CN107792839B - 一种硒化铅纳米棒、制备方法及在场效应晶体管中的应用 - Google Patents

一种硒化铅纳米棒、制备方法及在场效应晶体管中的应用 Download PDF

Info

Publication number
CN107792839B
CN107792839B CN201710972823.4A CN201710972823A CN107792839B CN 107792839 B CN107792839 B CN 107792839B CN 201710972823 A CN201710972823 A CN 201710972823A CN 107792839 B CN107792839 B CN 107792839B
Authority
CN
China
Prior art keywords
lead selenide
lead
nanorod
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710972823.4A
Other languages
English (en)
Other versions
CN107792839A (zh
Inventor
马万里
韩璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201710972823.4A priority Critical patent/CN107792839B/zh
Publication of CN107792839A publication Critical patent/CN107792839A/zh
Application granted granted Critical
Publication of CN107792839B publication Critical patent/CN107792839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/245Pb compounds, e.g. PbO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种硒化铅纳米棒、制备方法及在场效应晶体管中的应用。以氧化铅、反式‑2‑癸烯酸为原料制备铅前驱体,再经反应和后处理,得到一种硒化铅纳米棒,分子式为PbSe,表面配体为有机酸反式‑2‑癸烯酸,带隙为1.03电子伏特。将提供的硒化铅纳米棒应用于场效应晶体管,以无机配体四正丁基卤化铵交换硒化铅纳米棒表面的有机酸配体,其电学性能显示双极性,在真空下测得的电子迁移率是0.1 cm2/Vs;空穴迁移率为1.1×10‑4 cm2/Vs。在50~297 K变温中,电荷传输机制在200 K时由最邻近跃迁机制转变为可变区域内跃迁机制且电荷传输由高度无序状态主导,可广泛应用于太阳能电池和光电探测器等领域。

Description

一种硒化铅纳米棒、制备方法及在场效应晶体管中的应用
技术领域
本发明涉及一种硒化铅半导体纳米棒、制备方法,及其在场效应晶体管中的应用,属于光电材料技术领域。
背景技术
铅硫族半导体中的硒化铅(PbSe)具有很大的波尔半径,这使其量子限域效应特别显著,同时具有吸收系数大、电子迁移率高、能级可调等性质。硒化铅纳米晶的优异性质使其成为现阶段研究中较为热门的光伏纳米材料,而且硒化铅的一维结构相较于零维结构在光电器件中具有更有效的电荷传输、多激子效率成倍提高以及各向异性的光学吸收等优势。2014年,文献“极细硒化铅纳米棒的制备及其在光伏器件中应用”(纳米杂志)报道了一种合成极细硒化铅纳米棒的合成方法及其在正置太阳能电池中的应用,它使用油酸与反式-2-辛烯酸联合作为配体与氧化铅反应形成铅前驱体合成硒化铅纳米棒(DOI:10.1039/c4nr05707d)。2015年,Neil C. Greenham等人首次报道了基于硒化铅纳米棒反置太阳能电池并证明其外量子产率高达120%(DOI:10.1038/ncomms9259),证明硒化铅纳米棒具有十分优异的多激子倍增效应(参见文献:多激子倍增现象在外量子效率超过120%的硒化铅太阳能电池,自然通讯)。
然而,目前基于硒化铅纳米的场效应晶体管鲜有人研究,而且这类材料在电子和空穴迁移率均在10-4 cm2/Vs 左右。尤其是在变温条件下电荷传输性能的机制问题的研究还未见报道,而这一问题的解决将有助于该材料在光电器件中更广泛的应用。还由于硒化铅的晶体结构是高度对称的立方体,各向异性生长一维结构的硒化铅纳米棒难度较大,因此,所获得的硒化铅纳米棒溶解性不够理想,尺寸的均一性也存在不足。目前,基于硒化铅纳米棒高性能的场效应晶体管还未见报道。
发明内容
本发明针对现有技术存在的不足,提供一种尺寸均一、溶解性好的硒化铅纳米棒、制备方法,应用于制备高性能的双极性基于硒化铅纳米棒的场效应晶体管。
为了实现上述发明目的,本发明采用的技术方案是提供一种硒化铅纳米棒,它的分子式为PbSe,表面有机酸配体为反式-2-癸烯酸;直径为2~3 纳米,长度为10~15 纳米;带隙为1.03电子伏特。
如上所述的一种硒化铅纳米棒的制备方法,步骤如下:
(1)铅前驱体的制备:按氧化铅与有机酸的摩尔比为1:2~6,在惰性气体保护下,将氧化铅、有机酸和溶剂十八烯加入到反应容器中,在温度为100~150℃的搅拌条件下,得到澄清透明状溶液;再在温度范围为100~130 ℃的条件下抽真空,除去反应容器中的水和氧气后,得到铅前驱体;所述的有机酸为反式-2-癸烯酸;
(2)预设温度下的反应:将硒的三(二乙胺基)膦溶液加入微量二苯基膦,再溶解于溶剂十八烯中,混合均匀后,按氧化铅与硒单质的摩尔比为1:2~5,置于温度为80~100 ℃的步骤(1)制备的铅前驱体中,搅拌条件下反应10~30分钟;
(3)后处理:降至室温后,向反应容器中注入正己烷,再加入异丙醇沉淀,直至反应液变浑浊,离心处理后弃去上层液,将固体真空抽干,得到一种硒化铅纳米棒。
上述硒化铅纳米棒的制备方法中,可重复步骤(3)1~2次,进行提纯处理。
本发明技术方案中,所述的惰性气体为氮气、氦气、氖气中的任意一种。所述氧化铅与有机酸的摩尔比为1:2.5。所述氧化铅与硒单质的摩尔比为1:3。所述硒的三(二乙胺基)膦溶液中硒的摩尔浓度为1摩尔每升。所述的十八烯、正己烷、异丙醇经无水处理。
本发明技术方案还包括所提供的硒化铅纳米棒在场效应晶体管中的应用。
所述硒化铅纳米棒在场效应晶体管中应用,具体包括如下步骤:
(1)采用气相沉积法在n型掺杂硅片的表面沉积二氧化硅层,再以平面磁控法在二氧化硅上溅射金电极层,得到场效应晶体管基板;
(2)在基板上旋涂硒化铅纳米棒正己烷溶液,再以正丁基卤化铵为无机配体交换硒化铅纳米棒表面的有机酸反式-2-癸烯酸配体,得到一种硒化铅纳米棒场效应晶体管;所述的正丁基卤化铵包括四正丁基碘化铵、四正丁基溴化铵或四正丁基氯化铵。
本发明提供的一种基于硒化铅纳米棒场效应晶体管,其为层状结构,从下至上依次包括n型掺杂硅,栅极绝缘层为二氧化硅(SiO2),附着在二氧化硅上的金(Au)电极层,硒化铅纳米棒层。
上述基于硒化铅纳米棒场效应晶体管通过如下方法制备:
在高度净化的环境中,利用气相沉积技术,在n型掺杂硅表面上沉积一定厚度的二氧化硅;利用平面磁控技术,在二氧化硅上溅射金作为电极得到场效应晶体管基板;清洗干净后,在基板上旋涂硒化铅纳米棒溶液,旋涂每一层后用正丁基卤化铵作为无机配体进行交换,用无水乙腈冲洗干净,即得基于硒化铅纳米棒场效应晶体管。
上述制备基于硒化铅纳米棒场效应晶体管的方法中,所述硒化铅纳米棒溶液为硒化铅纳米棒的正己烷溶液;旋涂1层时,溶液浓度为1~3 mg/ml,优选2 mg/ml,旋涂时转速为1000~2000 rpm, 优选1000 rpm, 时长为20~40 s, 优选30 s。
上述方法中,将正丁基卤化铵溶于无水甲醇中用作无机配体交换,其浓度为5~15mM, 优选 10 mM, 配体交换 10~30 s, 优选20 s。
硒化铅纳米棒的正己烷溶液也可采用旋涂3层的方案,其浓度为15~25mg/mL,优选20mg/mL,旋涂时的转速为1000~2000rpm,优选1000rpm,时长为15~30s,优选30s;以正丁基卤化铵为无机配体交换,溶于无水甲醇中,浓度为25~35 mM, 优选30 mM, 配体交换20~40 s, 优选30 s。
与现有技术相比,采用上述技术方案的本发明具有如下优点:
1. 本发明以反式-2-癸烯酸为配体,制备一种硒化铅纳米棒,其尺寸分布均一,且在正己烷溶剂中具有良好的溶解性。
2. 本发明选用无机配体四正丁基卤化铵为配体,用于交换硒化铅纳米棒表面的有机酸配体,得到一种具有高度电子耦合的硒化铅纳米棒薄膜。
3. 采用本发明提供的硒化铅纳米棒,可获得高性能的双极性基于硒化铅纳米棒的场效应晶体管,在超纯净的气氛中其电子迁移率为0.1 cm2/Vs;空穴迁移率为1.1×10-4cm2/Vs。
4. 在变温(50~297 K)测试条件下,本发明提供的硒化铅纳米棒薄膜中电荷传输机制在200 K时由最邻近跃迁机制转变为可变区域内跃迁机制。
附图说明
图1是在100 ℃下用反式-2-癸烯酸作为单一配体合成的硒化铅纳米棒的透射电镜图;
图2是本发明实施例提供的硒化铅纳米棒的X-射线衍射谱图;
图3是本发明的基于硒化铅纳米棒场效应晶体管的结构示意图;
图4是本发明实施例提供的硒化铅纳米棒在正己烷溶液中的紫外-可见吸收光谱图和稳态荧光谱图;
图5是本发明实施例提供的硒化铅纳米棒薄膜在采用四正丁基卤化铵交换前后测得的紫外-可见吸收光谱图和稳态荧光谱图;
图6是本发明的硒化铅纳米棒场效应晶体管器件的输出特性曲线图;
图7是本发明的硒化铅纳米棒场效应晶体管器件的转移特性曲线图;
附图中,1、n型掺杂硅片;2、二氧化硅(SiO2)层;3、金(Au)电极层;4、硒化铅纳米棒层。
具体实施方式
以下将结合附图和具体实施例对本发明做出进一步的说明。
实施例1:
本实施例在温度为100 ℃的条件下合成硒化铅纳米棒,具体步骤如下:
(1)铅前驱体的制备:在氮气保护下,将89 mg(0.4 mmol)氧化铅、170 mg(1 mmol)反式-2-癸烯酸和8 g十八烯加入到50 mL三口烧瓶中,在120 ℃下搅拌1小时,直至溶液变成澄清透明状,然后在100 ℃下抽真空1小时,除去三口烧瓶中的水和氧气,得到铅前驱体,待用;
(2)预设温度下的反应:将20μL二苯基膦和1.2 mL硒的三(二乙胺基)膦溶液(摩尔浓度为1 mol/L)溶解于1.2 mL十八烯中,混合均匀后用注射器快速注入到预先调节至100℃的上述铅前驱体中,反应10分钟;
(3)后处理:采用水浴降至室温后,向三口烧瓶中注入5mL正己烷,将反应液转移至手套箱中,加入异丙醇沉淀,直至反应液变浑浊,经离心机(8000rpm)离心5分钟后弃去上层液,再用正己烷溶解,加入异丙醇后离心5分钟,弃去上层液,将离心得到的固体真空抽干,得到一种硒化铅纳米棒,产率为47 %,将其置于手套箱中保存。
本实施例中,试剂十八烯、正己烷、异丙醇均在使用前经过无水处理。
参见附图1,它是本实施例用反式-2-癸烯酸作为单一配体合成的硒化铅纳米棒的透射电镜图。由图1可知,该纳米棒的尺寸分布均一(直径为2.6nm,长度为14nm,纵横比为5.3),在正己烷中具有较好的溶解性。由图1内嵌图所示的单一纳米棒高分辨场透射电镜图中可以判断,硒化铅纳米棒没有明显的晶格缺陷,适合应用于场效应晶体管中。
参见附图2,它是本实施例制备的硒化铅纳米棒的X-射线衍射谱图,与硒化铅晶体PDF卡片编号06-0354中晶体衍射峰位置相互对应。衍射峰型尖锐,证明硒化铅纳米棒没有明显的晶格缺陷。
实施例2:
本实施例提供一种基于硒化铅纳米棒场效应晶体管器件。
参见附图3,它是本实施例提供的基于硒化铅纳米棒场效应晶体管器件的结构示意图。场效应晶体管为层状结构,从下至上依次包括n型掺杂硅片1,附着在n型掺杂硅片上的二氧化硅(SiO2)层2,与SiO2层贴合的金(Au)电极层3,以及与基板贴合的硒化铅纳米棒层4。
本实施例提供的极细硒化铅纳米棒场效应管器件通过下述制备方法制得:在高度净化的环境中,利用气相沉积技术,在n型掺杂硅片1的表面上沉积一定厚度的二氧化硅(SiO2)层2;利用平面磁控技术,在二氧化硅上溅射金(Au)电极层3作为电极,得到场效应晶体管基板;清洗干净后,在基板上旋涂实施例1制备的硒化铅纳米棒的正己烷溶液,旋涂后用正丁基卤化铵作为无机配体进行交换,用无水乙腈冲洗干净,即得基于硒化铅纳米棒场效应晶体管。
本实施例中,硒化铅纳米棒的正己烷溶液的浓度为1~3 mg/ml,优选2 mg/ml,旋涂时转速为1000~2000 rpm,优选1000 rpm,时长为20~40 s,优选30 s,旋涂1层。
本实施例中,配体交换试剂为四正丁基碘化铵(配体也可以选择四正丁基溴化铵或四正丁基氯化铵)溶于无水甲醇,浓度为5~15 mM, 优选 10 mM, 配体交换 10~30 s,优选20 s。
按本实施例制备方法,得到一种基于硒化铅纳米棒场效应晶体管器件,器件的层状结构为:Si/SiO2/Au/PbSe纳米棒。
参见附图4,它是本实施例提供的硒化铅纳米棒在正己烷溶液中的紫外-可见吸收光谱图和稳态荧光谱图。溶液中,硒化铅纳米棒的吸收峰位置在1208 nm 而其荧光发射峰的位置在1311 nm, 硒化铅纳米棒的斯托克斯位移在100 nm 左右。
参见附图5,它是本实施例提供的硒化铅纳米棒薄膜在采用四正丁基卤化铵交换前后测得的紫外-可见吸收光谱图和稳态荧光谱图。在薄膜中,对比四正丁基碘化铵交换前后吸收峰位置由1214 nm红移至1227 nm, 说明配体交换后薄膜中电子耦合能力加强。荧光峰位置由1360 nm红移至1380 nm,峰形基本没有变化。硒化铅纳米棒的薄膜斯托克斯位移是153 nm。
参见附图6,它是本实施例提供的硒化铅纳米棒场效应晶体管器件的输出特性曲线图,可以判断场效应管的电学性能为双极性并且偏n型。
参见附图7,它是本实施例提供的硒化铅纳米棒场效应晶体管器件的转移特性曲线图。图7证实了通过上述制备方法获得高性能的基于硒化铅纳米棒场效应晶体管显示出双极性,其在真空中测得的电子迁移率为0.1 cm2/Vs,空穴迁移率为1.1×10-4 cm2/Vs。在变温测试条件下,可以发现电荷传输机制在200 K时由最邻近跃迁传输机制转变为可变区域跃迁机制,这一性能的具备,为本发明提供的产品更广泛地应用于光电器件中奠定了基础。
实施例3
本实施例提供一种基于硒化铅纳米棒场效应晶体管器件,其结构参见附图3。将蒸镀的金电极层和沉积有SiO2的n型掺杂硅片,清洗干净后,旋涂由实施例1制备的PbSe纳米棒正己烷溶液,经配体交换后,再蒸镀80nm厚的Cu,即得。
在本实施例中,硒化铅纳米棒的正己烷溶液浓度为15~25mg/mL,优选20mg/mL,旋涂时的转速为1000~2000rpm,优选1000rpm,时长为15~30s,优选30s,旋涂3层。
在本实施例中,配体交换试剂为四正丁基碘化铵(配体也选择四正丁基溴化铵或四正丁基氯化铵)溶于无水甲醇,浓度为25~35 mM, 优选30 mM, 配体交换20~40 s, 优选30 s。
所制备硒化铅纳米棒场效应晶体管器件的各项性能指标与实施例2相近。

Claims (9)

1.一种硒化铅纳米棒,其特征在于:它的分子式为PbSe,表面有机酸配体为反式-2-癸烯酸;直径为2~3纳米,长度为14纳米;带隙为1.03电子伏特。
2.如权利要求1所述的一种硒化铅纳米棒的制备方法,其特征在于包括如下步骤:
(1)铅前驱体的制备:按氧化铅与有机酸的摩尔比为1:2~6,在惰性气体保护下,将氧化铅、有机酸和溶剂十八烯加入到反应容器中,在温度为100~150℃的搅拌条件下,得到澄清透明状溶液;再在温度范围为100~130℃的条件下抽真空,除去反应容器中的水和氧气后,得到铅前驱体;所述的有机酸为反式-2-癸烯酸;
(2)预设温度下的反应:将硒的三(二乙胺基)膦溶液加入微量二苯基膦,再溶解于溶剂十八烯中,混合均匀后,按氧化铅与硒单质的摩尔比为1:2~5,置于温度为80~100℃的步骤(1)制备的铅前驱体中,搅拌条件下反应10~30分钟;
(3)后处理:降至室温后,向反应容器中注入正己烷,再加入异丙醇沉淀,直至反应液变浑浊,离心处理后弃去上层液,将固体真空抽干,得到一种硒化铅纳米棒。
3.根据权利要求2所述的一种硒化铅纳米棒的制备方法,其特征在于:所述的惰性气体为氮气、氦气、氖气中的任意一种。
4.根据权利要求2所述的一种硒化铅纳米棒的制备方法,其特征在于:所述氧化铅与有机酸的摩尔比为1:2.5。
5.根据权利要求2所述的一种硒化铅纳米棒的制备方法,其特征在于:所述氧化铅与硒单质的摩尔比为1:3。
6.根据权利要求2所述的一种硒化铅纳米棒的制备方法,其特征在于:所述硒的三(二乙胺基)膦溶液中硒的摩尔浓度为1摩尔每升。
7.根据权利要求2所述的一种硒化铅纳米棒的制备方法,其特征在于:所述的十八烯、正己烷、异丙醇经无水处理。
8.根据权利要求2所述的一种硒化铅纳米棒的制备方法,其特征在于:重复步骤(3)1~2次,进行提纯处理。
9.如权利要求1所述的一种硒化铅纳米棒在场效应晶体管中的应用,其特征在于包括如下步骤:
(1)采用气相沉积法在n型掺杂硅片的表面沉积二氧化硅层,再以平面磁控法在二氧化硅上溅射金电极层,得到场效应晶体管基板;
(2)在基板上旋涂硒化铅纳米棒正己烷溶液,再以正丁基卤化铵为配体交换硒化铅纳米棒表面的有机酸反式-2-癸烯酸配体,得到一种硒化铅纳米棒场效应晶体管;所述的正丁基卤化铵包括四正丁基碘化铵、四正丁基溴化铵或四正丁基氯化铵。
CN201710972823.4A 2017-10-18 2017-10-18 一种硒化铅纳米棒、制备方法及在场效应晶体管中的应用 Active CN107792839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710972823.4A CN107792839B (zh) 2017-10-18 2017-10-18 一种硒化铅纳米棒、制备方法及在场效应晶体管中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710972823.4A CN107792839B (zh) 2017-10-18 2017-10-18 一种硒化铅纳米棒、制备方法及在场效应晶体管中的应用

Publications (2)

Publication Number Publication Date
CN107792839A CN107792839A (zh) 2018-03-13
CN107792839B true CN107792839B (zh) 2021-01-29

Family

ID=61534157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710972823.4A Active CN107792839B (zh) 2017-10-18 2017-10-18 一种硒化铅纳米棒、制备方法及在场效应晶体管中的应用

Country Status (1)

Country Link
CN (1) CN107792839B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620693B (zh) * 2022-03-04 2023-08-22 浙大城市学院 基于疏水合成体系的硒化铅纳米棒可控生长方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005016824A2 (en) * 2003-05-05 2005-02-24 The Research Foundation Of State University Of Newyork Synthesis of nanoparticles by an emulsion-gas contacting process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493351B2 (en) * 2011-12-07 2016-11-15 East China University Of Science And Technology Methods of producing cadmium selenide multi-pod nanocrystals
CN102765704A (zh) * 2012-07-31 2012-11-07 上海交通大学 锡掺杂硒化铅纳米粒子的制备方法
CN102807194B (zh) * 2012-08-01 2015-05-20 上海交通大学 硒化铅锡纳米花的制备方法
CN105742384B (zh) * 2016-03-18 2017-03-22 苏州大学 一种卤素掺杂的铅氧族化合物纳米晶及其制备方法和用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005016824A2 (en) * 2003-05-05 2005-02-24 The Research Foundation Of State University Of Newyork Synthesis of nanoparticles by an emulsion-gas contacting process

Also Published As

Publication number Publication date
CN107792839A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
Zhu et al. Low‐dimensional metal halide perovskites and related optoelectronic applications
Zhou et al. Low dimensional metal halide perovskites and hybrids
Liu et al. Metal Halide Perovskites: Synthesis, Ion Migration, and Application in Field‐Effect Transistors
Cao et al. Progress of lead‐free halide perovskites: from material synthesis to photodetector application
Wang et al. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications
Zhang et al. Synthesis, properties, and optical applications of low-dimensional perovskites
Jagielski et al. Layer-controlled two-dimensional perovskites: synthesis and optoelectronics
Chen et al. Structure and growth control of organic–inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals
Huang et al. Enhancing the stability of CH3NH3PbBr3 nanoparticles using double hydrophobic shells of SiO2 and poly (vinylidene fluoride)
Dutta et al. High efficiency hybrid solar cells using nanocrystalline Si quantum dots and Si nanowires
Li et al. High‐yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTe1–x nanocrystals
Fukata et al. Functionalization of Silicon Nanostructures for Energy‐Related Applications
Zhang et al. Controlled synthesis and photonics applications of metal halide perovskite nanowires
Kar et al. State of the art and prospects of metal halide perovskite core@ shell nanocrystals and nanocomposites
Varma Low-dimensional perovskites
Han et al. Facile synthesis of ultra-small PbSe nanorods for photovoltaic application
KR102243623B1 (ko) 페로브스카이트 나노입자 제조방법 및 이에 의해 제조된 페로브스카이트 나노입자를 포함하는 광전자소자
Abdelhameed et al. Efficiency enhancement of Si nanostructure hybrid solar cells by optimizing non-radiative energy transfer from Si quantum dots
Liu et al. Impact of molecular ligands in the synthesis and transformation between metal halide perovskite quantum dots and magic sized clusters
CN103060889A (zh) 一种溶液相合成硒化锡单晶纳米线的方法
Shen et al. Stability strategies of perovskite quantum dots and their extended applications in extreme environment: A review
Zhao et al. Zinc oxide coated carbon dot nanoparticles as electron transport layer for inverted polymer solar cells
Thyda et al. Solution processed highly transparent nitrogen-doped carbon quantum dots/ZnO hybrid thin films: A study on structural and enhanced UV emission
CN109134265B (zh) 一种有机-无机杂化钙钛矿纳米线的制备方法
CN107792839B (zh) 一种硒化铅纳米棒、制备方法及在场效应晶体管中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant