CN107808253B - 基于协调算法的灌区渠系实时配水方法 - Google Patents

基于协调算法的灌区渠系实时配水方法 Download PDF

Info

Publication number
CN107808253B
CN107808253B CN201711088713.8A CN201711088713A CN107808253B CN 107808253 B CN107808253 B CN 107808253B CN 201711088713 A CN201711088713 A CN 201711088713A CN 107808253 B CN107808253 B CN 107808253B
Authority
CN
China
Prior art keywords
water
channel
user
demand
bucket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711088713.8A
Other languages
English (en)
Other versions
CN107808253A (zh
Inventor
庄佳宝
单森华
徐能通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Istrong Technology Co ltd
Original Assignee
Istrong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Istrong Technology Co ltd filed Critical Istrong Technology Co ltd
Priority to CN201711088713.8A priority Critical patent/CN107808253B/zh
Publication of CN107808253A publication Critical patent/CN107808253A/zh
Application granted granted Critical
Publication of CN107808253B publication Critical patent/CN107808253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Agronomy & Crop Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Flow Control (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了基于协调算法的灌区渠系实时配水方法,包括步骤1)根据灌区用水户的用水需求进行需水计划的上报;2)当灌区总水量<用水户需水量总和时,建立实时配水调度模型;3)构建哈密顿函数求出各用水户分配水量的最优解;4)根据最优解,对各用水户所分配的流量和闸门开度进行调度。本发明提高水量调度的准确性和及时性,也提高了水资源的有效利用率。

Description

基于协调算法的灌区渠系实时配水方法
技术领域
本发明涉及灌溉领域,具体涉及基于协调算法的灌区渠系实时配水方法。
背景技术
灌区供水以农业灌溉用水为主,兼有生活供水、工业用水和生态补水,灌区渠系是由干渠、支渠、斗渠等输水渠道组成,向农田区域进行输水灌溉。传统的配水调度多数局限在经验调度的方式,未能解决实际配水流量及需水流量前提下的配水调度,容易造成水资源浪费、配水调度不及时等问题,主要体现在:凭经验进行配水调度,水量调度准确性较低,容易造成水资源浪费;假定条件下进行水资源的配水调度,不能结合实际的渠系水资源情况进行有效的调度,造成配水调度不及时;水资源有限时,无法有效的协调生活、生产及农业灌溉水资源的有效分配。
发明内容
为解决上述现有技术存在的问题,本发明提出一种基于协调算法的灌区渠系实时配水方法,提高了配水调度的及时性,促进农业灌溉引水、生活供水、工业用水等方面的协调发展。
为实现上述目的,本发明的技术方案是:
基于协调算法的灌区渠系实时配水方法,包括以下步骤:
步骤S1:根据灌区用水户的用水需求进行需水计划的上报,根据干、支、斗三级渠道水利用系数和田间水利用系数计算灌区用水户需水量,所述灌区用水户包括生活供水、农业灌溉配水和工业用水;
步骤S2:当灌区总水量≥用水户需水量总和时,直接按照用水户需水量进行调配;
步骤S3:当灌区总水量<用水户需水量总和时,建立实时配水调度模型,所述配水调度模型的非线性离散时间系统状态方程如下:
xi(k+1)=fi(xi(k),ui(k),zi(k),k)
xi(0)=xi0
其约束条件如下:
Figure BDA0001460677330000021
目标函数如下:
Figure BDA0001460677330000022
其中,xi(0)是第i个用水户的初始流量状态,xi是ni维用水户的流量状态向量,ui是mi维用水户闸门开度向量,zi是各用水户之间的ri维相互影响向量,Hij为第i个用水户对所在渠系等级j的影响;k是用水户的时间状态量,Nf是未来某一时刻的时间状态量,N是用水户的数量,hi是用水户在Nf时刻状态下对干渠水量分配影响程度的关系函数,gi是用水户在k时刻状态下对支渠水量分配影响程度的关系函数;
步骤S4:利用步骤S3构建的目标函数建立拉格朗日函数,在拉格朗日函数中引入共态变量,构建哈密顿函数求出各用水户分配水量的最优解;
步骤S5:根据步骤S4得到的最优解,对各用水户所分配的流量和闸门开度进行调度,实现灌区实时配水调度。
进一步地,所述步骤S1中灌区用水户的需水量预测计算方法如下:农业灌溉配水需水量预测:
Figure BDA0001460677330000031
其中,W支s为第s条支渠分水口的毛需水量,单位为m3;K'为第s条支渠下的斗渠数;ηk′-s为第s条支渠下第k'条斗渠分水口到第s条支渠分水口之间的渠道水利用系数;
Figure BDA0001460677330000032
其中,W斗k′为第s条支渠下第k'条斗渠分水口的毛需水量,单位为m3;J为第k'条斗渠下的农渠数;ηj′-k′为第k'条斗渠下第j'条农渠分水口到第k'条斗渠分水口之间的渠道水利用系数;
Figure BDA0001460677330000033
其中,W农j′为第k'条斗渠下第j'条农渠分水口的毛需水量,单位为m3;I为第j'条农渠灌溉的农田数量;Aji为第j'条农渠灌溉的第i'个农田面积,单位为亩;Mj′i′为第i'个农田面积的灌水定额,单位为m3/亩;η农j′为第j'条农渠的平均水利用系数,η为田间水利用系数;
生活供水需水量预测:
Figure BDA0001460677330000041
其中,W活a为第a个水厂取水口的需水量,mab为第a个水厂取水口的第b个抄表流量,η活ab为第a个水厂取水口的第b个抄表流量计量系数;
工业用水需水量预测:
Figure BDA0001460677330000042
其中,W工c第c个工厂取水口的需水量,mcd为第c个工厂取水口的第d个抄表流量,η工cd为第c个工厂取水口的第d个抄表流量计量系数。
进一步地,所述步骤4具体为:
将目标函数引入拉格朗日乘子向量λi,i=1,2,…,N,将约束条件归入目标函数,构成拉格朗日函数,
Figure BDA0001460677330000043
根据拉格朗日对偶原理,L(x,u,z,λ)存在鞍点,则目标函数等价于
Figure BDA0001460677330000051
s.t.xi(k+1)=fi(xi(k),ui(k),zi(k),k)
xi(0)=xi0
按时间指数k对第一级斗渠进行分解,对用水户i用共态变量Pi表示,构建哈密顿函数,
Figure BDA0001460677330000052
Figure BDA0001460677330000053
则最优条件为
Figure BDA0001460677330000059
在第一级上,当λ=λ*,p=p*时,由条件
Figure BDA0001460677330000054
可以得到
Figure BDA0001460677330000055
Figure BDA0001460677330000056
Figure BDA0001460677330000057
xi(k+1)=fi(xi(k),ui(k),zi(k),k)
i=1,2,...,Nk=0,1,...,Nf-1
第二级支渠的协调任务是更新pi,由条件
Figure BDA0001460677330000058
第l步的协调向量为
Figure BDA0001460677330000061
Figure BDA0001460677330000062
第三级干渠更新λ的值,利用梯度法或共轭梯度法,由最优条件
Figure BDA0001460677330000063
Figure BDA0001460677330000064
第三级干渠上第l次迭代协调向量为
Figure BDA0001460677330000065
Figure BDA0001460677330000066
当两级的误差接近于零时,所得的解为模型的最优解。
与现有技术相比,本发明具有以下有益效果:
在灌区水资源总量无法满足需求时,依靠实时配水调度模型的演算,更加科学、有效的指导管理人员进行及时、有效的配水调度,既提高了水量调度的准确性和及时性,又提高了水资源的有效利用率,提高灌区服务能力。
附图说明
图1是本发明基于协调算法的灌区渠系实时配水方法流程示意图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
如图1所示,基于协调算法的灌区渠系实时配水方法,包括以下步骤:步骤S1:根据灌区用水户的用水需求进行需水计划的上报,根据干、支、斗三级渠道水利用系数和田间水利用系数计算灌区用水户需水量,所述灌区用水户包括生活供水、农业灌溉配水和工业用水;
在本实施例中,所述步骤S1中灌区用水户的需水量预测计算方法如下:
农业灌溉配水需水量预测:
Figure BDA0001460677330000071
其中,W支s为第s条支渠分水口的毛需水量,单位为m3;K'为第s条支渠下的斗渠数;ηk′-s为第s条支渠下第k'条斗渠分水口到第s条支渠分水口之间的渠道水利用系数;
Figure BDA0001460677330000072
其中,W斗k′为第s条支渠下第k'条斗渠分水口的毛需水量,单位为m3;J为第k'条斗渠下的农渠数;ηj′-k′为第k'条斗渠下第j'条农渠分水口到第k'条斗渠分水口之间的渠道水利用系数;
Figure BDA0001460677330000073
其中,W农j′为第k'条斗渠下第j'条农渠分水口的毛需水量,单位为m3;I为第j'条农渠灌溉的农田数量;Aji为第j'条农渠灌溉的第i'个农田面积,单位为亩;Mj′i′为第i'个农田面积的灌水定额,单位为m3/亩;η农j′为第j'条农渠的平均水利用系数,η为田间水利用系数;
生活供水需水量预测:
Figure BDA0001460677330000081
其中,W活a为第a个水厂取水口的需水量,mab为第a个水厂取水口的第b个抄表流量,η活ab为第a个水厂取水口的第b个抄表流量计量系数;
工业用水需水量预测:
Figure BDA0001460677330000082
其中,W工c第c个工厂取水口的需水量,mcd为第c个工厂取水口的第d个抄表流量,η工cd为第c个工厂取水口的第d个抄表流量计量系数。
步骤S2:当灌区总水量≥用水户需水量总和时,直接按照用水户需水量进行调配;
步骤S3:当灌区总水量<用水户需水量总和时,建立实时配水调度模型进行用水户水量分配,所述配水调度模型的非线性离散时间系统状态方程如下:
xi(k+1)=fi(xi(k),ui(k),zi(k),k)
xi(0)=xi0
其约束条件如下:
Figure BDA0001460677330000083
目标函数如下:
Figure BDA0001460677330000091
其中,xi(0)是第i个用水户的初始流量状态,xi是ni维用水户的流量状态向量,ui是mi维用水户闸门开度向量,zi是各用水户之间的ri维相互影响向量,Hij为第i个用水户对所在渠系等级j的影响;k是用水户的时间状态量,Nf是未来某一时刻的时间状态量,N是用水户的数量,hi是用水户在Nf时刻状态下对干渠水量分配影响程度的关系函数,gi是用水户在k时刻状态下对支渠水量分配影响程度的关系函数;
步骤S4:利用步骤S3构建的目标函数建立拉格朗日函数,在拉格朗日函数中引入共态变量,构建哈密顿函数求出各用水户分配水量的最优解;
在本实施例中,所述步骤4具体为:
将目标函数引入拉格朗日乘子向量λi,i=1,2,…,N,将约束条件归入目标函数,构成拉格朗日函数,
Figure BDA0001460677330000092
根据拉格朗日对偶原理,L(x,u,z,λ)存在鞍点,则目标函数等价于
Figure BDA0001460677330000101
s.t.xi(k+1)=fi(xi(k),ui(k),zi(k),k)
xi(0)=xi0
按时间指数k对第一级斗渠进行分解,对用水户i用共态变量Pi表示,构建哈密顿函数,
Figure BDA0001460677330000102
Figure BDA0001460677330000103
则最优条件为
Figure BDA0001460677330000104
在第一级上,当λ=λ*,p=p*时,由条件
Figure BDA0001460677330000105
可以得到
xi(0)=xi0
Figure BDA0001460677330000106
Figure BDA0001460677330000107
xi(k+1)=fi(xi(k),ui(k),zi(k),k)
i=1,2,...,Nk=0,1,...,Nf-1
第二级支渠的协调任务是更新pi,由条件
Figure BDA0001460677330000108
第l步的协调向量为
Figure BDA0001460677330000111
Figure BDA0001460677330000112
第三级干渠更新λ的值,利用梯度法或共轭梯度法,由最优条件
Figure BDA0001460677330000113
Figure BDA0001460677330000114
第三级干渠上第l次迭代协调向量为
Figure BDA0001460677330000115
Figure BDA0001460677330000116
当两级的误差接近于零时,所得的解为模型的最优解。
步骤S5:根据步骤S4得到的最优解,对各用水户所分配的流量和闸门开度进行调度,实现灌区实时配水调度。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.基于协调算法的灌区渠系实时配水方法,其特征在于,包括以下步骤:
步骤S1:根据灌区用水户的用水需求进行需水量的上报,根据干、支、斗三级渠道水利用系数和田间水利用系数计算灌区用水户需水量,所述灌区用水户包括生活供水、农业灌溉配水和工业用水;
步骤S2:当灌区总水量≥用水户需水量总和时,直接按照用水户需水量进行调配;
步骤S3:当灌区总水量<用水户需水量总和时,建立实时配水调度模型,所述配水调度模型的非线性离散时间系统状态方程如下:
xi(k+1)=fi(xi(k),ui(k),zi(k),k)
xi(0)=xi0
其约束条件如下:
Figure FDA0003219016350000011
目标函数如下:
Figure FDA0003219016350000012
其中,xi(0)是第i个用水户的初始流量状态,xi是ni维用水户的流量状态向量,ui是mi维用水户闸门开度向量,zi是各用水户之间的ri维相互影响向量,Hji为第i个用水户对所在渠系等级j的影响;k是用水户的时间状态量,Nf是未来某一时刻的时间状态量,N是用水户的数量,hi是用水户在Nf时刻状态下对干渠水量分配影响程度的关系函数,gi是用水户在k时刻状态下对支渠水量分配影响程度的关系函数;
步骤S4:利用步骤S3构建的目标函数建立拉格朗日函数,在拉格朗日函数中引入共态变量,构建哈密顿函数求出各用水户分配水量的最优解;
步骤S5:根据步骤S4得到的最优解,对各用水户所分配的流量和闸门开度进行调度,实现灌区实时配水调度;
所述步骤S1中灌区用水户的需水量预测计算方法如下:
农业灌溉配水需水量预测:
Figure FDA0003219016350000021
其中,W支s为第s条支渠分水口的毛需水量,单位为m3;K'为第s条支渠下的斗渠数;ηk′-s为第s条支渠下第k'条斗渠分水口到第s条支渠分水口之间的渠道水利用系数;
Figure FDA0003219016350000022
其中,W斗k′为第s条支渠下第k'条斗渠分水口的毛需水量,单位为m3;J为第k'条斗渠下的农渠数;ηj′-k′为第k'条斗渠下第j'条农渠分水口到第k'条斗渠分水口之间的渠道水利用系数;
Figure FDA0003219016350000023
其中,W农j′为第k'条斗渠下第j'条农渠分水口的毛需水量,单位为m3;I为第j'条农渠灌溉的农田数量;Aji为第j'条农渠灌溉的第i'个农田面积,单位为亩;Mj′i′为第i'个农田面积的灌水定额,单位为m3/亩;η农j′为第j'条农渠的平均水利用系数,η为田间水利用系数;
生活供水需水量预测:
Figure FDA0003219016350000031
其中,W活a为第a个水厂取水口的需水量,mab为第a个水厂取水口的第b个抄表流量,η活ab为第a个水厂取水口的第b个抄表流量计量系数;
工业用水需水量预测:
Figure FDA0003219016350000032
其中,W工c第c个工厂取水口的需水量,mcd为第c个工厂取水口的第d个抄表流量,η工cd为第c个工厂取水口的第d个抄表流量计量系数;
所述步骤S4具体为:
将目标函数引入拉格朗日乘子向量λi,i=1,2,…,N,将约束条件归入目标函数,构成拉格朗日函数,
Figure FDA0003219016350000041
根据拉格朗日对偶原理,L(x,u,z,λ)存在鞍点,则目标函数等价于
Figure FDA0003219016350000042
s.t.xi(k+1)=fi(xi(k),ui(k),zi(k),k)
xi(0)=xi0
按时间指数k对第一级斗渠进行分解,对用水户i用共态变量pi表示,构建哈密顿函数,
Figure FDA0003219016350000043
Figure FDA0003219016350000044
则最优条件为
Figure FDA0003219016350000045
在第一级上,当λ=λ*,p=p*时,由条件
Figure FDA0003219016350000046
可以得到
xi(0)=xi0
Figure FDA0003219016350000051
Figure FDA0003219016350000052
xi(k+1)=fi(xi(k),ui(k),zi(k),k)
i=1,2,...,N k=0,1,...,Nf-1
第二级支渠的协调任务是更新pi,由条件
Figure FDA0003219016350000053
第l步的协调向量为
Figure FDA0003219016350000054
Figure FDA0003219016350000055
第三级干渠更新λ的值,利用梯度法或共轭梯度法,由最优条件
Figure FDA0003219016350000056
Figure FDA0003219016350000057
第三级干渠上第l次迭代协调向量为
Figure FDA0003219016350000058
Figure FDA0003219016350000059
当两级的误差接近于零时,所得的解为模型的最优解。
CN201711088713.8A 2017-11-08 2017-11-08 基于协调算法的灌区渠系实时配水方法 Active CN107808253B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711088713.8A CN107808253B (zh) 2017-11-08 2017-11-08 基于协调算法的灌区渠系实时配水方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711088713.8A CN107808253B (zh) 2017-11-08 2017-11-08 基于协调算法的灌区渠系实时配水方法

Publications (2)

Publication Number Publication Date
CN107808253A CN107808253A (zh) 2018-03-16
CN107808253B true CN107808253B (zh) 2021-12-17

Family

ID=61591820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711088713.8A Active CN107808253B (zh) 2017-11-08 2017-11-08 基于协调算法的灌区渠系实时配水方法

Country Status (1)

Country Link
CN (1) CN107808253B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110889553B (zh) * 2019-11-26 2022-06-28 长江勘测规划设计研究有限责任公司 基于优化策略的实时配水方法
CN110946062A (zh) * 2019-12-27 2020-04-03 京蓝沐禾节水装备有限公司 灌溉方法及灌溉系统
CN112396306B (zh) * 2020-11-10 2022-07-12 华中科技大学 一种基于生态闸门时空水量均衡的分层次配水方法及系统
CN112379598B (zh) * 2020-11-18 2022-05-20 重庆大学 一种基于动态规划算法的多闸孔闸门调度方法
CN112529368A (zh) * 2020-11-20 2021-03-19 成都赛零信息技术开发有限公司 供水网络智慧用水预案生成方法及智慧用水预案使用方法
CN112819332A (zh) * 2021-02-02 2021-05-18 中国水利水电科学研究院 一种基于全渠道输配的水量分配方法、装置及计算机设备
CN115644039B (zh) * 2022-10-19 2023-10-24 武汉市中城事大数据有限责任公司 基于农业系统模型的灌溉决策系统及方法
CN115981221B (zh) * 2023-03-21 2023-09-19 北京市农林科学院智能装备技术研究中心 逐级优化的渠道灌溉闸门控制方法及系统
CN116432961B (zh) * 2023-04-14 2023-10-20 上海华维可控农业科技集团股份有限公司 一种基于数字化的水量信息管理系统及方法
CN116664340B (zh) * 2023-07-25 2023-12-12 长江信达软件技术(武汉)有限责任公司 一种适用于干旱地区的灌域级水量调度方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544533A (zh) * 2012-07-12 2014-01-29 上海宝信软件股份有限公司 一种调水工程水资源优化配置动态模型构建系统
CN105297827A (zh) * 2015-10-16 2016-02-03 贵州省水利水电勘测设计研究院 一种考虑多用户需水和多水源供水的水资源配置方法
CN105528734A (zh) * 2015-11-27 2016-04-27 中国科学院寒区旱区环境与工程研究所 一种多层水资源管理的水量分配方法
CN106951985A (zh) * 2017-03-06 2017-07-14 河海大学 一种基于改进人工蜂群算法的梯级水库多目标优化调度方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103479B2 (en) * 2004-04-30 2006-09-05 Ch2M Hill, Inc. Method and system for evaluating water usage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544533A (zh) * 2012-07-12 2014-01-29 上海宝信软件股份有限公司 一种调水工程水资源优化配置动态模型构建系统
CN105297827A (zh) * 2015-10-16 2016-02-03 贵州省水利水电勘测设计研究院 一种考虑多用户需水和多水源供水的水资源配置方法
CN105528734A (zh) * 2015-11-27 2016-04-27 中国科学院寒区旱区环境与工程研究所 一种多层水资源管理的水量分配方法
CN106951985A (zh) * 2017-03-06 2017-07-14 河海大学 一种基于改进人工蜂群算法的梯级水库多目标优化调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《大系统递阶控制模型及解算方法》;雷晓云 等;《石河子农学院学报》;19961231(第33期);全文 *

Also Published As

Publication number Publication date
CN107808253A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
CN107808253B (zh) 基于协调算法的灌区渠系实时配水方法
Huang et al. Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China
Divakar et al. Optimal allocation of bulk water supplies to competing use sectors based on economic criterion–An application to the Chao Phraya River Basin, Thailand
Yue et al. Achieving sustainable development goals in agricultural energy-water-food nexus system: An integrated inexact multi-objective optimization approach
Zeng et al. A sustainable water-food-energy plan to confront climatic and socioeconomic changes using simulation-optimization approach
CN105844367A (zh) 一种基于灵敏度因子的电网节点边际电价计算方法
Zhang et al. Optimal irrigation water allocation in Hetao Irrigation District considering decision makers’ preference under uncertainties
Yang et al. Optimization of the irrigation water resources for Shijin irrigation district in north China
Gonçalves et al. Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin
Peng et al. Optimization operation model coupled with improving water-transfer rules and hedging rules for inter-basin water transfer-supply systems
Sherafatpour et al. Agricultural water allocation by integration of hydro-economic modeling with Bayesian networks and random forest approaches
CN112819332A (zh) 一种基于全渠道输配的水量分配方法、装置及计算机设备
Li et al. Biobjective optimization for efficient irrigation under fuzzy uncertainty
CN111915065A (zh) 一种河流枯水期多目标动态水资源优化配置系统及方法
Pei et al. Study on the optimization of staple crops spatial distribution in China under the influence of natural disasters
Kang et al. Combined simulation-optimization model for assessing irrigation water supply capacities of reservoirs
CN113919746A (zh) 一种灌区水资源精细化调度模型系统
Rowshon et al. Improving irrigation water delivery performance of a large-scale rice irrigation scheme
Sheibani et al. Optimum design and operation of a reservoir and irrigation network considering uncertainty of hydrologic, agronomic and economic factors
Kracman et al. Stochastic optimization of the highland lakes system in Texas
Liu et al. A quantitative analysis framework for water-food-energy nexus in an agricultural watershed using WEAP-MODFLOW
CN113837891A (zh) 一种应对气候变化的大面积农灌区水资源均衡高效调配方法
Anvari et al. The role of meteorological and hydrological uncertainties in the performance of optimal water allocation approaches
Ranjbar et al. The application of harmony search and genetic algorithms for the simultaneous optimization of integrated reservoir–FARM systems (IRFS)
Srinivasa Prasad et al. Short-term real-time reservoir operation for irrigation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 350001 unit 6, 4 building, 245 Xiu Shan Road, Xin Dian Town, Jinan District, Fuzhou, Fujian, 608

Applicant after: Four creation technology limited company

Address before: 350108 unit 6, 4 building, 245 Xiu Shan Road, Xin Dian Town, Jinan District, Fuzhou, Fujian, 608

Applicant before: Fujian Strong Software Co., Ltd.

CB02 Change of applicant information
CB03 Change of inventor or designer information

Inventor after: Zhuang Jiabao

Inventor after: Shan Senhua

Inventor after: Xu Nengtong

Inventor before: Shan Senhua

Inventor before: Zhuang Jiabao

Inventor before: Xu Nengtong

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant