zh) * 2022-07-25 2023-10-21 睿生光電股份有限公司 偵測裝置及其操作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101512563A (zh) * 2006-09-06 2009-08-19 Nxp股份有限公司 通过至少一条线路将电能从第一电路供给第二电路的方法
CN202798027U (zh) * 2012-05-17 2013-03-13 兰家林 一种单usb接口的双向供电电路
CN103064489A (zh) * 2011-10-21 2013-04-24 华为终端有限公司 一种根据usb接口状态进行内部电路选择的方法及终端
CN104678158A (zh) * 2015-01-29 2015-06-03 北京新能源汽车股份有限公司 电动汽车的高压上电显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080272741A1 (en) * 2007-05-03 2008-11-06 Summit Microelectronics, Inc. Systems and methods for detecting power sources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101512563A (zh) * 2006-09-06 2009-08-19 Nxp股份有限公司 通过至少一条线路将电能从第一电路供给第二电路的方法
CN103064489A (zh) * 2011-10-21 2013-04-24 华为终端有限公司 一种根据usb接口状态进行内部电路选择的方法及终端
CN202798027U (zh) * 2012-05-17 2013-03-13 兰家林 一种单usb接口的双向供电电路
CN104678158A (zh) * 2015-01-29 2015-06-03 北京新能源汽车股份有限公司 电动汽车的高压上电显示装置

Also Published As

Publication number Publication date
CN107818066A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
US10298074B2 (en) Method and apparatus for controlling wireless induction power supply
KR101960163B1 (ko) PoE 또는 PoDL 시스템의 전원 인터페이스의 유지 전력 특성 컨트롤러
JP2019071070A (ja) パワーオーバーイーサネット制御システム
US10574073B2 (en) Electronic device and method for controlling power supply
CN103475068B (zh) 一种充电器、充电终端、充电系统及充电控制方法
EP1618442B1 (en) Method and system for current sharing among a plurality of power modules
CN107818066B (zh) 数据通信系统
JP2010273440A (ja) 直列接続電池組の充電回路
US9690344B2 (en) System and method for a power sequencing circuit
TW201643586A (zh) 供電系統
US10971764B2 (en) Charging method, charging device, and charging system
JP6553346B2 (ja) 過電流検出回路およびそれを利用したusb給電装置、電子機器、過電流検出方法
US10461555B2 (en) Battery charging for mobile devices
CN203800819U (zh) 变频器及其上电保护模块
CN107819493B (zh) 数据通信设备
EP3514691B1 (en) Data communication device and system
CN113300599A (zh) 一种片内直流稳压源电路
EP3382838B1 (en) Protection circuit and control device for brushless dc motor
CN107819494B (zh) 数据通信设备
CN107196770B (zh) 通过信号线进行供电的系统
CN106484648B (zh) 一种通信设备、系统及数据发送、接收方法
KR20170023575A (ko) 항공기 전원 전압 감지 처리 장치
US9438038B1 (en) Power supply fast turn-on and increased hold-up time within an electrical device
CN106484643B (zh) 一种通信设备、系统及数据发送、接收方法
CN104660229A (zh) Pwm调制型设备及其输出功率限制电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant