CN107814865A - 用于低温植埋的侵入式脑机接口 - Google Patents

用于低温植埋的侵入式脑机接口 Download PDF

Info

Publication number
CN107814865A
CN107814865A CN201711022103.8A CN201711022103A CN107814865A CN 107814865 A CN107814865 A CN 107814865A CN 201711022103 A CN201711022103 A CN 201711022103A CN 107814865 A CN107814865 A CN 107814865A
Authority
CN
China
Prior art keywords
brain
computer interface
hydrogel
intrusive mood
flexible pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711022103.8A
Other languages
English (en)
Other versions
CN107814865B (zh
Inventor
锁志刚
盛昊
汪浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201711022103.8A priority Critical patent/CN107814865B/zh
Publication of CN107814865A publication Critical patent/CN107814865A/zh
Application granted granted Critical
Publication of CN107814865B publication Critical patent/CN107814865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种用于低温植埋的侵入式脑机接口,本发明首创的使用了冰冻水凝胶作为电极的侵入式脑机接口。凝胶处于绝缘柔性管之中。凝胶头部与大脑进行直接接触,后部与外接采集的电极金属丝。凝胶在埋入脑部时处于冰冻状态,埋入后凝胶融化变软,实现与大脑的力学性能匹配,从而减少了对大脑的损伤。

Description

用于低温植埋的侵入式脑机接口
技术领域
本发明涉及一种侵入式脑机接口,具体为一种用于低温植埋的侵入式脑机接口。
背景技术
神经生物学在探究大脑运作原理时,通过在该区域植入金属电极记录脑部信号的发放,从而探究神经环路。但传统的侵入式脑机接口具有极高的硬度和较差的生物相容性。在埋植一段时间后,植入物与脑的界面容易产生神经胶质细胞的增生。这种增生改变了接触部分的电阻环境,从而影响电极正常的功能。使植入物与大脑具有相似的弹性模量是减少神经胶质细胞增生的重要手段。为实现这一目的,在埋植过程中,电极需要有较高的弹性模量以保证埋植的准确性。在植入后,电极需要极低的弹性模量以与大脑实现模量匹配,减少使用过程中对脑的损伤。
发明内容
为了克服上述现有技术存在的问题,本发明的提供一种用于低温植埋的侵入式脑机接口。首创的利用水凝胶在结冰前后弹性模量不同来解决电极植入前后弹性模量需求不同的矛盾。凝胶处于柔性管中,柔性管起到了绝缘的作用。凝胶头部与大脑进行直接接触,后部与外接采集的电极金属丝。
为达到上述目的,本发明所采用的技术方案是:用于低温植埋的侵入式脑机接口,包括填充有水凝胶的绝缘柔性管,以及与绝缘柔性管内水凝胶相连通的惰性金属电极,柔性管与惰性金属电极固定于基座之中。
进一步地,所述水凝胶为在35~40℃时弹性模量低于100MPa且生物相容的水凝胶;所述绝缘柔性管为在35~40℃时弹性模量低于1GPa的柔性管。
进一步地,所述水凝胶为由溶解在生物相容液(如脑脊液,生理盐水)中的高分子单体聚合而成的水凝胶。
进一步地,所述高分子单体由丙烯酸钠、丙烯酸、甲基丙烯酸羟乙酯、甲基丙烯磺酸钠、二甲基丙烯酰胺、乙烯醇、乙二醇、苯乙烯磺酸钠中的一种或多种组成。
进一步地,所述惰性金属电极为铂金、金、银片,或具有铂金,金,银镀层的金属片。
上述所述的使用凝胶的脑皮层电图柔性电极的工作原理为:
在植入大脑之前,整个装置至于‐20℃的低温下,水凝胶电极冰冻并获得极高的弹性模量。在植入前水凝胶电极放于冰水混合物中升温5分钟,以防止植入后在脑中吸热对脑造成损伤。紧接着水凝胶电极被植入到脑中(35~40℃左右),凝胶在埋入脑部时处于冰冻状态,埋入后凝胶逐渐融化变软,降低到100MPa以下,实现与大脑的力学性能匹配,从而减少了对大脑的损伤。
在记录时,绝缘柔性管中的水凝胶的头部与脑皮层直接接触。脑皮层产生的局部场电位引起凝胶中的自由离子定向移动。由自由离子定性移动引起的离子浓度变化产生了电势的改变。这一电势的改变由外接惰性金属电极记录并传导到外部仪器。
和现有技术相比较,本发明具有如下优点:
1、传统电极使用金属材料,弹性模量极高,植入后给脑带来较大的损伤。利用水凝胶在结冰前后弹性模量不同来解决电极植入前后弹性模量需求不同的矛盾。既保证了植入的准确性,又保证了植入后与脑弹性模量的匹配,减少了对脑的伤害。
2、凝胶是固体的高分子网络,在其间充满液体环境。这一分子构成与生物组织类似。作为传统的组织培养材料,凝胶具有很好的生物相容性。通过采用中性凝胶高分子网络加上脑脊液,凝胶可以在植入大脑时提供给大脑细胞接近原本状态液体环境。因此相较于传统侵入式脑机接口,具有极佳的生物相容性,能够减少胶质细胞的产生,从而实现长时间的信号记录。
3、凝胶是固体的高分子网络,在其间充满液体环境。凝胶通过液体环境中游离的离子实验导电,离子的定向移动形成电流。这一原理与脑组织的导电机制相同。金属是电子导电,凝胶相较于传统的金属电极,避免了潜在的化学反应。
附图说明
图1为本发明侵入式脑机接口的结构示意正视图;
图2为侵入式脑机接口埋植于小鼠脑皮层后,电极记录到的小鼠皮层场电位随激光刺激产生的变化;
图中,惰性金属电极1、基座2、绝缘柔性管3。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例1
如图1所示,一种使用凝胶的侵入式脑机接口,包括填充有水凝胶的绝缘柔性管3,以及与水凝胶相连通的惰性金属电极1,柔性管3与惰性金属电极1固定于基座2之中。本实施例中,采用的绝缘柔性管材料在35~40℃时弹性模量低于1GPa。然后将聚乙二醇双丙烯酸酯溶解于脑脊液中,加入引发剂制成凝胶前驱体,注射入绝缘柔性管3中并在其中成胶,经测试,其在35~40℃时弹性模量低于100MPa。将包含有水凝胶的绝缘柔性管3与惰性金属电极1以及基座2进行组装。制成水凝胶脑机接口并置于‐20℃环境下冰冻。植入时将水凝胶脑机接口取出升温,植入到转基因小鼠品系vgt‐ch2控制睡眠的LH,外部仪器检测器皮层场电位。观察老鼠在自由活动下睡眠前后脑部场电位变化,记录这期间的场电位信号如图2所示。
通过对场电位的分析可以发现,小鼠在睡着后,场电位产生了明显变化,振幅增大,显示了老鼠的入睡过程,说明冰冻水凝胶脑机接口的记录运转良好。

Claims (5)

1.用于低温植埋的侵入式脑机接口,其特征在于,包括填充有水凝胶的绝缘柔性管(3),以及与绝缘柔性管(3)内水凝胶相连通的惰性金属电极(1),绝缘柔性管(3)与惰性金属电极(1)固定于基座(2)之中。
2.根据权利要求1所述的侵入式脑机接口,其特征在于,所述水凝胶为在35~40℃时弹性模量低于100MPa且生物相容的水凝胶;所述绝缘柔性管(1)为在35~40℃时弹性模量低于1GPa的柔性管。
3.根据权利要求1所述的侵入式脑机接口,其特征在于:所述水凝胶为由溶解在生物相容液(如脑脊液,生理盐水)中的高分子单体聚合而成的水凝胶。
4.根据权利要求3所述的侵入式脑机接口,其特征在于:所述高分子单体由丙烯酸钠、丙烯酸、甲基丙烯酸羟乙酯、甲基丙烯磺酸钠、二甲基丙烯酰胺、乙烯醇、乙二醇、苯乙烯磺酸钠中的一种或多种组成。
5.根据权利要求1所述的侵入式脑机接口,其特征在于:所述惰性金属电极(1)为铂金、金、银片,或具有铂金,金,银镀层的金属片。
CN201711022103.8A 2017-10-27 2017-10-27 用于低温植埋的侵入式脑机接口 Active CN107814865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711022103.8A CN107814865B (zh) 2017-10-27 2017-10-27 用于低温植埋的侵入式脑机接口

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711022103.8A CN107814865B (zh) 2017-10-27 2017-10-27 用于低温植埋的侵入式脑机接口

Publications (2)

Publication Number Publication Date
CN107814865A true CN107814865A (zh) 2018-03-20
CN107814865B CN107814865B (zh) 2020-10-20

Family

ID=61603971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711022103.8A Active CN107814865B (zh) 2017-10-27 2017-10-27 用于低温植埋的侵入式脑机接口

Country Status (1)

Country Link
CN (1) CN107814865B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116763318A (zh) * 2023-08-24 2023-09-19 北京脑科学与类脑研究中心 一种凝胶层及设有该凝胶层的植入式柔性脑机接口电极

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583191A (zh) * 2004-06-11 2005-02-23 文贵华 生物亲和的电极刺激装置
CN1644157A (zh) * 2004-12-08 2005-07-27 圣美迪诺医疗科技(湖州)有限公司 皮下植入式生物传感器
CN2721130Y (zh) * 2004-06-11 2005-08-31 文贵华 阵列电极及其电信号处理装置
WO2008079997A2 (en) * 2006-12-22 2008-07-03 Medtronic, Inc. Implantable device, angiogenesis mechanism and methods
CN101884530A (zh) * 2010-07-14 2010-11-17 中国科学院半导体研究所 用于记录神经活动电信号的柔性探针电极及其植入工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583191A (zh) * 2004-06-11 2005-02-23 文贵华 生物亲和的电极刺激装置
CN2721130Y (zh) * 2004-06-11 2005-08-31 文贵华 阵列电极及其电信号处理装置
CN1644157A (zh) * 2004-12-08 2005-07-27 圣美迪诺医疗科技(湖州)有限公司 皮下植入式生物传感器
WO2008079997A2 (en) * 2006-12-22 2008-07-03 Medtronic, Inc. Implantable device, angiogenesis mechanism and methods
CN101884530A (zh) * 2010-07-14 2010-11-17 中国科学院半导体研究所 用于记录神经活动电信号的柔性探针电极及其植入工具

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARIANA S. FERNANDES,等: "Hydrogel-based photonic sensor for a biopotential wearable recording system", 《BIOSENSORS AND BIOELECTRONICS》 *
TOBIAS NYBERG,等: "Polymer Hydrogel Microelectrodes for Neural Communication", 《BIOMEDICAL MICRODEVICES》 *
王以进,等: "《头颈部生物力学》", 30 June 2015 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116763318A (zh) * 2023-08-24 2023-09-19 北京脑科学与类脑研究中心 一种凝胶层及设有该凝胶层的植入式柔性脑机接口电极

Also Published As

Publication number Publication date
CN107814865B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
Liang et al. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals
Li et al. Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology
Dipalo et al. Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes
Dai et al. Mesh nanoelectronics: seamless integration of electronics with tissues
JP5415445B2 (ja) 医療用電極、電極束及び電極束アレー
CN106659886B (zh) 移植医药设备到神经组织中的方法
CN107638176B (zh) 一种水凝胶在制备检测脑皮层电图的电极中的应用
Lee et al. Nanoenabled direct contact interfacing of syringe-injectable mesh electronics
CN112326743A (zh) 基于丝素蛋白的c-sf-fa柔性导电薄膜和可穿戴式伤口监测传感器及其制备方法
Zhou et al. A silk-based self-adaptive flexible opto-electro neural probe
Viveros et al. Advanced one-and two-dimensional mesh designs for injectable electronics
CN110367979A (zh) 一种针对脑组织电信号记录与调控的基于纳米针电极柔性微流控装置及其制备方法
CN107814865A (zh) 用于低温植埋的侵入式脑机接口
Jiao et al. Scalable fabrication framework of implantable ultrathin and flexible probes with biodegradable sacrificial layers
Spearman et al. Integration of flexible polyimide arrays into soft extracellular matrix-based hydrogel materials for a tissue-engineered electronic nerve interface (TEENI)
CN209508276U (zh) 一种用于培养细胞的电刺激装置
JP2018535078A (ja) 出血を回避する微小電極
CN109568803B (zh) 一种柔性光纤植入体及光电极阵列
CN107789729A (zh) 一种侵入式脑机接口
CN103572606A (zh) 具有核-壳结构的复合多孔纤维及双重孔结构膜制备方法
US20210038126A1 (en) Multimodal needle
US20220401001A1 (en) Medical proto microelectrode, method for its manufacture, and use thereof
CN108778405B (zh) 细胞聚集物和组织片段的植入方法
CN104720801A (zh) 无线胃肠电地形图记录仪及其使用方法
Patel Carbon Fiber Microelectrode Arrays for Neuroprosthetic and Neuroscience Applications.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant