CN107790134A - 一种硼氢化钠水解制氢用催化剂及其制备方法和应用 - Google Patents

一种硼氢化钠水解制氢用催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN107790134A
CN107790134A CN201711190565.0A CN201711190565A CN107790134A CN 107790134 A CN107790134 A CN 107790134A CN 201711190565 A CN201711190565 A CN 201711190565A CN 107790134 A CN107790134 A CN 107790134A
Authority
CN
China
Prior art keywords
catalyst
composites
gcnfs
nanocrystalline
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711190565.0A
Other languages
English (en)
Inventor
武现丽
李保军
张小玉
韩国胜
刘艳艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201711190565.0A priority Critical patent/CN107790134A/zh
Publication of CN107790134A publication Critical patent/CN107790134A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/121Halogen, halogenic acids or their salts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明属于硼氢化钠水解制氢技术领域,公开一种硼氢化钠水解制氢用催化剂及其制备方法和应用。所述催化剂为M3O4‑GO复合材料,MOx‑PG复合材料、PG、M3O4‑rGO复合材料、MOx‑GCNFs复合材料或GCNFs;其中,M为Co或Mn。将GO、M3O4纳米晶分别分散于无水乙醇中;搅拌下,将M3O4纳米晶的乙醇分散液加入到GO的乙醇分散液中,加入完毕后继续搅拌,再选择加入或不加入水合肼,静置,倒掉上清液,干燥,制得M3O4‑GO复合材料或M3O4‑rGO复合材料,进一步在500‑800℃焙烧2‑5 h,制得MOx‑PG复合材料或MOx‑GCNFs复合材料,再进一步酸洗,制得PG或GCNFs。本发明采用简单的方法制备了一系列催化剂,所制备的催化剂用于硼氢化钠水解制氢具有很高的活性和稳定性。

Description

一种硼氢化钠水解制氢用催化剂及其制备方法和应用
技术领域
本发明属于硼氢化钠水解制氢技术领域,具体涉及一种硼氢化钠水解制氢用催化剂及其制备方法和应用。
背景技术
氢能是交通应用环境最为合适的燃料,它既可以直接使用在各种燃料电池内燃机中,也可作为电化学氧化燃料。在最近的几十年中,已经有大量的储氢材料被发现和研究,如金属氢化物、金属有机骨架(MOFs)、车载烃类和有机材料。这些材料都没有可以满足所有必要的运输要求,如体积和重量、操作压力和温度、副产品的循环、成本回收等。最终,在众多储氢技术中,一种用来生产、传输和存储氢气的简单的方法得到了普遍关注,即采用固体化学氢化物储氢。化学储氢材料由于氢含量高,有望为固态储氢提供新的突破。这里的氢气生成系统是基于水溶液作为氢气的载体和存储介质,当需要使用氢气时,利用催化反应从溶液中生成高纯度的氢气气体。用液体来传递氢气以供车辆使用,类似于当前的油汽站,可以实现安全实用的氢气动力型车辆。
在这些固体储氢材料中,NaBH4由于高的储氢量10.8 wt%,相比其他氢化物操作安全、产氢速率可控、携带方便、成本低、副产物可循环利用等优点,使其成为非常有吸引力的氢气发生器,特别是在便携式应用中。影响NaBH4溶液水解反应制氢的主要因素包括催化剂、反应温度、NaBH4浓度、稳定剂浓度、反应溶液的体积。基于贵金属的催化剂,尤其是钌(Ru)和铂(Pt),已被证明是有效的NaBH4水解催化剂。然而,鉴于贵金属的含量少和价格高,价格低廉的过渡金属基催化剂将是一个理想替代选择。对于上述催化剂或多或少存在着活性低、寿命短、需提前活化、氢气释放速率不稳定、分离再循环不便等缺点。目前,基于钴(Co)和镍(Ni)的催化剂材料已经进行了大量研究,试图找到实际可行的价格廉价催化剂。
钴硼合金(Co-B)是目前大量研究的催化NaBH4水解反应的催化剂。目前得到的Co-B催化剂产氢活性较高,这是在不使用NaBH4稳定剂且在相对较高温度(313K)下测试的,与其他体系没有可比性。Liu等通过形成Co(OH)2中间体得到一种Co-B催化剂。各种各样基于Co-B合金催化剂被报道,如Co-Mo-Pd-B、Co-Pd-B、Co-Fe-B、Co-W-B、Co-Mo-B、Co-La-Zr-B、Co-Ru-B[68]、Co-Cr-B和Co-Cu-B。其中,活性最好的是一种Co-Mn-B粉末。
非贵金属氧化物由于其可以进行有效的氧化还原电荷转移而得到广泛研究。钴氧化物由于无毒、稳定性高、成本低而得到大家的普遍认可,同时还可以作为燃料电池中氧化还原反应和电化学产氧反应(OER)的催化剂。钴氧化物可作为NaBH4水解反应的前驱体,它可以原位还原为活性CoxB起催化作用。电沉积、水热、热分解、热氧化及喷雾热分解法已经用来合成纳米结构的钴氧化物。理想的钴氧化物催化剂应具备良好的结晶性和较大的比表面积。而石墨烯作为支撑材料的应用优势已经得到证实。因此,把良好结晶性的钴氧化物通过各种方法复合在具有超高比表面积的石墨烯表面有望达到理想的催化效果。
发明内容
本发明的目的在于提供一种硼氢化钠水解制氢用催化剂及其制备方法和应用。
为实现上述目的,本发明采取的技术方案如下:
一种硼氢化钠水解制氢用催化剂,所述催化剂为M3O4-GO复合材料,MOx-PG复合材料、PG、M3O4-rGO复合材料、MOx-GCNFs复合材料或GCNFs;其中,M为Co或Mn。
催化剂M3O4-GO复合材料的制备方法,步骤如下:
(1)、将GO、M3O4纳米晶分别分散于无水乙醇中;
(2)、搅拌下,将M3O4纳米晶的乙醇分散液加入到GO的乙醇分散液中,加入完毕后继续搅拌12-16 h,静置,倒掉上清液,50-80 ℃干燥,制得催化剂M3O4-GO复合材料。
较好地,GO∶M3O4纳米晶的质量比为1∶1-1∶3,GO的乙醇分散液的浓度为1-3 mg/mL,M3O4纳米晶的乙醇分散液的浓度为1-3 mg/mL。
进一步地,将催化剂M3O4-GO复合材料在惰性气氛下升温至500-800 ℃焙烧2-5 h,制得催化剂MOx-PG复合材料。
进一步地,将催化剂MOx-PG复合材料用酸浸泡洗去MOx后,制得催化剂PG。
催化剂M3O4-rGO复合材料的制备方法,步骤如下:
(1)、将GO、M3O4纳米晶分别分散于无水乙醇中;
(2)、搅拌下,将M3O4纳米晶的乙醇分散液加入到GO的乙醇分散液中,加入完毕后继续搅拌10-15 h,向其中加入水合肼,继续搅拌2-4 h,静置,倒掉上清液,50-80 ℃干燥,制得催化剂M3O4-rGO复合材料。
较好地,GO∶M3O4纳米晶的质量比为1∶1-1∶3,GO的乙醇分散液的浓度为1-3 mg/mL,M3O4纳米晶的乙醇分散液的浓度为1-3 mg/mL;GO∶水合肼的质量比为1∶2-1∶4。
进一步地,将催化剂M3O4-rGO复合材料在惰性气氛下升温至500-800℃焙烧2-4 h,制得催化剂MOx-GCNFs复合材料。
进一步地,将催化剂MOx-GCNFs复合材料用酸浸泡洗去MOx后,制得催化剂GCNFs。
所述催化剂在硼氢化钠水解制氢中的应用。
本发明中,涉及的各英文缩写代表的含义为:
GO代表氧化石墨烯,PG代表多孔石墨烯,rGO代表还原氧化石墨烯,GCNFs代表石墨烯支撑的碳纳米纤维,CNFs代表碳纳米纤维。
本发明中,对M3O4纳米晶的形貌不作任何要求,任何形貌的M3O4纳米晶均可。
与现有的技术相比,本发明采用简单的方法制备了一系列催化剂,所制备的催化剂用于硼氢化钠水解制氢具有很高的活性和稳定性。
附图说明
图1:Co3O4-GO(a)和CoOx-PG(b- h)的透射电子显微镜图,其中(f-h)为CoOx-PG的高分辨透射电镜图;
图2:GO(a)和PG(b-d)的透射电子显微镜图;
图3:Co3O4-rGO(a-b)、CoOx-GCNFs(c-d)和GCNFs(e-h)的透射电镜图;
图4:不同催化剂催化硼氢化钠水解制氢的曲线图(a)和产氢速率图(b);
图5:CoOx-PG(a)、CoOx-GCNFs(c)不同温度下催化硼氢化钠水解制氢的曲线图和CoOx-PG(b)、CoOx-GCNFs(d)的阿累尼乌斯曲线图;
图6:CoOx-PG(a)和CoOx-GCNFs(b)的循环回收利用的催化硼氢化钠水解制氢曲线图。
具体实施方式
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
实施例1
催化剂Co3O4-GO复合材料,CoOx-PG复合材料、PG的制备方法,步骤如下:
(1)、将50 mg GO分散于50 mL无水乙醇中,将50mg Co3O4分散于50 mL无水乙醇中,分散过程中搅拌和超声交替进行,持续2 h,以保证均匀分散;
(2)、搅拌下将Co3O4的乙醇分散液滴加入上述GO的乙醇分散液中,搅拌12 h,静置,倒掉上清液,在50 ℃烘箱中干燥,得到Co3O4-GO复合材料;将所得Co3O4-GO复合材料在管式炉中氮气氛围下以3 ℃/min的速率升温至600 ℃ 焙烧2 h,气氛流量控制在200 mL·min−1,得到CoOx-PG复合材料;煅烧后CoOx-PG复合材料在6 M的盐酸中酸洗三天去除CoOx,得到PG。
实施例2
催化剂Co3O4-rGO复合材料、CoOx-GCNFs复合材料或GCNFs的制备方法,步骤如下:
(1)、将50 mg GO分散于50 mL无水乙醇中,将50mg Co3O4分散于50 mL无水乙醇中,分散过程中搅拌和超声交替进行,持续2 h,以保证均匀分散;
(2)、搅拌下将Co3O4的乙醇分散液滴加入上述GO的乙醇分散液中,搅拌10 h,向其中加入0.1 g水合肼,继续搅拌2 h,静置,倒掉上清液,在50 ℃烘箱中干燥,得到Co3O4-rGO复合材料;将所得Co3O4-rGO复合材料在管式炉中氮气氛围下以3 ℃/min的速率升温至600 ℃焙烧2 h,气氛流量控制在200 mL·min−1,得到CoOx-GCNFs复合材料;煅烧后CoOx-GCNFs复合材料在6 M的盐酸中酸洗三天去除CoOx,得到GCNFs。
催化剂结构表征
图1为实施例1制备的催化剂Co3O4-GO(a)和CoOx-PG(b- h)的透射电镜图,其中,(f-h)为CoOx-PG的高分辨透射电镜图。从图1(a)中能清楚看到:Co3O4纳米晶均匀分布在氧化石墨烯上;从图1( b) 中可以看到:由于CoOx纳米晶在煅烧过程中的堆叠和运动,氧化石墨烯片上产生了大量的孔和缺陷,成为PG;从图1(c)和图1( d)可以看出:CoOx纳米晶分布相对较均匀;从图1(e)中可以看出:CoOx纳米晶移动的痕迹;从图1(e)、1(f)可以清楚地看到:CoOx纳米晶牢牢嵌插在孔之间;图1(h)说明:Co3O4纳米晶在碳热反应中被部分还原为CoOx
图2为GO(a)和实施例1制备的催化剂PG(b-d)的透射电镜图。与纯净的氧化石墨烯片GO相比,从图2(b-d)我们可以看到:大量规则的孔在氧化石墨烯片上产生,形成PG。
图3为实施例2制备的催化剂Co3O4-rGO(a-b)、CoOx-GCNFs(c-d)和GCNFs(e-h)的透射电镜图。由图3(a, b)可以看到:Co3O4纳米晶均匀分布在还原氧化石墨烯上,在GCNFs形成过程中CoOx纳米晶逐渐积聚起来,如图3(c, d)所示。从图3(e-h)可以看到:大量弯曲的CNFs生长在还原氧化石墨烯表面,长达几十微米。
分别将实施例1制备的催化剂Co3O4-GO复合材料,CoOx-PG复合材料、PG以及实施例2制备的催化剂Co3O4-rGO复合材料、CoOx-GCNFs复合材料或GCNFs做下述催化试验:
(一)、不同催化剂催化硼氢化钠水解制氢效果
催化试验:将实施例1制备的Co3O4-GO、CoOx-PG、PG,实施例2制备的Co3O4-rGO、CoOx-GCNFs、GCNFs,以及市购的Raney Ni、GO、rGO、Co3O4纳米晶分别作为催化剂用于硼氢化钠水解制氢,条件为:温度 30 ℃,催化剂20 mg、NaBH4 80 mg和水20 mL,产氢时间2-40 min,排水法测产生氢气的体积。
图4为不同催化剂催化硼氢化钠水解制氢的曲线图(a)和产氢速率图(b)。从图4中可以明显看出:相比其他材料,CoOx-GCNFs和CoOx-PG在相同条件下具有较高的催化活性。GO和rGO具有微弱的催化活性,Co3O4-GO和Co3O4-rGO与单一组分相比具有较高的催化活性。CoOx-PG的催化活性优于纯净的Co3O4纳米晶和工业用的Raney Ni,原因在于其独特的结构及CoOx纳米晶和PG间的协同作用:CoOx纳米晶的尺寸约10nm,嵌插在石墨烯孔之间有效阻止了纳米晶的集聚;另外,在碳热反应中,PG边缘及孔周围产生大量含氧基团使其很好地在NaBH4溶液中分散,提供更多的催化活性位点。
(二)、温度对催化硼氢化钠水解制氢效果的影响
图5为CoOx-PG(a)、CoOx-GCNFs(c)不同温度下催化硼氢化钠水解制氢的曲线图和CoOx-PG(b)、CoOx-GCNFs(d)的阿累尼乌斯曲线图。从图5 中,可以看出:温度是对硼氢化钠分解速率影响较大的一个因素,图5探究了CoOx-PG和CoOx-GCNFs两种材料在303~328 K温度范围内的催化活性变化。由图5(a, c)可知,随着温度的升高产氢速率明显增加,这是因为由于升温加速了BH4 离子的传递。根据阿累尼乌斯方程,由催化反应速率和温度的关系,可以计算该催化反应的活化能(图5 b, d),得到CoOx-PG和CoOx-GCNFs两种催化剂用于催化反应的活化能分别为51.3 kJ·mol−1和28.3 kJ·mol−1
(三)、催化剂的稳定性
由于CoOx-PG和CoOx-GCNFs具有磁性,因此在首次利用后,可以方便地从产物中回收再利用。图6为循环回收利用的CoOx-PG(a)和CoOx-GCNFs(b)的催化硼氢化钠水解制氢曲线图,循环利用条件为:温度 30 ℃,催化剂20 mg、NaBH4 80 mg和水20 mL,排水法测产生氢气的体积。从图6 中,可以看出:CoOx-PG和CoOx-GCNFs在循环利用五次后依然保持较高的催化活性,从而说明CoOx-PG和CoOx-GCNFs结构的稳定性。

Claims (10)

1.一种硼氢化钠水解制氢用催化剂,其特征在于:所述催化剂为M3O4-GO复合材料,MOx-PG复合材料、PG、M3O4-rGO复合材料、MOx-GCNFs复合材料或GCNFs;其中,M为Co或Mn。
2.一种如权利要求1所述的硼氢化钠水解制氢用催化剂的制备方法,其特征在于,步骤如下:
(1)、将GO、M3O4纳米晶分别分散于无水乙醇中;
(2)、搅拌下,将M3O4纳米晶的乙醇分散液加入到GO的乙醇分散液中,加入完毕后继续搅拌12-16 h,静置,倒掉上清液,50-80 ℃干燥,制得催化剂M3O4-GO复合材料。
3.如权利要求2所述的制备方法,其特征在于:GO∶M3O4纳米晶的质量比为1∶1-1∶3,GO的乙醇分散液的浓度为1-3 mg/mL,M3O4纳米晶的乙醇分散液的浓度为1-3 mg/mL。
4.如权利要求2或3所述的制备方法,其特征在于:将催化剂M3O4-GO复合材料在惰性气氛下升温至500-800 ℃焙烧2-5 h,制得催化剂MOx-PG复合材料。
5.如权利要求4所述的制备方法,其特征在于:将催化剂MOx-PG复合材料用酸浸泡洗去MOx后,制得催化剂PG。
6.一种如权利要求1所述的硼氢化钠水解制氢用催化剂的制备方法,其特征在于,步骤如下:
(1)、将GO、M3O4纳米晶分别分散于无水乙醇中;
(2)、搅拌下,将M3O4纳米晶的乙醇分散液加入到GO的乙醇分散液中,加入完毕后继续搅拌10-15 h,向其中加入水合肼,继续搅拌2-4 h,静置,倒掉上清液,50-80 ℃干燥,制得催化剂M3O4-rGO复合材料。
7.如权利要求6所述的制备方法,其特征在于:GO∶M3O4纳米晶的质量比为1∶1-1∶3,GO的乙醇分散液的浓度为1-3 mg/mL,M3O4纳米晶的乙醇分散液的浓度为1-3 mg/mL;GO∶水合肼的质量比为1∶2-1∶4。
8.如权利要求6或7所述的制备方法,其特征在于:将催化剂M3O4-rGO复合材料在惰性气氛下升温至500-800℃焙烧2-4 h,制得催化剂MOx-GCNFs复合材料。
9.如权利要求8所述的制备方法,其特征在于:将催化剂MOx-GCNFs复合材料用酸浸泡洗去MOx后,制得催化剂GCNFs。
10.如权利要求1所述的催化剂在硼氢化钠水解制氢中的应用。
CN201711190565.0A 2017-11-24 2017-11-24 一种硼氢化钠水解制氢用催化剂及其制备方法和应用 Pending CN107790134A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711190565.0A CN107790134A (zh) 2017-11-24 2017-11-24 一种硼氢化钠水解制氢用催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711190565.0A CN107790134A (zh) 2017-11-24 2017-11-24 一种硼氢化钠水解制氢用催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN107790134A true CN107790134A (zh) 2018-03-13

Family

ID=61536455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711190565.0A Pending CN107790134A (zh) 2017-11-24 2017-11-24 一种硼氢化钠水解制氢用催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107790134A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862066A (zh) * 2018-08-28 2020-03-06 宁夏佰斯特医药化工有限公司 一种硼氢化钾水解工艺
CN111167495A (zh) * 2020-01-07 2020-05-19 郑州大学 一种氨硼烷制氢用催化剂Ni2-xFex@CN-G及其制备方法
WO2021037939A1 (fr) * 2019-08-30 2021-03-04 Safran Electronics & Defense Dispositif de génération d'un gaz
CN112844427A (zh) * 2021-03-04 2021-05-28 桂林电子科技大学 一种Co-B-P-O纳米粒子负载还原氧化石墨烯复合材料及其制备方法和应用
CN114700105A (zh) * 2022-05-17 2022-07-05 桂林电子科技大学 一种Co-Mo-B/N-PCN复合纳米材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829564A (zh) * 2010-03-30 2010-09-15 华东理工大学 一种用于硼氢化钠水解制氢的Ru/C催化剂的制备方法
CN102745675A (zh) * 2012-06-27 2012-10-24 合肥工业大学 一种尖晶石型磁性MFe2O4/石墨烯复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829564A (zh) * 2010-03-30 2010-09-15 华东理工大学 一种用于硼氢化钠水解制氢的Ru/C催化剂的制备方法
CN102745675A (zh) * 2012-06-27 2012-10-24 合肥工业大学 一种尖晶石型磁性MFe2O4/石墨烯复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张小玉: ""钴基金属氧化物-还原氧化石墨烯复合材料的制备、表征及性能研究"", 《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862066A (zh) * 2018-08-28 2020-03-06 宁夏佰斯特医药化工有限公司 一种硼氢化钾水解工艺
WO2021037939A1 (fr) * 2019-08-30 2021-03-04 Safran Electronics & Defense Dispositif de génération d'un gaz
FR3100242A1 (fr) * 2019-08-30 2021-03-05 Safran Electronics & Defense Dispositif de génération d’un gaz
US11724935B2 (en) 2019-08-30 2023-08-15 Safran Electronics & Defense Device for generating a gas
CN111167495A (zh) * 2020-01-07 2020-05-19 郑州大学 一种氨硼烷制氢用催化剂Ni2-xFex@CN-G及其制备方法
CN112844427A (zh) * 2021-03-04 2021-05-28 桂林电子科技大学 一种Co-B-P-O纳米粒子负载还原氧化石墨烯复合材料及其制备方法和应用
CN114700105A (zh) * 2022-05-17 2022-07-05 桂林电子科技大学 一种Co-Mo-B/N-PCN复合纳米材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Yang et al. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction
Huang et al. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution
CN109967099B (zh) 一种具有中空纳米结构的Co2P@C复合材料及其制备方法和应用
Ren et al. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: Recent advances
CN107790134A (zh) 一种硼氢化钠水解制氢用催化剂及其制备方法和应用
Wang et al. In-situ synthesis of coupled molybdenum carbide and molybdenum nitride as electrocatalyst for hydrogen evolution reaction
Liu et al. ZnCo2O4 nanoparticles derived from dual-metal-organic-frameworks embedded in Multiwalled Carbon Nanotubes: a favorable electrocatalyst for the water splitting
Xu et al. Dual-active-sites design of CoNx anchored on zinc-coordinated nitrogen-codoped porous carbon with efficient oxygen catalysis for high-stable rechargeable zinc-air batteries
Shi et al. FeNi-functionalized 3D N, P doped graphene foam as a noble metal-free bifunctional electrocatalyst for direct methanol fuel cells
Srinivas et al. Heterostructural CoFe2O4/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performance
Yaseen et al. Cobalt–Iron nanoparticles encapsulated in mesoporous carbon nanosheets: A one-pot synthesis of highly stable electrocatalysts for overall water splitting
Min et al. Facile synthesis of P-doped NiCo2S4 nanoneedles supported on Ni foam as highly efficient electrocatalysts for alkaline oxygen evolution reaction
Ye et al. Reduced graphene oxide supporting hollow bimetallic phosphide nanoparticle hybrids for electrocatalytic oxygen evolution
Lv et al. Carbon-quantum-dots-involved Fe/Co/Ni phosphide open nanotubes for high effective seawater electrocatalytic decomposition
Jia et al. Excellent electrocatalytic hydrogen evolution performance of hexagonal NiCoP porous nanosheets in alkaline solution
Lei et al. MoP nanoparticles encapsulated in P-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction
Shi et al. Biomass-derived precious metal-free porous carbon: Ca-N, P-doped carbon materials and its electrocatalytic properties
Shuai et al. MOF-directed fabrication of nickel/cobalt bimetallic phosphides as robust electrocatalyst for oxygen evolution reaction
Dai et al. Iron-doped novel Co-based metal–organic frameworks for preparation of bifunctional catalysts with an amorphous structure for OER/HER in alkaline solution
Yang et al. Cobalt phosphide nanowall arrays supported on carbon cloth: an efficient monolithic non-noble-metal hydrogen evolution catalyst
Wang et al. Homogeneous pseudoamorphous metal phosphide clusters for ultra stable hydrogen generation by water electrolysis at industrial current density
Dai et al. Construction of porous core-shell MnCo2S4 microrugby balls for efficient oxygen evolution reaction
Li et al. A Co-MOF-derived Co 9 S 8@ NS-C electrocatalyst for efficient hydrogen evolution reaction
Bhadu et al. Controlled assembly of cobalt embedded N-doped graphene nanosheets (Co@ NGr) by pyrolysis of a mixed ligand Co (ii) MOF as a sacrificial template for high-performance electrocatalysts
Li et al. Enhanced electrocatalytic performance of uniformly spherical Ni-MOF decorated with NiMoO4 nanorods for oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180313