CN107806942A - 一种压电电容复合式自供电温度场检测装置 - Google Patents

一种压电电容复合式自供电温度场检测装置 Download PDF

Info

Publication number
CN107806942A
CN107806942A CN201711200915.7A CN201711200915A CN107806942A CN 107806942 A CN107806942 A CN 107806942A CN 201711200915 A CN201711200915 A CN 201711200915A CN 107806942 A CN107806942 A CN 107806942A
Authority
CN
China
Prior art keywords
thermometric
measuring unit
temperature measuring
piezoelectric
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711200915.7A
Other languages
English (en)
Other versions
CN107806942B (zh
Inventor
王东方
洪婧
刘欢
孙继武
郑果文
朱逸凡
宋杰
杨旭
殷志富
刘欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201711200915.7A priority Critical patent/CN107806942B/zh
Publication of CN107806942A publication Critical patent/CN107806942A/zh
Application granted granted Critical
Publication of CN107806942B publication Critical patent/CN107806942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/34Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using capacitative elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明涉及一种压电电容复合式自供电温度场检测装置,属于智能微机电系统和微能源技术领域,包括上柔性基板,下柔性基板,上绝缘盖板,下绝缘盖板和测温中间层。阵列中每个基本单元测得的点温度通过信息处理可得到检测阵列所覆盖的区域温度场。基本单元通过外界振动采集能量供给测温电容激励能量进行温度检测。基本单元结构包括上电容单元,测温单元,下电容单元。本发明将自供电与温度检测进行复合,对于环境保护,智能传感,能源有效利用方面有十分重要的意义。

Description

一种压电电容复合式自供电温度场检测装置
技术领域
本发明属于智能微机电系统和微能源技术领域,尤其涉及一种复合式自供电温度场检测装置,应用于高端装备制造产业和智能制造等行业,高效便捷的智能检测系统对于智能传感控制,智能无人系统的发展有起至关重要的推动作用。
背景技术
随着工业化进程的不断发展,实际应用中温度场检测技术所面临的要求也越来越高,尤其在智能机械制造、航空航天、新能源汽车、制药、烟草、粮食存储等对温度有较高要求的领域。温度测量中不仅对温度测量的精度、灵敏度提出要求,同时自供电或低功耗的温度测量器件正受到广泛关注,这一要求不仅响应当今世界“绿色、节约、环保”的主题,而且体现智能化的发展方向,通过智能化的感知、人机交互、决策和执行技术,实现设计过程、制造过程和制造装备智能化,顺应社会的发展趋势。
自供电测温的设计理念符合智能传感的研究领域,同时对于能源的有效利用、绿色环保起到重要的作用。针对自供电测温的问题,将两者结合的研究相对较少。其中,声表面波传感器SAW,热电偶温度传感器及压电集成式温度传感器的研究与该问题较为相关。声表面波传感器SAW通过发射激励频率,测量频率变化来测量温度,但其电路结构复杂,组合频率干扰严重,用于产生激励信号的本振的频率是不可调整的,易受环境干扰,系统的灵活性和操作性差的缺点;热电偶温度传感器利用塞贝克原理,将两种半导体的一端结合在一起并使之处于高温状态(热端),而另一端开路且处于低温状态(冷端),则在冷端存在开路电压,该方法不需外界电源直接通过开路电压测温,然而该方法测温精度较低,且需要高温和低温状态同时存在;压电集成式温度传感器通过压电采集能量供给单独的温度传感器,通过集成式的方法进行温度检测,电路结构复杂,器件较多。因此,本申请将自供电与温度测量复合在一个装置中,且温度检测促进能量的采集,因静电式和压电式输出电压及最大输出功率量级相同,因此将两者进行能量复合,增大能量利用率。在温度测量中,由于电容式温度测量结构简单,精度高,自然地与自供电紧密关联,因此,采用由导体/介质层/导体组成的多层梁固体可变电容结构。
发明内容
本发明提供一种压电电容复合式自供电温度场检测装置,以解决振动环境中温度检测需要外部电源、电池更换复杂、能量利用率低、测温干扰大等问题。
本发明采取的技术方案是:包括上柔性基板,上绝缘盖板,测温中间层,下绝缘盖板,下柔性基板;其中,下柔性基板有凹槽,下绝缘盖板镶嵌在该凹槽中,测温中间层与下绝缘盖板卡接,上绝缘盖板嵌入到测温中间层中,上绝缘盖板与上柔性基板卡接;在上绝缘盖板中沉积上电容单元,下绝缘盖板中沉积下电容单元,测温中间层上有测温单元,测温单元上包括测温复合层上电极板、测温复合层、测温复合层下电极板,上电容单元与测温复合层上电极板形成可变电容结构一C1,下电容单元与测温复合层下电极板形成可变电容结构二C2,测温复合层上电极板与测温复合层下电极板形成测温电容结构CL
本发明所述上绝缘盖板与下绝缘盖板结构相同,其中,下绝缘盖板包括由下电容单元构成的M×N的阵列,M,N为正整数;
本发明所述下电容单元有凹槽,在凹槽上沉积下电容单元电极层,下电容单元电极层上沉积下电容单元驻极体,下电容单元边框上有八个下电容单元凹槽,与测温单元凸台形成嵌套配合;
本发明所述测温中间层包括由测温单元构成的M×N的阵列,M,N为正整数;
本发明所述测温单元结构上分为测温单元上层,测温单元中间层,测温单元下层,测温单元上层与测温单元下层结构相同;
本发明所述在测温单元上层中,测温单元上层短梁的一端与测温单元边框相连,另一端与测温单元上层回形梁相连,测温单元上层回形梁的每条边上下对称均贴有压电单元一,压电单元一包括压电单元一下电极板,压电单元一PZT压电层和压电单元一上电极板。
本发明所述测温单元中间层包括,测温单元中间层短梁一的一端与测温单元边框相连,另一端与测温单元中间层回形梁相连,测温单元中间层回形梁的每条边上下对称均贴有压电单元二,测温单元中间层回形梁向内又与测温单元中间层短梁二一端相连,测温单元中间层短梁二另一端与测温复合层相连,测温复合层上表面沉积测温复合层上电极板,下表面沉积测温复合层下电极板,测温复合层又包括膨胀系数变化层,膨胀系数变化层上表面沉积上温敏聚合物层,下表面沉积下温敏聚合物层,上温敏聚合物层与下温敏聚合物层结构材料相同;
本发明所述可变电容结构一C1和可变电容结构二C2进行串联,同时与压电单元一,压电单元二和压电单元三采集的能量共同作为测温电容CL的激励能量。
本发明的优点是结构新颖,将电容能量采集和压电能量采集结合,振动环境中,测温单元在竖直方向发生上下移动导致可变电容结构一C1和可变电容结构二C2的电容值发生变化,可变电容结构一C1和可变电容结构二C2通过串联方式连接,增大输出电压。与此同时考虑到最大限度的采集压电能量,因此在测温单元上设计上中下三层回形梁进行压电能量采集,上述回形梁进行压电采集时,梁的受力方向与压电电荷产生的方向相互垂直,压电常数为d31,能量转化效率显著提高。在受外部振动的激励,测温单元的测温单元上层,测温单元中间层和测温单元下层上的回形梁随之振动,例如在压电单元一中,压电单元一PZT压电片层的极化方向垂直于上绝缘盖板和下绝缘盖板,通过压电单元一上电极和压电单元一下电极将极化产生的电压输出,从而进行压电能量采集。进而将振动能通过电容及压电共同采集,增加能量利用率,保证测温环节正常进行,充分利用环境中的能量,减少电池等蓄电元件的使用,降低环境污染;其次将可变电容结构一C1、可变电容结构二C2与测温单元复合在同一个结构中,且测温的同时导致可变电容结构一C1和可变电容结构二C2的电容值发生变化,同时,带动压电单元二发生形变进行压电能量采集,从而形成良性循环。所述测温复合层上直接沉积测温复合层上电极和测温复合层下电极,有利于消除振动导致温度测量的干扰。并且测温复合层将受温度影响较大的膨胀系数变化层和介电常数受温度影响较大的上温敏聚合物层和下温敏聚合物层复合而成,增大温度检测的灵敏度。振动过程中,通过仿真证实测温电容结构的温复合层上电极和测温复合层下电极不发生翘曲,减少温度测量的误差。实际应用中采用上柔性基板和下柔性基板利于增大该温度场检测装置的应用范围且基本单元之间通过柔性材料连接,不仅限于平面测温,使得装置在不影响基本单元的基础下应用范围更广泛。
附图说明
图1是本发明的结构示意图;
图2是本发明的分层结构示意图;
图3是本发明实施例的上绝缘盖板结构示意图;
图4是本发明实施例的下绝缘盖板结构示意图;
图5是本发明实施例的测温中间层结构示意图;
图6是本发明实施例基本单元结构示意图;
图7是本发明实施例基本单元剖面结构示意图;
图8a是本发明实施例的上电容单元结构示意图;
图8b是本发明实施例的下电容单元结构示意图;
图9a是本发明实施例的上电容单元剖面结构示意图;
图9b是本发明实施例的下电容单元剖面结构示意图;
图10是本发明实施例的测温单元的结钩示意图;
图11a是本发明实施例的测温单元上层结构示意图;
图11b是本发明实施例的测温单元中间层结构示意图;
图11c是本发明实施例的测温单元下层结构示意图;
图12是本发明实施例的测温复合层,测温复合层上电极板,测温复合层下电极板测温部分剖面结构示意图;
图13是本发明实施例的压电单元剖面结构示意图;
图14是本发明实施例的应用示意图;
图15是压电-电容复合式自供电温度检测的等效电路图。
具体实施方式
见图2,包括:上柔性基板1,上绝缘盖板2,测温中间层3,下绝缘盖板4,下柔性基板5。其中,下柔性基板5设计有凹槽,下绝缘盖板4镶嵌在凹槽中,测温中间层3嵌入到下绝缘盖板4中,上绝缘盖板2嵌入到测温中间层3中,同时上绝缘盖板2镶嵌到上柔性基板1中。在上绝缘盖板2(见图3)中沉积上电容单元200,下绝缘盖板4(见图4)中沉积下电容单元400,测温中间层3(见图5)上有测温单元300,测温单元300包括测温复合层上电极板326,测温复合层325,测温复合层下电极板327,上电容单元200与测温复合层上电极板326形成可变电容结构一C1(见图7),下电容单元400与测温复合层下电极板327形成可变电容结构二C2(见图7),测温复合层上电极板326与测温复合层下电极板327形成测温电容结构CL(见图7)。
其中,上绝缘盖板2与下绝缘盖板4结构相同,下绝缘盖板4是由下电容单元400构成的M×N的阵列,M,N为正整数。下电容单元400边框402(见图6)优选玻璃且设计有凹槽,为测温单元300上下振动提供空间,在下电容单元400的凹槽上沉积下电容单元电极层403(见图9b),下电容单元电极层优选金属铜,因二氧化硅电荷密度高,稳定性强,加工简单,因此在所选下电容单元电极层403上沉积二氧化硅作为可变电容结构二C2的驻极体404(见图9b),为电容结构二C2从平衡位置启动提供能量,下电容单元边框402上设计八个下电容单元凹槽401,与测温单元凸台301形成嵌套配合。
测温中间层3是由测温单元300构成的M×N的阵列,M,N为正整数,测温单元300(见图10)结构上分为测温单元上层310,测温单元中间层320,测温单元下层330,测温单元上层310与测温单元下层330结构相同,在测温单元上层310中(见图11a),测温单元上层短梁311的一端与测温单元边框302相连,另一端与测温单元上层回形梁312相连,测温单元上层回形梁312的每条边上下对称均贴有压电单元一313(见图13),压电单元一313包括压电单元一下电极板31301,压电单元一PZT压电层31302和压电单元一上电极板31303。由于单层压电薄膜工艺设计及制作简单灵敏度较高,同时单层压电片结构能有效降低整个器件的谐振频率,优选单层压电薄膜的梁结构。压电单元一下电极板31301和压电单元一上电极板31303材料优选为Pt/Ti材料。
在测温单元中间层320中(见图11b),测温单元中间层短梁一321一端与测温单元边框302相连,另一端与测温单元中间层回形梁322相连,测温单元中间层回形梁322的每条边上下对称均贴有压电单元二323,压电单元二323的结构同压电单元三313,测温单元中间层回形梁322向内又与测温单元中间层短梁二324的一端相连,测温单元中间层短梁二324另一端与测温复合层325相连,测温复合层325(见图12)上表面沉积测温复合层上电极板326,下表面沉积测温复合层下电极板327,所述测温层感温材料上下两极板需要良好的导电性能,优择膨胀系数相同的金属铜作为测温电容结构的上下极板。测温复合层325包括膨胀系数变化层32502,膨胀系数变化层32502上表面沉积上温敏聚合物层32501,下表面沉积下温敏聚合物层32503,上温敏聚合物层32501与下温敏聚合物层32503结构材料相同。由于温敏聚合物膨胀系数大,体积变化较明显,因此优选其作为测温复合层325的膨胀系数变化层32502,考虑到氧化石墨烯介电常数受温度影响比较明显,将其作为上温敏聚合物层32501和下温敏聚合物层332502的材料。为保证测温单元300垂直于上电容单元200和下电容单元400移动,在测温单元框架302上设计与下电容单元凹槽401和上电容单元凹槽201(见图8a,8b)相配合的测温单元凸台301(见图6),且使测温单元300在振动情况下上下运动的幅度更大,减少测温单元凸台301与下电容单元凹槽401和上电容单元201的直接冲击,可将测温单元凸台301的高度设计小于下电容单元凹槽401和上电容单元凹槽201的深度,由于PDMS强度高,弹性大,化学稳定性强,持久耐用,因此在下电容单元凹槽401和上电容单元凹槽201与测温单元凸台301的间隙处铺设弹性体PDMS。采用上柔性基板1和下柔性基板5利于增大该温度场检测装置的应用范围且基本单元之间通过柔性材料连接,不仅限于平面测温,使得装置在不影响基本单元的基础下应用范围更广泛(见图15)。
在本申请装置中,所述可变电容结构一C1和可变电容结构二C2进行串联,同时与压电单元一313,压电单元二323和压电单元三333采集的能量共同作为测温电容结构CL的激励能量,测温电容结构CL在感受温度变化时,测温复合层上电极板326和测温复合层下电极板327的间距随之变化,进而将两极板之间的电压输出,建立温度与测温电容结构CL的输出电压的关系。所述测温单元300测温的同时,测温复合层上电极板326与测温复合层下电极板327的间距随之变化,从而改变可变电容结构一C1和可变电容结构二C2的极板间距,促进电容式能量采集且导致压电单元323二发生振动,增强压电能量的采集。
可变电容结构一中固定电容极板为上电容单元电极层203,可动电容极板为测温复合层上电极板326,可变电容结构二中固定电容极板为下电容单元电极层403,可动电容极板为测温复合层下电极板327,当可变电容结构一C1和可变电容结构二C2被上电容单元驻极体204和下电容单元驻极体404充电以后,外界振动驱使测温单元300进行上下运动,从而造成可变电容结构一C1和可变电容结构二C2中电容量的改变,实现能量的转化。根据公式Q=CV电容式能量采集器有两种能量转化机制:电量限制型能量转化机制和电压限制型能量转化机制。虽然电压限制型能量采集器采集能量的能力高,但其需要两个独立的偏置电压源,因此设计电路较电量限制复杂,因此本申请选择电量限制型能量转化机制。在电量限制型能量转化机制中,电容的电量保持不变,通过电压的改变进行能量的采集转换。根据随着测温复合层上电极板326和测温复合层下电极板327的运动,可变电容结构一C1和可变电容结构二C2电容值随之变化,而可变电容结构一C1和可变电容结构二C2电量是保持不变的,导致可变电容结构一C1和可变电容结构二C2输出电压发生变化。
由电容单元200,测温单元300和电容单元400构成的基本单元的外部电路(见图15)包括整流电路D、开关SW1、开关SW2、开SW3和存储电容CS,整流电路D优选桥式整流电路,所述开关SW1、开关SW2和开关SW3均优选二极管开关。压电单元一313,压电单元二323和压电单元三333串联后形成压电交流电源IP,可变电容结构一C1和可变电容结构二C2进行串联,由上电容单元驻极体204提供的偏置电压V1经过开关SW1接可变电容结构一C1极板电极输入端,下电容单元驻极体404提供的偏置电压V2经过开关SW2接可变电容结构二C2极板电极输入端,可变电容结构一C1和可变电容结构二C2串联后电极的输出端经开关SW2接能量储存电容CS输入端,开关SW1、开关SW2和开关SW3在初始条件下处于断开状态,当可变电容结构一C1或可变电容结构二C2的可动电极板与固定极板间距最小时,达到最大值Cmax1或Cmax2,此时与可变电容结构一C1或可变电容结构二C2相对应的开关SW1或开关SW2闭合,偏置电压源V1或V2给可变电容结构一C1或可变电容结构二C2充电,充电结束后,可变电容结构一C1或可变电容结构二C2的电量可达到最大值Qmax1=Cmax1V1或Qmax2=Cmax2V2;此时开关SW1或开关SW2断开,可动电极板在振动下远离固定极板,电容值C1或C2减小,而可变电容结构一C1或可变电容结构二C2的电量保持不变,导致电容C1或C2两端的电压V1或V2开始增大,当可变电容结构一C1或可变电容结构二C2达到最小值Cmin1或Cmin2时,C1或C2电容上的电压达到最大值此时开关SW3闭合,可变电容结构一C1或可变电容结构二C2对外电路放电,实现能量转换,当可变电容结构一C1或可变电容结构二C2的可动电极板从间距最大处向固定电极板运动,可变电容结构一C1或可变电容结构二C2增大,直到达到最大值Cmax1或Cmax2,一个机械振动周期结束。同时压电输出端经过整流电路7作为储能电容CS的另一个输入端,储能电容CS输出端外接负载CL,在本申请中负载CL即测温电容结构。本申请将电容与压电相结合实现自供电温度检测,这种智能检测方法对于能源利用,环境保护具有重要意义。

Claims (8)

1.一种压电电容复合式自供电温度场检测装置,其特征在于,包括上柔性基板,上绝缘盖板,测温中间层,下绝缘盖板,下柔性基板;其中,下柔性基板有凹槽,下绝缘盖板镶嵌在该凹槽中,测温中间层与下绝缘盖板卡接,上绝缘盖板嵌入到测温中间层中,上绝缘盖板与上柔性基板卡接;在上绝缘盖板中沉积上电容单元,下绝缘盖板中沉积下电容单元,测温中间层上有测温单元,测温单元上包括测温复合层上电极板、测温复合层、测温复合层下电极板,上电容单元与测温复合层上电极板形成可变电容结构一,下电容单元与测温复合层下电极板形成可变电容结构二,测温复合层上电极板与测温复合层下电极板形成测温电容结构。
2.根据权利要求1所述一种压电电容复合式自供电温度场检测装置,其特征在于,所述上绝缘盖板与下绝缘盖板结构相同,其中下绝缘盖板包括由下电容单元构成的M×N的阵列,M,N为正整数。
3.根据权利要求2所述一种压电电容复合式自供电温度场检测装置,其特征在于,所述下电容单元有凹槽,在凹槽上沉积下电容单元电极层,下电容单元电极层上沉积下电容单元驻极体,下电容单元边框上有八个下电容单元凹槽,与测温单元凸台形成嵌套配合。
4.根据权利要求1所述一种压电电容复合式自供电温度场检测装置,其特征在于,所述测温中间层包括由测温单元构成的M×N的阵列,M,N为正整数。
5.根据权利要求4所述一种压电电容复合式自供电温度场检测装置,其特征在于,所述测温单元结构上分为测温单元上层,测温单元中间层,测温单元下层,测温单元上层与测温单元下层结构相同。
6.根据权利要求5所述一种压电电容复合式自供电温度场检测装置,其特征在于,所述在测温单元上层中,测温单元上层短梁的一端与测温单元边框相连,另一端与测温单元上层回形梁相连,测温单元上层回形梁的每条边上下对称均贴有压电单元一,压电单元一包括压电单元一下电极板,压电单元一PZT压电层和压电单元一上电极板。
7.根据权利要求5所述一种压电电容复合式自供电温度场检测装置,其特征在于,所述测温单元中间层包括,测温单元中间层短梁一的一端与测温单元边框相连,另一端与测温单元中间层回形梁相连,测温单元中间层回形梁的每条边上下对称均贴有压电单元二,测温单元中间层回形梁向内又与测温单元中间层短梁二一端相连,测温单元中间层短梁二另一端与测温复合层相连,测温复合层上表面沉积测温复合层上电极板,下表面沉积测温复合层下电极板,测温复合层又包括膨胀系数变化层,膨胀系数变化层上表面沉积上温敏聚合物层,下表面沉积下温敏聚合物层,上温敏聚合物层与下温敏聚合物层结构材料相同。
8.根据权利要求1所述一种压电电容复合式自供电温度场检测装置,其特征在于,所述可变电容结构一和可变电容结构二进行串联,同时与压电单元一,压电单元二和压电单元三采集的能量共同作为测温电容的激励能量。
CN201711200915.7A 2017-11-25 2017-11-25 一种压电电容复合式自供电温度场检测装置 Active CN107806942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711200915.7A CN107806942B (zh) 2017-11-25 2017-11-25 一种压电电容复合式自供电温度场检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711200915.7A CN107806942B (zh) 2017-11-25 2017-11-25 一种压电电容复合式自供电温度场检测装置

Publications (2)

Publication Number Publication Date
CN107806942A true CN107806942A (zh) 2018-03-16
CN107806942B CN107806942B (zh) 2023-07-28

Family

ID=61581182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711200915.7A Active CN107806942B (zh) 2017-11-25 2017-11-25 一种压电电容复合式自供电温度场检测装置

Country Status (1)

Country Link
CN (1) CN107806942B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729588A (zh) * 2020-12-25 2021-04-30 山东省产品质量检验研究院 一种微型无源无线温度传感器和测温系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2353813A1 (de) * 1973-01-12 1974-07-18 Gen Electric Canada Ueberwachungsschaltung
JP2005016431A (ja) * 2003-06-26 2005-01-20 Nippon Soken Inc ピエゾアクチュエータ駆動回路
US20120152028A1 (en) * 2010-12-16 2012-06-21 Electronics And Telecommunications Research Institute Power supplier using flexible pcb based on self-powering and sensor node using the same
CN102570902A (zh) * 2012-01-18 2012-07-11 厦门大学 一种压电-静电复合式微机械振动能量收集器及制造方法
KR20120097590A (ko) * 2011-02-25 2012-09-05 주식회사 비젼스케이프 압력기반 정전용량식 입력장치
CN204012952U (zh) * 2014-07-04 2014-12-10 江苏国网自控科技股份有限公司 一种新型自供电无线测温传感器取能电路
CN104506086A (zh) * 2015-01-21 2015-04-08 吉林大学 一种微型压电和电容复合振动能量采集器
US9197143B1 (en) * 2010-03-02 2015-11-24 Lord Corporation Harvesting power from multiple energy sources
CN106972782A (zh) * 2017-04-22 2017-07-21 吉林大学 一种具有双稳态特性的压电梁与电容复合式双向集能器
CN206585483U (zh) * 2017-02-10 2017-10-24 扬州大学 一种微型压电和电容复合能量采集器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2353813A1 (de) * 1973-01-12 1974-07-18 Gen Electric Canada Ueberwachungsschaltung
JP2005016431A (ja) * 2003-06-26 2005-01-20 Nippon Soken Inc ピエゾアクチュエータ駆動回路
US9197143B1 (en) * 2010-03-02 2015-11-24 Lord Corporation Harvesting power from multiple energy sources
US20120152028A1 (en) * 2010-12-16 2012-06-21 Electronics And Telecommunications Research Institute Power supplier using flexible pcb based on self-powering and sensor node using the same
KR20120097590A (ko) * 2011-02-25 2012-09-05 주식회사 비젼스케이프 압력기반 정전용량식 입력장치
CN102570902A (zh) * 2012-01-18 2012-07-11 厦门大学 一种压电-静电复合式微机械振动能量收集器及制造方法
CN204012952U (zh) * 2014-07-04 2014-12-10 江苏国网自控科技股份有限公司 一种新型自供电无线测温传感器取能电路
CN104506086A (zh) * 2015-01-21 2015-04-08 吉林大学 一种微型压电和电容复合振动能量采集器
CN206585483U (zh) * 2017-02-10 2017-10-24 扬州大学 一种微型压电和电容复合能量采集器
CN106972782A (zh) * 2017-04-22 2017-07-21 吉林大学 一种具有双稳态特性的压电梁与电容复合式双向集能器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨杰;许卓;安坤;陈晓勇;丑修建;: "MEMS压电-磁电复合式振动能量采集器", 微纳电子技术, no. 02 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729588A (zh) * 2020-12-25 2021-04-30 山东省产品质量检验研究院 一种微型无源无线温度传感器和测温系统

Also Published As

Publication number Publication date
CN107806942B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
Hu et al. Self-powered system with wireless data transmission
CN101981456B (zh) 加速度传感器装置及传感器网络系统
CN103051244B (zh) 一种纸基柔性发电装置及其制造方法
EP2672538A1 (en) Power generating device and power generating module using same
CN108429428B (zh) 电磁摩擦复合式多方向振动能量采集器及其制造方法
CN108054951B (zh) 一种基于多层结构的俘能/储能一体化微纳电池
CN103698002B (zh) 一种振动探测器和探测方法
Liang et al. Self‐powered intelligent buoy based on triboelectric nanogenerator for water level alarming
CN109387235A (zh) 基于薄膜体声波谐振器的柔性触觉传感器阵列
CN107491774A (zh) 一种指纹传感器及其驱动方法
CN205540645U (zh) 压力感测触控模组
CN103970352A (zh) 一种纸基柔性触控传感器及其制造方法
CN104011889A (zh) 压电能量采集装置或致动器
CN103840710A (zh) 一种振动能量采集器
CN107806942A (zh) 一种压电电容复合式自供电温度场检测装置
CN207487847U (zh) 一种压电电容复合式自供电温度场检测装置
US10250163B2 (en) Inverse electrowetting energy harvesting and scavenging methods, circuits and systems
Gao et al. Piezoelectric material based technique for concurrent force sensing and energy harvesting for interactive displays
CN111865142A (zh) 一种基于多悬臂梁能量采集器的自供能传感器
KR20120023329A (ko) 미세압전진동자와 열전소자를 포함하는 하이브리드 구조의 에너지 하베스팅 시스템 및 이를 제조하는 방법
CN108209003B (zh) 一种压力检测和发电的方法、鞋底结构和鞋
CN103580530A (zh) 基于摩擦微结构的静电式摆动运动能量收集器
CN207397290U (zh) 一种指纹传感器
CN102983775B (zh) 一种球体驱动的静电式振动能量收集装置
CN206585483U (zh) 一种微型压电和电容复合能量采集器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant