CN107790736B - 一种自催化功能纳米量子线的制备方法 - Google Patents

一种自催化功能纳米量子线的制备方法 Download PDF

Info

Publication number
CN107790736B
CN107790736B CN201711014016.8A CN201711014016A CN107790736B CN 107790736 B CN107790736 B CN 107790736B CN 201711014016 A CN201711014016 A CN 201711014016A CN 107790736 B CN107790736 B CN 107790736B
Authority
CN
China
Prior art keywords
quantum wire
growth chamber
growth
inassb
voltage division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711014016.8A
Other languages
English (en)
Other versions
CN107790736A (zh
Inventor
刘翠
赵金星
兰倩
曹元成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jianghan University
Original Assignee
Jianghan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jianghan University filed Critical Jianghan University
Priority to CN201711014016.8A priority Critical patent/CN107790736B/zh
Publication of CN107790736A publication Critical patent/CN107790736A/zh
Application granted granted Critical
Publication of CN107790736B publication Critical patent/CN107790736B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种自催化功能纳米量子线的制备方法,其特征在于,步骤为:a.MBE设备中,在生长室Si衬底上加入In‑Sb合金液滴活化产生成核位点;b.打开蒸发源In、As和Sb通向生长室的阀门进行纳米线生长,生长完毕同时关闭所有蒸发源,得到InAsSb纳米量子线。创造性采用液滴辅助生长技术进行活化产生成核位点,不需要额外的加入贵重催化剂如Au,从而避免了杂质污染,使得制备的半导体纯度高;制备得到高质量InAsSb纳米量子线,其Sb生长高达16%,所得量子线具有较高的中波红外光转换效率和稳定性。

Description

一种自催化功能纳米量子线的制备方法
技术领域
本发明涉及纳米材料技术领域,具体地指一种自催化功能纳米量子线的制备方法。
背景技术
由于合金的独特的内在特性和一维纳米结构的优势,InAsSb一维(1D)纳米线(NW)在过去几年吸引了相当大的关注。一方面,InAsSb的合金具有可调谐窄带隙能量,高导热性,小的电子有效质量,长载流子寿命(~850纳秒,并在250k,3.0微秒,高电子迁移率(在300K下大于>3×104cm/Vs),以及电子和空穴之间不同的迁移率差异等优点。另一方面,独特的一维结构在器件应用中提供了许多好处,例如增强的光吸收,长载流子扩散长度和提高载流子收集效率等。此外,纳米线具有完整且轻便应变弛豫,使低成本的外国基材直接向外延有了增长,随后允许III-V半导体与良好开发的硅技术的集成。此外,NW生长在组合具有不同晶格参数和掺杂分布的材料中具有很大的自由度,能实现在薄膜几何形状中不可能实现的配置。这些特性使InAsSb纳米线成为各种设备应用的理想和多重选择,例如,用于绿色能源发电的高速电子,热光伏和热电装置,具有成本效益的生物传感器和在红外和太赫兹光谱范围内的高速光电子等。然而,InAsSb NWs尚未得到很好的研究,因为难以获得掺杂含量较高的Sb的高质量NWs,而且,由于Sb的掺入困难及其表面活性剂效应,其无催化剂的合成仍然是大挑战。
现有技术中,已经通过包括分子束外延(MBE),金属有机化学气相沉积(MOCVD)和化学束外延(CBE)的不同外延技术生长InAsSb NWs。
例如,Zhuang等人已经获得了具有高达10%的Sb含量的MBE生长的InAsSb NWs,15%的Sourribes等,以及Potts等人的25%的InAs1-xSbx纳米线和InAs(Sb)/GaSb核壳异质结构的生长和表征,但需要加入贵重催化剂如Au作为催化剂。在MOCVD生长技术中,已报道了Sb含量高达43%的无催化剂InAsSb NWs,而在图案化InAs衬底上的选择性区域外延最近已经证明了Sb含量为15%的InAsSb NWs,并且在Au催化剂的辅助下,通过MOCVD获得了Sb含量高达77%的InAsSb NW。此外,通过Au催化的CBE得到了具有整个Sb范围的InAsSb NW,尽管Au催化剂已经证实了合成富含Sb的InAsSb NW的能力,但是据信催化剂诱导的杂质污染导致了所得NW的降解。此外,通常用于合成的Au不是用互补的晶体金属氧化物半导体(CMOS)处理。因此,开发用于硅上Sb掺杂含量高且制备过程中无需催化剂的NW是器件集成的关键。
发明内容
本发明的目的就是要解决上述背景技术的不足,提供一种无需催化剂、制得Sb掺杂含量高的InAsSb纳米量子线的制备方法。
本发明的技术方案为:一种自催化功能纳米量子线的制备方法,其特征在于,步骤为:
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴活化产生成核位点;
b.打开蒸发源In、As和Sb通向生长室的阀门进行纳米线生长,生长完毕同时关闭所有蒸发源,得到InAsSb纳米量子线。
优选的,步骤为:
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴200℃-380℃活化25min-120min产生成核位点,活化完成后生长室150℃-380℃下保持10-25min;
b.生长室继续保持150℃-380℃,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长20-120min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线。
进一步的,所述步骤a中In-Sb合金液滴中Sb的质量百分数为1-5%,In-Sb合金液滴加入量为每1cm2Si衬底对应2-15mg In-Sb合金液滴。
进一步的,所述步骤a中In-Sb合金液滴由液态In在-5℃-10℃下溶解Sb得到。
更进一步的,所述In-Sb合金液滴由液态In在0℃下溶解Sb得到。
优选的,步骤b中控制Sb束流等效分压比为2.5%-27.5%、In束流等效分压比为1-19%、As束流等效分压比为70-94%,其中Sb、In、As束流等效分压比之和为100%。
进一步的,步骤b中控制Sb束流等效分压比为10%-20%、In束流等效分压比为3-15%、As束流等效分压比为75-85%,其中Sb、In、As束流等效分压比之和为100%。
更进一步的,步骤b中控制Sb束流等效分压比为16%、控制In束流等效分压比为3%,控制Sb束流等效分压比为81%。
更进一步的,步骤b中生长室的总压力为0.05-0.5MPa,生长时间30min。
更进一步的,步骤为:
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴200℃-380℃活化25min-120min产生成核位点,活化完成后生长室150℃-380℃下保持10-25min;所述In-Sb合金液滴中Sb的质量百分数为1-5%,In-Sb合金液滴加入量为每1cm2Si衬底对应2-15mg In-Sb合金液滴;
b.生长室继续保持150℃-380℃,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长20-120min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;控制Sb束流等效分压比为2.5%-27.5%、In束流等效分压比为1-19%、As束流等效分压比为70-94%,其中Sb、In、As束流等效分压比之和为100%,生长室的总压力为0.05-0.5MPa。
本发明的有益效果为:
1.创造性采用液滴辅助生长技术进行活化产生成核位点,不需要额外的加入贵重催化剂如Au,从而避免了杂质污染,使得制备的半导体纯度高。
2.制备得到高质量InAsSb纳米量子线,其Sb生长高达18%,所得量子线具有较高的中波红外光转换效率和稳定性,在整个长度上显示出非锥形和高度均匀的直径,在光电子器件、红外探测、太阳能电池等领域有很广阔的用途。
附图说明
图1为本发明制得含Sb1%InAsSb纳米量子线SEM图
图2为本发明制得含Sb16%InAsSb纳米量子线几何形状的倾斜SEM图
图3为沿着NW的不同位置的单个NW的InAsSb的EDX点分析
图4为Sb含量为3%(b),4%(c),16%(d)InAsSb NWs的高分辨率TEM图像。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明。
实施例1
自催化功能纳米量子线的制备方法步骤如下:
采用液态In在0℃下溶解Sb得到Sb质量百分数为1%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴200℃活化40min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应4mg),活化完成后生长室150℃下保持10min;
b.生长室保持150℃,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长20min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为2.5%、5%、92.5%,生长室的总压力为0.05MPa。
经元素分析所得InAsSb纳米量子线中Sb质量分数为1%。
实施例2
采用液态In在-5℃下溶解Sb得到Sb质量百分数为2%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴250℃活化60min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应5mg),活化完成后生长室180℃下保持15min;
b.生长室270℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长60min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为5%、1%、94%,生长室的总压力为0.1MPa。
经元素分析经检测所得InAsSb纳米量子线中Sb质量分数为3%。
实施例3
自催化功能纳米量子线的制备方法步骤如下:
采用液态In在10℃下溶解Sb得到Sb质量百分数为3%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴300℃活化90min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应7mg),活化完成后生长室200℃下保持20min;
b.生长室360℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长80min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为10%、15%、75%,生长室的总压力为0.15MPa。
经元素分析测得所得InAsSb纳米量子线中Sb质量分数为4%。
实施例4
自催化功能纳米量子线的制备方法步骤如下:
采用液态In在10℃下溶解Sb得到Sb质量百分数为4%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴320℃活化100min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应9mg),活化完成后生长室220℃下保持25min;
b.生长室300℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长120min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为11%、4%、85%,生长室的总压力为0.2MPa。
经元素分析测得所得InAsSb纳米量子线中Sb质量分数为10%。
实施例5
自催化功能纳米量子线的制备方法步骤如下:
采用液态In在0℃下溶解Sb得到Sb质量百分数为5%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴380℃活化120min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应12mg),活化完成后生长室280℃下保持10min;
b.生长室180℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长30min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为20%、3%、77%,生长室的总压力为0.3MPa。
经元素分析测得所得InAsSb纳米量子线中Sb质量分数为12%。
实施例6
自催化功能纳米量子线的制备方法步骤如下:
采用液态In在2℃下溶解Sb得到Sb质量百分数为1.5%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴220℃活化25min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应15mg),活化完成后生长室350℃下保持15min;
b.生长室200℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长50min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为15%、7%、78%,生长室的总压力为0.4MPa。
经元素分析测得所得InAsSb纳米量子线中Sb质量分数为14%。
实施例7
自催化功能纳米量子线的制备方法步骤如下:
采用液态In在8℃下溶解Sb得到Sb质量百分数为2.5%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴280℃活化50min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应2mg),活化完成后生长室300℃下保持20min;
b.生长室220℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长70min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为27.5%、2.5%、70%,生长室的总压力为0.5MPa。
经元素分析测得所得InAsSb纳米量子线中Sb质量分数为8%。
实施例8
自催化功能纳米量子线的制备方法步骤如下:
采用液态In在-3℃下溶解Sb得到Sb质量百分数为3.5%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴350℃活化75min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应10mg),活化完成后生长室270℃下保持25min;
b.生长室280℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长90min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为25%、4%、71%,生长室的总压力为0.45MPa。
经元素分析测得所得InAsSb纳米量子线中Sb质量分数为5%。
实施例9
自催化功能纳米量子线的制备方法步骤如下:
采用液态In在5℃下溶解Sb得到Sb质量百分数为4.5%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴300℃活化110min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应8mg),活化完成后生长室380℃下保持15min;
b.生长室150℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长100min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为9%、19%、72%,生长室的总压力为0.25MPa。
经元素分析测得所得InAsSb纳米量子线中Sb质量分数为15%。
实施例10
自催化功能纳米量子线的制备方法步骤如下:
采用液态In在10℃下溶解Sb得到Sb质量百分数为5%合金液滴备用;
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴250℃活化25min产生成核位点(In-Sb合金液滴加入量为每1cm2Si衬底对应2mg),活化完成后生长室300℃下保持18min;
b.生长室380℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长100min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线;生长时控制Sb、In、As束流等效分压比分别为16%、3%、81%,生长室的总压力为0.05MPa。
经元素分析所得InAsSb纳米量子线中Sb质量分数为18%。
上述实施例中所得的InAsSb NWs进行性能测试。
通过FEI XL30SFEG扫描电子显微镜(SEM)研究生长NWs的表面形态。在Philips PW1720上进行X射线衍射(XRD)测量。在JEOL-JEM 2100和ARM中获得高分辨率透射电子显微镜(HRTEM)和环形暗场(ADF)扫描透射电子显微镜(STEM)-200F显微镜,均在200kV下工作。使用用于HRTEM测量的JIB4500制备聚焦离子束(FIB)样品。用Oxford Instrument X-MAX 80进行能量色散X射线光谱(EDX)测量,以确定元素组成和波动。对于PL测量,使用发射980nm的二极管激光器作为激发。通过单色仪收集和分散信号,并通过锁定放大器由冷却的InSb光电检测器检测。激发的功率密度为大约20W/cm2(激光功率为200mW,激光运动为大约1mm2)。此外,傅立叶变换红外光谱(FTIR)也用于详细的PL测量,例如温度依赖性和激发依赖性扫描。
图1-4说明了我们制得产品的晶体纯度高和结构无缺陷。图1是Sb含量为1%时的纳米线的形貌图,直径和晶体均一性非常高;图2是16%Sb含量InAsSb纳米量子线,掺入的纳米量子线几何形状的倾斜SEM图像,结构和晶体均一性都很好;图3为Sb含量18%时沿着NW的不同位置的单个NW的InAsSb的EDX点分析(spectrum中只有As、Sb数据,是因为In是主体金属成份,含量较高,无需测试),结果表明其晶体纯度很高,说明Sb自催化功能发挥非常好;图4为Sb含量为3%(b),4%(c),16%(d)的InAs NWs高分辨率TEM图像,其原子排列规整,能级带隙分明,表明纳米线先尺寸均一很好。

Claims (8)

1.一种自催化功能纳米量子线的制备方法,其特征在于,步骤为:
a.MBE设备中,在生长室Si衬底上加入In-Sb合金液滴200℃-380℃活化25min-120min产生成核位点,In-Sb合金液滴中Sb的质量百分数为1-5%,In-Sb合金液滴加入量为每1cm2Si衬底对应2-15mg In-Sb合金液滴,活化完成后生长室150℃-380℃下保温10-25min;
b.生长室150℃-380℃下保温,打开蒸发源In、As和Sb通向生长室的阀门并控制各束流等效分压比进行纳米线生长,生长20-120min后同时关闭所有蒸发源百叶窗,得到InAsSb纳米量子线。
2.如权利要求1所述的自催化功能纳米量子线的制备方法,其特征在于,所述步骤a中In-Sb合金液滴由液态In在-5℃-10℃下溶解Sb得到。
3.如权利要求2所述的自催化功能纳米量子线的制备方法,其特征在于,所述In-Sb合金液滴由液态In在0℃下溶解Sb得到。
4.如权利要求1所述的自催化功能纳米量子线的制备方法,其特征在于,步骤b中控制Sb束流等效分压比为2.5%-27.5%、In束流等效分压比为1-19%、As束流等效分压比为70-94%,其中Sb、In、As束流等效分压比之和为100%。
5.如权利要求4所述的自催化功能纳米量子线的制备方法,其特征在于,步骤b中控制Sb束流等效分压比为10%-20%、In束流等效分压比为3-15%、As束流等效分压比为75-85%,其中Sb、In、As束流等效分压比之和为100%。
6.如权利要求4或5所述的自催化功能纳米量子线的制备方法,其特征在于,步骤b中控制Sb束流等效分压比为16%、控制In束流等效分压比为3%,控制Sb束流等效分压比为81%。
7.如权利要求1所述的自催化功能纳米量子线的制备方法,其特征在于,步骤b中生长室的总压力为0.05-0.5MPa,生长时间30min。
8.如权利要求4所述的自催化功能纳米量子线的制备方法,其特征在于,步骤b中生长室的总压力为0.05-0.5MPa。
CN201711014016.8A 2017-10-25 2017-10-25 一种自催化功能纳米量子线的制备方法 Expired - Fee Related CN107790736B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711014016.8A CN107790736B (zh) 2017-10-25 2017-10-25 一种自催化功能纳米量子线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711014016.8A CN107790736B (zh) 2017-10-25 2017-10-25 一种自催化功能纳米量子线的制备方法

Publications (2)

Publication Number Publication Date
CN107790736A CN107790736A (zh) 2018-03-13
CN107790736B true CN107790736B (zh) 2020-02-14

Family

ID=61547845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711014016.8A Expired - Fee Related CN107790736B (zh) 2017-10-25 2017-10-25 一种自催化功能纳米量子线的制备方法

Country Status (1)

Country Link
CN (1) CN107790736B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105019027B (zh) * 2014-04-23 2019-04-30 长春理工大学 用分子束外延(MBE)在GaSb衬底上无催化制备GaSb纳米线的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892986A (zh) * 2005-07-07 2007-01-10 中国科学院半导体研究所 以原位垂直超晶格为模板定位生长量子线或点的方法
CN102431964A (zh) * 2011-12-15 2012-05-02 北京石油化工学院 可控生成量子点或量子线的方法
CN103201827A (zh) * 2010-11-11 2013-07-10 图尔库大学 处理衬底的方法和衬底
CN107130292A (zh) * 2017-05-11 2017-09-05 江汉大学 高红外光效硅基InAsSb纳米线制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100301116B1 (ko) * 1998-12-02 2001-10-20 오길록 양자점 구조를 갖는 화합물반도체 기판의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892986A (zh) * 2005-07-07 2007-01-10 中国科学院半导体研究所 以原位垂直超晶格为模板定位生长量子线或点的方法
CN103201827A (zh) * 2010-11-11 2013-07-10 图尔库大学 处理衬底的方法和衬底
CN102431964A (zh) * 2011-12-15 2012-05-02 北京石油化工学院 可控生成量子点或量子线的方法
CN107130292A (zh) * 2017-05-11 2017-09-05 江汉大学 高红外光效硅基InAsSb纳米线制备方法

Also Published As

Publication number Publication date
CN107790736A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
Prete et al. Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties
Shafa et al. Indium antimonide nanowires: synthesis and properties
Ihn et al. Growth of GaAs nanowires on Si substrates using a molecular beam epitaxy
Sun et al. Stoichiometric effect on electrical and near-infrared photodetection properties of full-composition-range GaAs 1− x Sb x nanowires
Singh et al. Analysis of current transport mechanisms in sol-gel grown Si/ZnO heterojunction diodes in high temperature environment
Zou et al. Facile chemical solution deposition of high-mobility epitaxial germanium films on silicon
CN107790736B (zh) 一种自催化功能纳米量子线的制备方法
Zhang et al. High responsivity GaN nanowire UVA photodetector synthesized by hydride vapor phase epitaxy
Dwivedi et al. Oblique angle deposited InN quantum dots array for infrared detection
Gambaryan et al. Strain-induced InAsSbP islands and quantum dots grown by liquid phase epitaxy on a InAs (1 0 0) substrate
Himwas et al. Correlated optical and structural analyses of individual GaAsP/GaP core–shell nanowires
Wang et al. Electrical and optical properties of au-catalyzed GaAs nanowires grown on Si (111) substrate by molecular beam epitaxy
Amiri et al. Growth of InGaP alloy nanowires with widely tunable bandgaps on silicon substrates
Ye et al. Single crystal InSb nanowires: synthesis, characterization, properties and applications
Hertenberger Growth and properties of In (Ga) As nanowires on silicon
Zhang Molecular beam epitaxial growth and characterization of InAs nanowires
Gambaryan et al. Micro-and nano-scale engineering and structures shape architecture at nucleation from In-As-Sb-P composition liquid phase on an InAs (100) surface
Gaw et al. Infrared photoconductivity of indium (1‐x) thallium (x) telluride
Jin Arsenide Nanowire Based Quantum Materials for Advanced Photonics
Debnath Growth of undoped and doped IIInitride nanowires and their characterization
Gambaryan Nano-Scale Architecture of Quantum-Size Structures at the Growth from Quaternary In–As–Sb–P Liquid Phase on InAs (100) Substrate
Pokharel A Study on GaAs/GaAsSbN Schottky and GaAs/GaAsSb Core-Shell Avalanche Nanowire Near-Infrared Photodetectors via Molecular Beam Epitaxy
Boras Structural and Optical Characterization of III-V Nanostructures Monolithically Grown on Si Substrates
Anyebe Growth of Narrow Band Gap Semiconductor Nanowires on Silicon and Graphitic Substrates by Droplet Epitaxy
Li et al. Growth of pure zinc blende p-type GaAs nanowires by metal-organic chemical vapor deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200214