CN107799640A - 一种高光效P型非极性AlN薄膜及其制备方法 - Google Patents

一种高光效P型非极性AlN薄膜及其制备方法 Download PDF

Info

Publication number
CN107799640A
CN107799640A CN201711066453.4A CN201711066453A CN107799640A CN 107799640 A CN107799640 A CN 107799640A CN 201711066453 A CN201711066453 A CN 201711066453A CN 107799640 A CN107799640 A CN 107799640A
Authority
CN
China
Prior art keywords
aln
nonpolar
layers
nano
type non
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711066453.4A
Other languages
English (en)
Other versions
CN107799640B (zh
Inventor
杨为家
何鑫
刘均炎
沈耿哲
蓝秋明
杨成燕
吴健豪
刘俊杰
刘铭全
段峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Zhiyou Intellectual Property Operation Co ltd
Jiangsu Chuandu Optoelectronic Technology Co ltd
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN201711066453.4A priority Critical patent/CN107799640B/zh
Publication of CN107799640A publication Critical patent/CN107799640A/zh
Application granted granted Critical
Publication of CN107799640B publication Critical patent/CN107799640B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供一种高光效P型非极性AlN薄膜及其制备方法,包括从下至上依次设置的M面蓝宝石衬底层、非极性ZnO薄膜层、Ag纳米粒子层、非极性P‑AlN薄膜层、重掺杂非极性P‑AlN薄膜层、Pt纳米粒子层,本发明使用Ag纳米粒子作为掩膜,促进横向过生长,提高P‑AlN薄膜的质量,Ag纳米粒子具有局域表面离子体增强效应,可以大幅度提高P‑AlN的光效,相对现有技术提高至少8‑12倍;在P型非极性AlN薄膜表面使用Pt纳米粒子对P‑AlN进行二次增强,抑制缺陷发光;Pt纳米粒子与界面处的Ag纳米粒子形成二次反射镜面,可以在较大程度上提高薄膜的光提取效率;另外通过使用Mg、F共掺杂进一步提高P‑AlN薄膜的掺杂浓度和空穴浓度,提高器件的性能,其中空穴浓度相对现有技术提高至少3个数量级。

Description

一种高光效P型非极性AlN薄膜及其制备方法
技术领域
本发明涉及一种AlN薄膜技术领域,尤其是一种高光效P型非极性AlN薄膜及其制备方法。
背景技术
AlN是Ⅲ-V族化合物,一般以六方晶系中的纤锌矿结构存在,有许多优异的性能,如高的热传导性、低的热膨胀系数、高的电绝缘性质、高的介质击穿强度、优异的机械强度、
优异的化学稳定性和低毒害性、良好的光学性能等。由于AlN有诸多优异性能,带隙宽、极化强,禁带宽度为6.2eV,使其在机械、微电子、光学,以及电子元器件、声表面波器件制造、高频宽带通信和功率半导体器件等领域有着广阔的应用前景。
目前,AlN的应用主要体现在以下几个方面:压电材料、外延缓冲层材料、发光层材料、医疗材料。一方面,由于AlN材料具有电子漂移饱和速率高、热导率高、介质击穿强度高等优异特性,其在高频、高温、高压电子器件领域有着巨大的潜力,而纤锌矿结构的AlN薄膜具有高速率声波学的压电特性,其表面声学在已知压电材料中最高,并具有较大的机电耦合系数,因此AlN是用于制备高频表面波器件的优选材料。另一方面,由于AlN具有高热导、低热膨胀以及较宽带隙的优点,而且与GaN晶格有较好的匹配,用AlN作为缓冲层可以有效提高GaN、InN外延薄膜的晶体质量,明显改善其电学与光学性能。另外,AlN可以作为蓝光紫外光的发光材料,紫外光在杀菌、医疗、检测、植物生长、报警等领域具有非常广泛的应用前景,如果进行掺杂或者制作复合膜,发光光谱将覆盖整个可见光区域,但是该材料掺杂困难,并且掺杂之后,AlN的晶体质量变差,光学性能很差。
AlN薄膜必须具有较高的结晶质量,才能满足以上多方面的应用。目前常用于制备AlN薄膜的方法有化学气相沉积法、磁控溅射法、脉冲激光沉积法以及分子束外延法等。然而,绝大多数的制备方法要求将衬底加热到较高的温度,但较高的温度可能会导致衬底材料的损伤,这是AlN薄膜制备的一大难题。并且,要达到生长高质量AlN晶体的要求,则需要复杂的设备仪器,造价昂贵,且单个薄膜的生长速度较慢,单个样品的成本过高。
发明内容
针对现有技术的不足,本发明提供一种高光效P型非极性AlN薄膜及其制备方法。
本发明的技术方案为:一种高光效P型非极性AlN薄膜,包括M面蓝宝石衬底层、非极性ZnO薄膜层、Ag纳米粒子层、非极性P-AlN薄膜层、P-AlN盖帽层、Pt纳米粒子层,所述的M面蓝宝石衬底层上生长有非极性ZnO薄膜层,所述的非极性ZnO薄膜层上端生长有Ag纳米粒子层,所述的Ag纳米粒子层上端生长有非极性P-ALN薄膜层,所述的非极性P-AlN薄膜层上端设置有P-AlN盖帽层,所述P-AlN盖帽层上端溅射有Pt纳米粒子层,其中,所述的P-AlN盖帽层采用Mg、F共掺杂得到。
优选的,所述的非极性ZnO薄膜层的厚度为30-200nm。
优选的,所述的Ag纳米粒子层是厚度为8-12nm。
优选的,所述的非极性P-AlN薄膜层的厚度为300-800nm。
优选的,所述的P-AlN盖帽层的厚度为20-50nm。
优选的,所述Pt纳米粒子层的Pt纳米粒子的直径为2-30nm。
本发明还提供一种高光效P型非极性AlN薄膜的制备方法,具体包括以下步骤:
S1)、在M面蓝宝石衬底层上使用PECVD生长30-200nm的非极性ZnO薄膜层;
S2)、然后在非极性ZnO薄膜层上外延一层厚度为8-12nm的Ag膜,然后在850℃快速退火1-2min,得到Ag纳米粒子层;
S3)、将上述转移至MOCVD中生长非极性P-AlN薄膜层,然后采用Mg、F共掺杂非极性P-AlN薄膜层,得到P-AlN盖帽层;
S4)、重掺杂生长结束后,溅射8-15nm的Pt膜,在750-950℃下,快速退火30-100s,得到直径为2-30nm的Pt纳米粒子层,从而得到高光效P型非极性AlN薄膜。
本发明的有益效果为:
1、使用Ag纳米粒子作为掩膜,促进横向过生长,诱导位错湮灭,提高P-AlN薄膜的质量,同时,Ag纳米粒子具有局域表面等离子体增强效应,可以大幅度提高P-AlN的光效,相对现有技术提高至少8-12倍;
2、在P型非极性AlN薄膜表面使用Pt纳米粒子对P-AlN进行二次增强,抑制缺陷发光;同时,Pt纳米粒子与界面处的Ag纳米粒子形成二次反射镜面,可以在较大程度上提高薄膜的光提取效率;
3、通过使用Mg、F共掺杂进一步提高P-AlN薄膜的掺杂浓度和空穴浓度,提高器件的性能,其中空穴浓度相对现有技术提高至少3个数量级;
4、通过Ag、Pt纳米粒子有利于降低P-AlN薄膜的电阻和接触电阻,提高空穴的注入效率;同时降低Mg受主激活能。
附图说明
图1为本发明高光效P型非极性AlN薄膜的结构示意图。
图中,1-M面蓝宝石衬底层,2-非极性ZnO薄膜层,3-Ag纳米粒子层,4-非极性P-AlN薄膜层,5-P-AlN盖帽层,6-Pt纳米粒子层。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
如图1所示,一种高光效P型非极性AlN薄膜,包括从下至上依次设置的M面蓝宝石衬底层1、非极性ZnO薄膜层2、Ag纳米粒子层3、非极性P-AlN薄膜层4、P-AlN盖帽层5、Pt纳米粒子层6,其中,所述的P-AlN盖帽层5采用Mg、F共掺杂得到。
优选的,所述的非极性ZnO薄膜层的厚度为30-200nm。
优选的,所述的Ag纳米粒子层是厚度为8-12nm。
优选的,所述的非极性P-AlN薄膜层的厚度为300-800nm。
优选的,所述的P-AlN盖帽层的厚度为20-50nm。
优选的,所述的Pt纳米粒子的直径为2-30nm。
本发明还提供一种高光效P型非极性AlN薄膜的制备方法,具体包括以下步骤:
S1)、在M面蓝宝石衬底层1上使用PECVD生长30-200nm的非极性ZnO薄膜层2;
S2)、然后在非极性ZnO薄膜层2上外延一层厚度为8-12nm的Ag膜,然后在850℃快速退火1-2min,得到Ag纳米粒子层3;
S3)、将上述材料转移至MOCVD中,在900℃生产条件下,生长非极性P-AlN薄膜层4,所述的非极性P-AlN薄膜层4的厚度为300-800nm,然后采用Mg、F共掺杂非极性P-AlN薄膜层4,得到P-AlN盖帽层5,所述的P-AlN盖帽层5的厚度为20-50nm;
S4)、重掺杂生长结束后,溅射8-15nm的Pt膜,在800℃快速退火30-100s,得到直径为2-30nm的Pt纳米粒子层6,从而得到高光效P型非极性AlN薄膜。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (7)

1.一种高光效P型非极性AlN薄膜,包括M面蓝宝石衬底层、非极性ZnO薄膜层、Ag纳米粒子层、非极性P-AlN薄膜层、P-AlN盖帽层、Pt纳米粒子层,所述的M面蓝宝石衬底层上生长有非极性ZnO薄膜层,所述的非极性ZnO薄膜层上端生长有Ag纳米粒子层,所述的Ag纳米粒子层上端生长有非极性P-AlN薄膜层,所述的非极性P-AlN薄膜层上端设置有P-AlN盖帽层,所述P-AlN盖帽层上端溅射有Pt纳米粒子层,其中,所述的P-AlN盖帽层采用Mg、F共掺杂得到。
2.根据权利要求1所述的一种高光效P型非极性AlN薄膜,其特征在于:所述的非极性ZnO薄膜层的厚度为30-200nm。
3.根据权利要求1所述的一种高光效P型非极性AlN薄膜,其特征在于:所述的Ag纳米粒子层的厚度为8-12nm。
4.根据权利要求1所述的一种高光效P型非极性AlN薄膜,其特征在于:所述非极性P-AlN薄膜层的厚度为300-800nm。
5.根据权利要求1所述的一种高光效P型非极性AlN薄膜,其特征在于:所述P-AlN盖帽层的厚度为20-50nm。
6.根据权利要求1所述的一种高光效P型非极性AlN薄膜,其特征在于:所述Pt纳米粒子层的Pt纳米粒子的直径为2-30nm。
7.根据权利要求1所述的一种高光效P型非极性AlN薄膜的制备方法,其特征在于,包括以下步骤:
S1)、通过使用PECVD在M面蓝宝石衬底层上生长非极性ZnO薄膜层,所述的非极性ZnO薄膜层的厚度为30-200nm;
S2)、然后在非极性ZnO薄膜层上外延一层Ag膜,然后在850℃快速退火1-2min,得到Ag纳米粒子层,所述的Ag纳米粒子层的厚度为8-12nm;
S3)、将上述材料转移至MOCVD中,并在Ag纳米粒子层上,在700-1100℃生产条件下,生长非极性P-AlN薄膜层,所述非极性P-AlN薄膜层的厚度为300-800nm,然后采用Mg、F共掺杂非极性P-AlN薄膜层,得到P-AlN盖帽层,所述P-AlN盖帽层的厚度为20-50nm;
S4)、重掺杂生长结束后,在P-AlN盖帽层上溅射8-15nm的Pt膜,在750-950℃下,快速退火30-100s,得到Pt纳米粒子层,所述的Pt纳米粒子的直径为2-30nm。
CN201711066453.4A 2017-11-02 2017-11-02 一种高光效P型非极性AlN薄膜及其制备方法 Active CN107799640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711066453.4A CN107799640B (zh) 2017-11-02 2017-11-02 一种高光效P型非极性AlN薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711066453.4A CN107799640B (zh) 2017-11-02 2017-11-02 一种高光效P型非极性AlN薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107799640A true CN107799640A (zh) 2018-03-13
CN107799640B CN107799640B (zh) 2023-12-29

Family

ID=61548796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711066453.4A Active CN107799640B (zh) 2017-11-02 2017-11-02 一种高光效P型非极性AlN薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107799640B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807609A (zh) * 2018-05-03 2018-11-13 五邑大学 金属纳米粒子修饰的图形化衬底led的制备方法
CN108807631A (zh) * 2018-05-03 2018-11-13 五邑大学 一种双镜面结构的led外延片及其制备方法
CN113471060A (zh) * 2021-05-27 2021-10-01 南昌大学 一种减少硅衬底上AlN薄膜微孔洞的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174153A (ja) * 2001-07-16 2003-06-20 Semiconductor Energy Lab Co Ltd 剥離方法および半導体装置の作製方法、および半導体装置
CN1665043A (zh) * 2004-03-05 2005-09-07 Tdk株式会社 电子元件及其制造方法
CN101322258A (zh) * 2003-01-22 2008-12-10 独立行政法人产业技术综合研究所 压电元件及其制造方法
CN207474486U (zh) * 2017-11-02 2018-06-08 五邑大学 一种高光效P型非极性AlN薄膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174153A (ja) * 2001-07-16 2003-06-20 Semiconductor Energy Lab Co Ltd 剥離方法および半導体装置の作製方法、および半導体装置
CN101322258A (zh) * 2003-01-22 2008-12-10 独立行政法人产业技术综合研究所 压电元件及其制造方法
CN1665043A (zh) * 2004-03-05 2005-09-07 Tdk株式会社 电子元件及其制造方法
CN207474486U (zh) * 2017-11-02 2018-06-08 五邑大学 一种高光效P型非极性AlN薄膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.G.ZHANG等: "optimization of elecfroluminescence from n-zno/aln/p-gan light-emitting diodes by tailoring ag localized surface plasmon" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807609A (zh) * 2018-05-03 2018-11-13 五邑大学 金属纳米粒子修饰的图形化衬底led的制备方法
CN108807631A (zh) * 2018-05-03 2018-11-13 五邑大学 一种双镜面结构的led外延片及其制备方法
CN108807609B (zh) * 2018-05-03 2020-07-14 五邑大学 金属纳米粒子修饰的图形化衬底led的制备方法
CN113471060A (zh) * 2021-05-27 2021-10-01 南昌大学 一种减少硅衬底上AlN薄膜微孔洞的制备方法

Also Published As

Publication number Publication date
CN107799640B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
KR101258802B1 (ko) 산화물 반도체 박막층을 갖는 적층 구조 및 박막 트랜지스터
JP4184789B2 (ja) M’nベース物質の生成装置及び生成方法
CN103022295B (zh) 一种生长在Si衬底上的AlN薄膜及其制备方法和应用
US20210384069A1 (en) Gallium Oxide Semiconductor Structure And Preparation Method Therefor
CA2517024A1 (en) .beta.-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
CN107799640A (zh) 一种高光效P型非极性AlN薄膜及其制备方法
Korzenski et al. PLD-grown Y2O3 thin films from Y metal: An advantageous alternative to films deposited from yttria
US9824885B2 (en) Method of fabricating double sided Si(Ge)/Sapphire/III-nitride hybrid structure
Ma et al. Effect of post-annealing treatment on the microstructure and optical properties of ZnO/PS nanocomposite films
Ding et al. Defect-related photoluminescence emission from annealed ZnO films deposited on AlN substrates
Gao et al. Influences of substrate and annealing on the structural and optical properties and photoluminescence of nanocrystalline ZnO films prepared by plasma assisted pulsed laser deposition
EP2454761A1 (en) Method of bonding using a bonding layer based on zinc, silicon and oxygen and corresponding structures
CN207474486U (zh) 一种高光效P型非极性AlN薄膜
JP5042636B2 (ja) 機能素子
Shin et al. Effect of a ZnO buffer layer on the properties of Ga-doped ZnO thin films grown on Al2O3 (0 0 0 1) substrates at a low growth temperature of 250° C
Hullavarad et al. Advances in pulsed-laser-deposited AIN thin films for high-temperature capping, device passivation, and piezoelectric-based RF MEMS/NEMS resonator applications
Vasanthipillay et al. Influence of sputter deposition time on the growth of c-axis oriented AlN/Si thin films for microelectronic application
CN101958236B (zh) 一种半导体衬底及其制备方法
CN114423883A (zh) α-Ga2O3系半导体膜
CN203179935U (zh) 一种生长在Si衬底上的AlN薄膜及含该AlN薄膜的电器元件
Tian et al. Effect of annealing atmosphere on the structural and optical properties of ZnO thin films on Si (100) substrates grown by atomic layer deposition
JP3929964B2 (ja) 薄膜積層構造体の製造方法
CN108767078A (zh) 一种GaN基发光二极管外延片及其制备方法
Peng et al. Structural and photoluminescent properties of ZnO films deposited by radio frequency reactive sputtering
Norazlina et al. Structural and optical properties of chromium doped aluminum nitride thin films prepared by stacking of Cr layer on AlN thin film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20231129

Address after: 221000 Plant 6, Precision Manufacturing Park, Suining Economic Development Zone, Xuzhou City, Jiangsu Province

Applicant after: Jiangsu Chuandu Optoelectronic Technology Co.,Ltd.

Address before: 511455 No. 106 Fengze East Road, Nansha District, Guangzhou City, Guangdong Province (self designated Building 1) X1301-A4848 (cluster registration) (JM)

Applicant before: Guangzhou Zhiyou Intellectual Property Operation Co.,Ltd.

Effective date of registration: 20231129

Address after: 511455 No. 106 Fengze East Road, Nansha District, Guangzhou City, Guangdong Province (self designated Building 1) X1301-A4848 (cluster registration) (JM)

Applicant after: Guangzhou Zhiyou Intellectual Property Operation Co.,Ltd.

Address before: 529020, No. 22, Dongcheng village, Pengjiang District, Guangdong, Jiangmen

Applicant before: WUYI University

GR01 Patent grant
GR01 Patent grant