CN107786865A - A kind for the treatment of method and apparatus of frame of video - Google Patents
A kind for the treatment of method and apparatus of frame of video Download PDFInfo
- Publication number
- CN107786865A CN107786865A CN201610798824.7A CN201610798824A CN107786865A CN 107786865 A CN107786865 A CN 107786865A CN 201610798824 A CN201610798824 A CN 201610798824A CN 107786865 A CN107786865 A CN 107786865A
- Authority
- CN
- China
- Prior art keywords
- mrow
- mtd
- boundary line
- component
- interval
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000003044 adaptive effect Effects 0.000 claims abstract description 40
- 238000013507 mapping Methods 0.000 claims abstract description 10
- 238000003672 processing method Methods 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000004590 computer program Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
- H04N9/68—Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
- H04N9/69—Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits for modifying the colour signals by gamma correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/77—Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Processing Of Color Television Signals (AREA)
- Controls And Circuits For Display Device (AREA)
- Image Processing (AREA)
- Picture Signal Circuits (AREA)
Abstract
本发明实施例公开了一种视频帧的处理方法和装置;该方法可以包括:根据高动态范围HDR视频帧的Y分量确定所述HDR视频帧对应的自适应曲线;根据所述自适应曲线对所述HDR视频帧的Y分量进行调整,输出处理后的Y分量;将所述HDR视频帧的C分量按照预设的映射关系进行转换后,再将转换后的C分量按照预设的颜色区间进行颜色饱和度增强,得到处理后的C分量。
Embodiments of the present invention disclose a video frame processing method and device; the method may include: determining an adaptive curve corresponding to the HDR video frame according to the Y component of the high dynamic range HDR video frame; The Y component of the HDR video frame is adjusted, and the processed Y component is output; after the C component of the HDR video frame is converted according to the preset mapping relationship, the converted C component is then converted according to the preset color interval. Perform color saturation enhancement to obtain the processed C component.
Description
技术领域technical field
本发明涉及视频处理技术,尤其涉及一种视频帧的处理方法和装置。The present invention relates to video processing technology, in particular to a video frame processing method and device.
背景技术Background technique
高动态范围(HDR,High-Dynamic Range)可以拓展显示的亮度范围,展现更多的亮部和暗部细节,为画面带来更丰富的色彩和更生动自然的细节表现,从而使得画面更加接近人眼所见。High-Dynamic Range (HDR, High-Dynamic Range) can expand the brightness range of the display, show more details in bright and dark parts, bring richer colors and more vivid and natural details to the picture, so that the picture is closer to human Seeing.
人眼所能感受的亮度范围约为10-3-106尼特nit,所能感受的瞬时对比度范围可达10000:1;而目前消费级液晶显示器的亮度一般在300至400nit左右,其对比度范围一般为2000:1。可见,人眼的亮度分辨能力远高于当前主流的显示设备。所以HDR显示技术就是要提升显示的亮度范围,通俗来说就是使得显示亮度更亮的同时,又让呈现的黑色更黑。The brightness range that the human eye can feel is about 10 -3 -10 6 nits, and the instantaneous contrast ratio that can be felt can reach 10000:1; while the brightness of current consumer-grade LCDs is generally around 300 to 400 nits, the contrast ratio The range is generally 2000:1. It can be seen that the brightness resolution capability of the human eye is much higher than that of current mainstream display devices. Therefore, HDR display technology is to increase the brightness range of the display. Generally speaking, it is to make the display brightness brighter and at the same time make the displayed black blacker.
目前显示器对比度的限制是由1990年国际电信联盟(ITU,InternationalTelecommunication Union)发布的ITU BT.709标准决定的。该标准中的电光转换函数(EOTF,Electro-Optical Transfer Function)是以过去阴极射线管(CRT,Cathode RayTube)显示器的特性为基础设定的。但CRT显示器的亮度一般不超过100nit,对于现在亮度可达400nit甚至1000nit的显示器而言,BT.709标准已经束缚了最佳显示效果的呈现。因此,当前不少广播电视界的机构组织均提出了新的HDR显示技术,通过HDR显示器播放HDR视频,以在实现更高动态范围的显示。Currently, the limitation of display contrast is determined by the ITU BT.709 standard issued by the International Telecommunication Union (ITU, International Telecommunication Union) in 1990. The Electro-Optical Transfer Function (EOTF, Electro-Optical Transfer Function) in this standard is set based on the characteristics of the past cathode ray tube (CRT, Cathode RayTube) display. However, the brightness of CRT monitors generally does not exceed 100nit. For the monitors whose brightness can reach 400nit or even 1000nit, the BT.709 standard has restricted the presentation of the best display effect. Therefore, many institutions and organizations in the radio and television industry have proposed new HDR display technologies, and HDR videos are played through HDR displays to achieve a display with a higher dynamic range.
但是现在大部分的存量电视都是基于ITU BT.709标准的标准动态范围(SDR,Standard Dynamic Range)显示器。因此,会造成这些显示器在播放HDR内容时,用户也无法体会到HDR的效果。But now most of the stock TVs are standard dynamic range (SDR, Standard Dynamic Range) displays based on the ITU BT.709 standard. Therefore, when these displays play HDR content, users cannot experience the effect of HDR.
发明内容Contents of the invention
为解决上述技术问题,本发明实施例期望提供一种视频帧的处理方法和装置;能够实现在SDR显示器播放HDR视频时,产生HDR的效果。In order to solve the above technical problems, the embodiments of the present invention expect to provide a method and device for processing video frames, which can realize HDR effect when playing HDR video on an SDR display.
本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:
第一方面,本发明实施例提供了一种视频帧的处理方法,所述方法包括:In a first aspect, an embodiment of the present invention provides a method for processing a video frame, the method comprising:
根据高动态范围HDR视频帧的Y分量确定所述HDR视频帧对应的自适应曲线;Determine the adaptive curve corresponding to the HDR video frame according to the Y component of the high dynamic range HDR video frame;
根据所述自适应曲线对所述HDR视频帧的Y分量进行调整,输出处理后的Y分量;adjusting the Y component of the HDR video frame according to the adaptive curve, and outputting the processed Y component;
将所述HDR视频帧的C分量按照预设的映射关系进行转换后,再将转换后的C分量按照预设的颜色区间进行颜色饱和度增强,得到处理后的C分量。After the C component of the HDR video frame is converted according to a preset mapping relationship, the color saturation of the converted C component is enhanced according to a preset color range to obtain a processed C component.
在上述方案中,所述根据高动态范围HDR视频帧的Y分量确定所述HDR视频帧对应的自适应曲线,具体包括:In the above solution, the determination of the adaptive curve corresponding to the HDR video frame according to the Y component of the high dynamic range HDR video frame specifically includes:
根据所述HDR视频帧的Y分量获取所述HDR视频帧的元数据;其中,所述元数据用于指示所述HDR视频帧的特征信息;Obtain metadata of the HDR video frame according to the Y component of the HDR video frame; wherein the metadata is used to indicate feature information of the HDR video frame;
根据所述HDR视频帧的元数据以及预设的区间数目获取上界线和下界线在各区间端点处的输出值;Acquire the output values of the upper boundary line and the lower boundary line at the endpoints of each interval according to the metadata of the HDR video frame and the preset interval number;
根据预设的区间数目以及上界线和下界线在各区间端点处的输出值确定上界线和下界线;Determine the upper boundary line and the lower boundary line according to the preset number of intervals and the output values of the upper boundary line and the lower boundary line at the endpoints of each interval;
按照预设的拟合算法以及所述上界线和所述下界线获取所述自适应曲线。The adaptive curve is obtained according to a preset fitting algorithm and the upper boundary line and the lower boundary line.
在上述方案中,所述HDR视频帧的元数据为所述HDR帧的亮度均值。In the above solution, the metadata of the HDR video frame is the average brightness value of the HDR frame.
在上述方案中,所述根据所述HDR视频帧的元数据以及预设的区间数目获取上界线和下界线在各区间端点处的输出值,具体包括:In the above solution, the output values of the upper boundary line and the lower boundary line at the endpoints of each interval are obtained according to the metadata of the HDR video frame and the preset number of intervals, specifically including:
根据所述HDR帧的亮度均值以及式1进行伽马gamma转换,获得gamma输出值;Perform gamma gamma conversion according to the brightness mean value of the HDR frame and formula 1 to obtain a gamma output value;
其中,input为输入的HDR帧的亮度均值,output为gamma输出值,γ为gamma扭曲系数;Among them, input is the average brightness value of the input HDR frame, output is the gamma output value, and γ is the gamma distortion coefficient;
根据式2获取gamma输出值的导数gradient[n];Obtain the derivative gradient[n] of the gamma output value according to formula 2;
其中,n为区间内的点序号;Among them, n is the point number in the interval;
根据gamma输出值的导数以及预设的低光划分门限获取低光区间的端点处的输出值;Obtain the output value at the end point of the low-light interval according to the derivative of the gamma output value and the preset low-light division threshold;
根据高光区间与低光区间之间的对称关系以及低光区间的端点处的输出值,获取高光区间的端点出的输出值。According to the symmetrical relationship between the high-light interval and the low-light interval and the output value at the end point of the low-light interval, the output value at the end point of the high-light interval is obtained.
在上述方案中,所述根据预设的区间数目以及上界线和下界线在各区间端点处的输出值确定上界线和下界线,具体包括:In the above scheme, the determination of the upper boundary line and the lower boundary line according to the preset number of intervals and the output values of the upper boundary line and the lower boundary line at the endpoints of each interval, specifically includes:
在获取到低光区间的端点处的输出值和高光区间的端点出的输出值之后,根据式3获取上界线up_line在各区间的曲线;After obtaining the output value at the end point of the low-light interval and the output value at the end point of the high-light interval, obtain the curve of the upper boundary line up_line in each interval according to formula 3;
其中,Δy1表示的是低光区间的output的差值;Δy2表示中光区间的output的差值;中光区间的中点就是上界线和下界线的交汇点;Among them, Δy 1 represents the output difference in the low-light interval; Δy 2 represents the output difference in the medium-light interval; the midpoint of the medium-light interval is the intersection point of the upper boundary line and the lower boundary line;
所述下界线down_line设置为斜率为1的直线。The lower boundary line down_line is set as a straight line with a slope of 1.
在上述方案中,按照预设的拟合算法以及所述上界线和所述下界线获取所述自适应曲线,具体包括:In the above solution, the adaptive curve is obtained according to a preset fitting algorithm and the upper boundary line and the lower boundary line, specifically including:
根据所述上界线up_line和所述下界线down_line以及式4获取所述自适应曲线LUT;Obtain the adaptive curve LUT according to the upper boundary line up_line and the lower boundary line down_line and formula 4;
其中,mean_up为1024;并且表达式clip3(mean,0,mean_up)表示:当mean<0时,表达式的值为0,当mean>mean_up时,表达式的值为mean_up;当0<mean<mean_up时,表达式的值为mean。Among them, mean_up is 1024; and the expression clip3(mean,0,mean_up) means: when mean<0, the value of the expression is 0, when mean>mean_up, the value of the expression is mean_up; when 0<mean< When mean_up, the value of the expression is mean.
在上述方案中,所述将所述HDR视频帧的C分量按照预设的映射关系进行转换后,再将转换后的C分量按照预设的颜色区间进行颜色饱和度增强,得到处理后的C分量,包括:In the above scheme, after the C component of the HDR video frame is converted according to a preset mapping relationship, the converted C component is then enhanced in color saturation according to a preset color range to obtain the processed C component. Servings, including:
按照预设的转换矩阵将C分量由BT2020域转换到BT709域;Convert the C component from the BT2020 domain to the BT709 domain according to the preset conversion matrix;
根据预设的颜色区间以及各颜色区间对应的增强系数对转换后的C分量进行饱和度增强,得到处理后的C分量。Saturation enhancement is performed on the converted C component according to preset color intervals and enhancement coefficients corresponding to each color interval to obtain a processed C component.
第二方面,本发明实施例提供了一种视频帧的处理装置,所述装置包括:确定单元、Y分量调整单元和C分量处理单元;其中,In a second aspect, an embodiment of the present invention provides a video frame processing device, the device comprising: a determination unit, a Y component adjustment unit, and a C component processing unit; wherein,
所述确定单元,用于根据高动态范围HDR视频帧的Y分量确定所述HDR视频帧对应的自适应曲线;The determining unit is configured to determine an adaptive curve corresponding to the HDR video frame according to the Y component of the high dynamic range HDR video frame;
所述Y分量调整单元,用于根据所述自适应曲线对所述HDR视频帧的Y分量进行调整,输出处理后的Y分量;The Y component adjustment unit is configured to adjust the Y component of the HDR video frame according to the adaptive curve, and output the processed Y component;
所述C分量处理单元,用于将所述HDR视频帧的C分量按照预设的映射关系进行转换后,再将转换后的C分量按照预设的颜色区间进行颜色饱和度增强,得到处理后的C分量。The C component processing unit is configured to convert the C component of the HDR video frame according to a preset mapping relationship, and then enhance the color saturation of the converted C component according to a preset color interval, and obtain the processed The C component.
在上述方案中,所述确定单元,用于根据所述HDR视频帧的Y分量获取所述HDR视频帧的元数据;其中,所述元数据用于指示所述HDR视频帧的特征信息;In the above solution, the determining unit is configured to obtain metadata of the HDR video frame according to the Y component of the HDR video frame; wherein the metadata is used to indicate feature information of the HDR video frame;
以及,根据所述HDR视频帧的元数据以及预设的区间数目获取上界线和下界线在各区间端点处的输出值;And, according to the metadata of the HDR video frame and the preset number of intervals, the output values of the upper boundary line and the lower boundary line at the endpoints of each interval are obtained;
以及,根据预设的区间数目以及上界线和下界线在各区间端点处的输出值确定上界线和下界线;And, determine the upper boundary line and the lower boundary line according to the preset number of intervals and the output values of the upper boundary line and the lower boundary line at the endpoints of each interval;
以及,按照预设的拟合算法以及所述上界线和所述下界线获取所述自适应曲线。And, the adaptive curve is acquired according to a preset fitting algorithm and the upper boundary line and the lower boundary line.
在上述方案中,所述HDR视频帧的元数据为所述HDR帧的亮度均值。In the above solution, the metadata of the HDR video frame is the average brightness value of the HDR frame.
在上述方案中,所述确定单元,用于:In the above solution, the determination unit is used for:
根据所述HDR帧的亮度均值以及式5进行伽马gamma转换,获得gamma输出值;Carry out gamma gamma conversion according to the brightness mean value of the HDR frame and formula 5, and obtain the gamma output value;
其中,input为输入的HDR帧的亮度均值,output为gamma输出值,γ为gamma扭曲系数;Among them, input is the average brightness value of the input HDR frame, output is the gamma output value, and γ is the gamma distortion coefficient;
以及,根据式6获取gamma输出值的导数gradient[n];And, obtain the derivative gradient[n] of the gamma output value according to formula 6;
其中,n为区间内的点序号;Among them, n is the point number in the interval;
以及,根据gamma输出值的导数以及预设的低光划分门限获取低光区间的端点处的输出值;And, obtain the output value at the end point of the low-light interval according to the derivative of the gamma output value and the preset low-light division threshold;
以及,根据高光区间与低光区间之间的对称关系以及低光区间的端点处的输出值,获取高光区间的端点出的输出值。And, according to the symmetrical relationship between the high light interval and the low light interval and the output value at the end point of the low light interval, the output value at the end point of the high light interval is acquired.
在上述方案中,所述确定单元,用于:In the above solution, the determination unit is used for:
在获取到低光区间的端点处的输出值和高光区间的端点出的输出值之后,根据式7获取上界线up_line在各区间的曲线;After obtaining the output value at the end point of the low light interval and the output value at the end point of the high light interval, obtain the curve of the upper boundary line up_line in each interval according to formula 7;
其中,Δy1表示的是低光区间的output的差值;Δy2表示中光区间的output的差值;中光区间的中点就是上界线和下界线的交汇点;Among them, Δy 1 represents the output difference in the low-light interval; Δy 2 represents the output difference in the medium-light interval; the midpoint of the medium-light interval is the intersection point of the upper boundary line and the lower boundary line;
以及,所述下界线down_line设置为斜率为1的直线。And, the lower boundary line down_line is set as a straight line with a slope of 1.
在上述方案中,所述确定单元,用于:In the above solution, the determination unit is used for:
根据所述上界线up_line和所述下界线down_line以及式8获取所述自适应曲线LUT;Obtain the adaptive curve LUT according to the upper boundary line up_line and the lower boundary line down_line and formula 8;
其中,mean_up为1024;并且表达式clip3(mean,0,mean_up)表示:当mean<0时,表达式的值为0,当mean>mean_up时,表达式的值为mean_up;当0<mean<mean_up时,表达式的值为mean。Among them, mean_up is 1024; and the expression clip3(mean,0,mean_up) means: when mean<0, the value of the expression is 0, when mean>mean_up, the value of the expression is mean_up; when 0<mean< When mean_up, the value of the expression is mean.
在上述方案中,所述C分量处理单元,用于:In the above solution, the C component processing unit is used for:
按照预设的转换矩阵将C分量由BT2020域转换到BT709域;Convert the C component from the BT2020 domain to the BT709 domain according to the preset conversion matrix;
以及,根据预设的颜色区间以及各颜色区间对应的增强系数对转换后的C分量进行饱和度增强,得到处理后的C分量。And, performing saturation enhancement on the converted C component according to preset color intervals and enhancement coefficients corresponding to each color interval, to obtain a processed C component.
本发明实施例提供了一种视频帧的处理方法和装置;将HDR视频帧的Y分量和C分量分别通过自适应曲线和颜色饱和度增强处理,使得处理后的视频帧在SDR显示器播放时,产生HDR的效果。Embodiments of the present invention provide a video frame processing method and device; the Y component and the C component of the HDR video frame are respectively processed through an adaptive curve and color saturation enhancement, so that when the processed video frame is played on an SDR display, Produces the effect of HDR.
附图说明Description of drawings
图1为本发明实施例提供的HDR的光电转换曲线和SDR显示器的光电转换曲线的对比图;Fig. 1 is the comparison chart of the photoelectric conversion curve of HDR provided by the embodiment of the present invention and the photoelectric conversion curve of SDR display;
图2为本发明实施例提供的一种视频帧的处理方法流程示意图;FIG. 2 is a schematic flowchart of a video frame processing method provided by an embodiment of the present invention;
图3为本发明实施例提供的一种确定自适应曲线的流程示意图;FIG. 3 is a schematic flow chart of determining an adaptive curve provided by an embodiment of the present invention;
图4为本发明实施例提供的一种曲线示意图;FIG. 4 is a schematic diagram of a curve provided by an embodiment of the present invention;
图5为本发明实施例提供的一种获取上界线和下界线在各区间端点处的输出值的流程示意图;Fig. 5 is a schematic flow chart of obtaining the output values of the upper boundary line and the lower boundary line at the endpoints of each interval provided by the embodiment of the present invention;
图6为本发明实施例提供的一种曲线基的示意图;Fig. 6 is a schematic diagram of a curve base provided by an embodiment of the present invention;
图7为本发明实施例提供的另一种曲线基的示意图;Fig. 7 is a schematic diagram of another curve base provided by an embodiment of the present invention;
图8为本发明实施例提供的一种获得处理后的C分量的流程示意图;FIG. 8 is a schematic flowchart of obtaining a processed C component provided by an embodiment of the present invention;
图9为本发明实施例提供的一种视频帧的处理装置结构示意图。FIG. 9 is a schematic structural diagram of a device for processing video frames provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention.
本发明实施例首先对HDR视频直接在SDR显示器上进行播放所带来的问题进行简要的阐述。In the embodiment of the present invention, firstly, a problem caused by directly playing an HDR video on an SDR display is briefly described.
如图1所示的HDR的光电转换曲线和SDR显示器的光电转换曲线的对比图,可以看出,左图的HDR光电转换曲线以ST2084标准为例,归一化的光信号从0到1表示的是0nit到10000nit。可以看到曲线在低光部分很陡峭,在中光和高光部分很平缓;右图的SDR光电转换曲线以BT709标准为例,归一化的光信号从0到1表示的是0nit到100nit,可以看到右图曲线在低光部分的陡峭程度低于左图;并且右图曲线在中光及高光部分的平缓程度也低于左图。As shown in Figure 1, the photoelectric conversion curve of HDR and the photoelectric conversion curve of SDR display are compared. It can be seen that the HDR photoelectric conversion curve on the left is based on the ST2084 standard as an example, and the normalized optical signal is expressed from 0 to 1. The range is 0nit to 10000nit. It can be seen that the curve is very steep in the low-light part, and very gentle in the middle-light and high-light parts; the SDR photoelectric conversion curve on the right takes the BT709 standard as an example, and the normalized optical signal from 0 to 1 represents 0nit to 100nit, It can be seen that the curve on the right is steeper in the low-light part than the left picture; and the curve on the right is also gentler than the left picture in the mid-light and high-light parts.
而在实际拍摄时,无论是HDR设备拍摄还是SDR设备拍摄;所以大部分拍摄的视频还是集中在中光部分,也就是横轴坐标为0.5附近的范围。In the actual shooting, whether it is shooting with HDR equipment or SDR equipment; so most of the captured videos are still concentrated in the mid-light part, that is, the range around the horizontal axis coordinate is 0.5.
但是,横轴坐标为0.5左右的HDR视频如果按照SDR信号来解读的话,那么会出现电信号取值明显偏高的情况,而且由于左图曲线在中光部分相对右图曲线的中光部分较为平缓,造成光信号之间的差异明显降低。所以当我们不做任何处理,直接通过SDR显示器播放HDR视频时,中光部分就会明显过亮,且对比度明显偏低。从而造成HDR视频在SDR显示器上播放普遍出现过亮,泛白的原因。However, if the HDR video whose abscissa coordinate is about 0.5 is interpreted according to the SDR signal, then the value of the electrical signal will be obviously higher, and because the curve on the left is in the middle light part compared to the curve in the right picture. Flattening, resulting in significantly lower differences between optical signals. So when we play the HDR video directly through the SDR display without any processing, the mid-light part will be obviously too bright, and the contrast will be obviously low. As a result, HDR videos generally appear too bright and white when played on SDR displays.
另外,由于HDR视频内容是BT2020域的,SDR显示器是BT709域的,因此,直接通过SDR显示器播放HDR视频还会出现颜色不够艳丽的问题。In addition, since the HDR video content is in the BT2020 domain, and the SDR display is in the BT709 domain, the problem of not being bright enough to play the HDR video directly through the SDR display will also occur.
本发明实施例针对上述问题及问题出现的原因,通过下面的实施例提出了一种视频帧的处理方法和装置,以实现在SDR显示器播放HDR视频时,产生HDR的效果。Aiming at the above problems and the causes of the problems, the embodiments of the present invention propose a video frame processing method and device through the following embodiments, so as to realize the HDR effect when playing the HDR video on the SDR display.
实施例一Embodiment one
参见图2,其示出了本发明实施例提供的一种视频帧的处理方法,该方法可以包括:Referring to FIG. 2, it shows a method for processing a video frame provided by an embodiment of the present invention, the method may include:
S201:根据高动态范围HDR视频帧的Y分量确定所述HDR视频帧对应的自适应曲线;S201: Determine an adaptive curve corresponding to the HDR video frame according to the Y component of the high dynamic range HDR video frame;
S202:根据所述自适应曲线对所述HDR视频帧的Y分量进行调整,输出处理后的Y分量;S202: Adjust the Y component of the HDR video frame according to the adaptive curve, and output the processed Y component;
S203:将所述HDR视频帧的C分量按照预设的映射关系进行转换后,再将转换后的C分量按照预设的颜色区间进行颜色饱和度增强,得到处理后的C分量。S203: Convert the C component of the HDR video frame according to a preset mapping relationship, and then perform color saturation enhancement on the converted C component according to a preset color interval to obtain a processed C component.
通过上述方案,将HDR视频帧的Y分量和C分量分别通过自适应曲线和颜色饱和度增强处理,使得处理后的视频帧在SDR显示器播放时,产生HDR的效果。Through the above solution, the Y component and the C component of the HDR video frame are respectively processed through the adaptive curve and the color saturation enhancement, so that the processed video frame can produce the effect of HDR when played on the SDR display.
示例性地,参见图3,对于步骤S201所述的根据高动态范围HDR视频帧的Y分量确定所述HDR视频帧对应的自适应曲线,具体可以包括:Exemplarily, referring to FIG. 3, the determination of the adaptive curve corresponding to the HDR video frame according to the Y component of the high dynamic range HDR video frame in step S201 may specifically include:
S2011:根据HDR视频帧的Y分量获取所述HDR视频帧的元数据;其中,所述元数据用于指示所述HDR视频帧的特征信息;S2011: Obtain metadata of the HDR video frame according to the Y component of the HDR video frame; wherein the metadata is used to indicate feature information of the HDR video frame;
在本实施例中,所述HDR视频帧的元数据为所述HDR帧的亮度均值。In this embodiment, the metadata of the HDR video frame is the average brightness value of the HDR frame.
S2012:根据HDR视频帧的元数据以及预设的区间数目获取上界线和下界线在各区间端点处的输出值;S2012: Obtain the output values of the upper boundary line and the lower boundary line at the endpoints of each interval according to the metadata of the HDR video frame and the preset interval number;
S2013:根据预设的区间数目以及上界线和下界线在各区间端点处的输出值确定上界线和下界线;S2013: Determine the upper boundary line and the lower boundary line according to the preset number of intervals and the output values of the upper boundary line and the lower boundary line at the endpoints of each interval;
S2014:按照预设的拟合算法以及所述上界线和所述下界线获取所述自适应曲线。S2014: Obtain the adaptive curve according to a preset fitting algorithm and the upper boundary line and the lower boundary line.
对于上述示例,需要说明的是,如图4中的标注,虚线为自适应曲线,可以看出,自适应曲线在上界线up_line和下界线down_line之间自适应变化。图4中的横坐标表示HDR10bit的输入值,可以认为是当前HDR视频帧的Y分量的值;纵坐标为输出值,可以认为是调整后的Y分量值。For the above example, it should be noted that, as marked in FIG. 4 , the dotted line is an adaptive curve. It can be seen that the adaptive curve changes adaptively between the upper boundary line up_line and the lower boundary line down_line. The abscissa in Figure 4 represents the input value of HDR10bit, which can be considered as the value of the Y component of the current HDR video frame; the ordinate is the output value, which can be considered as the adjusted Y component value.
由于视频帧可以包括低光、中光和高光三个区域。上界线up_line的低光区域的终点B确定一个增加低光对比度拉升点,B点位置决定了低光拉升幅度以及BC之间中光的下拉幅度;上界线up_line的高光区域的起点D点可以直接设定为B点的对称点,用于对高光的提升,并且决定了CD之间中光的提升幅度。Since a video frame may include three areas of low light, medium light and high light. The end point B of the low-light area of the upper boundary line up_line determines a point to increase the low-light contrast. The position of point B determines the low-light pull-up range and the pull-down range of mid-light between BC; the starting point D of the high-light area of the upper boundary line up_line It can be directly set as the symmetrical point of point B, which is used to enhance the highlights, and determines the enhancement range of the middle light between CDs.
B点和D点对于视频帧低光区域和高光区域的调整是实现HDR视频帧在SDR显示器播放时产生HDR的效果的重点,因此,参见图5,对于步骤S2012所述的根据所述HDR视频帧的元数据以及预设的区间数目获取上界线和下界线在各区间端点处的输出值,具体包括:The adjustment of point B and point D for the low light area and high light area of the video frame is the focus of realizing the HDR video frame to produce the effect of HDR when the SDR display is played, therefore, referring to Fig. 5, for the HDR video described in step S2012 The metadata of the frame and the preset number of intervals obtain the output values of the upper and lower boundaries at the endpoints of each interval, including:
S20121:根据所述HDR帧的亮度均值以及式1进行伽马gamma转换,获得gamma输出值;S20121: Perform gamma conversion according to the average brightness value of the HDR frame and Formula 1, to obtain a gamma output value;
其中,input为输入的HDR帧的亮度均值,output为gamma输出值,γ为gamma扭曲系数;Among them, input is the average brightness value of the input HDR frame, output is the gamma output value, and γ is the gamma distortion coefficient;
需要说明的是,参见图6,表示γ从1.0遍历到2.2的时候,伽马gamma转换的曲线基,图6所示的为上界线up_line的曲线基;可以看出γ为1.0的时候表示1:1输出,不做任何压缩;γ越大,对低光的压缩越明显,效果会越倾向于黑色更黑。同时次低光部分细节对比度会越明显。It should be noted that, referring to Figure 6, it shows the curve base of gamma conversion when γ traverses from 1.0 to 2.2, and Figure 6 shows the curve base of the upper boundary line up_line; it can be seen that when γ is 1.0, it means 1 :1 output, without any compression; the larger the γ, the more obvious the compression of low light, and the effect will be more black and blacker. At the same time, the contrast of details in sub-low light parts will be more obvious.
相应地,当γ从1.0遍历到2.2的时候,以γ的倒数作为gamma扭曲系数的伽马gamma转换的曲线基,可以作为下界线down_line的曲线基,如图7所示。Correspondingly, when γ traverses from 1.0 to 2.2, the gamma-gamma conversion curve base with the reciprocal of γ as the gamma distortion coefficient can be used as the curve base of the lower boundary line down_line, as shown in Figure 7.
S20122:根据式2获取gamma输出值的导数;S20122: Obtain the derivative of the gamma output value according to formula 2;
其中,gradient[n]为gamma输出值的导数,n为区间内的点序号;Among them, gradient[n] is the derivative of the gamma output value, and n is the point number in the interval;
S20123:根据gamma输出值的导数以及预设的低光划分门限获取低光区间的端点处的输出值;S20123: Obtain the output value at the end point of the low-light interval according to the derivative of the gamma output value and the preset low-light division threshold;
S20124:根据高光区间与低光区间之间的对称关系以及低光区间的端点处的输出值,获取高光区间的端点出的输出值。S20124: According to the symmetrical relationship between the high-light interval and the low-light interval and the output value at the end point of the low-light interval, acquire the output value at the end point of the high-light interval.
需要说明的是,对于S20123所述的根据gamma输出值的导数以及预设的低光划分门限获取低光区间的端点处的输出值,具体可以通过式3获取:It should be noted that, for obtaining the output value at the end point of the low-light interval according to the derivative of the gamma output value and the preset low-light division threshold described in S20123, it can be specifically obtained by formula 3:
其中,B_split为低光区间的端点处B的输出值;g_thr为B点划分门限值,g_thr越大,那么会有更多的取值定为低光;B点就是导数大于g_thr的第一个点。Among them, B_split is the output value of B at the end point of the low-light interval; g_thr is the threshold value of B point division, the larger g_thr is, then there will be more values as low light; B point is the first one whose derivative is greater than g_thr points.
对于S20124所述的根据高光区间与低光区间之间的对称关系以及低光区间的端点处的输出值,获取高光区间的端点出的输出值,在具体实现过程中,可以通过式4进行计算:For S20124, according to the symmetrical relationship between the high-light interval and the low-light interval and the output value at the end point of the low-light interval, the output value at the end point of the high-light interval is obtained. In the specific implementation process, it can be calculated by formula 4 :
由此获取到了区间端点处的输出值,相应地,对于步骤S2013所述的根据预设的区间数目以及上界线和下界线在各区间端点处的输出值确定上界线和下界线,可以包括:The output value at the endpoint of the interval has thus been obtained. Correspondingly, determining the upper boundary and the lower boundary according to the preset interval number and the output value of the upper boundary and the lower boundary at each interval endpoint described in step S2013 may include:
在获取到低光区间的端点处的输出值和高光区间的端点出的输出值之后,根据式5获取上界线up_line在各区间的曲线;After obtaining the output value at the end point of the low-light interval and the output value at the end point of the high-light interval, obtain the curve of the upper boundary line up_line in each interval according to formula 5;
以及,所述下界线down_line设置为斜率为1的直线。And, the lower boundary line down_line is set as a straight line with a slope of 1.
具体地,参见图4,上界线up_line和下界线down_line均包含四个区间,如式6所示:Specifically, referring to Fig. 4, both the upper boundary line up_line and the lower boundary line down_line contain four intervals, as shown in formula 6:
每一段都可以使用一次曲线,二次曲线,甚至N次曲线来设计,但是一定需要保证导数为正。Each segment can be designed using a curve of degree one, degree two, or even degree N, but it must be ensured that the derivative is positive.
在本实施例中,下界线down_line设计为γ值等于1.0的gamma曲线,也就是斜率为1的直线,所以A-E段都是一个表达式:y=x;In this embodiment, the lower boundary line down_line is designed as a gamma curve with a gamma value equal to 1.0, that is, a straight line with a slope of 1, so the A-E sections are all an expression: y=x;
上界线up_line设计为γ值等于1.5,g_thr为0.66的曲线基,并确定定下B、D坐标。因此,AB段,BC段和CD段均为直线,DE段为曲线。如公式6所示。C点为上界线up_line和下界线down_line的交汇点,本实施例中取512。The upper boundary line up_line is designed as a curve base with γ value equal to 1.5 and g_thr as 0.66, and the B and D coordinates are determined. Therefore, segments AB, BC, and CD are straight lines, and segment DE is curved. As shown in Equation 6. Point C is the intersection of the upper boundary line up_line and the lower boundary line down_line, which is 512 in this embodiment.
在得到上界线up_line和下界线down_line之后,对于步骤S2014所述的按照预设的拟合算法以及所述上界线和所述下界线获取所述自适应曲线,可以包括:After obtaining the upper boundary line up_line and the lower boundary line down_line, obtaining the adaptive curve according to the preset fitting algorithm and the upper boundary line and the lower boundary line described in step S2014 may include:
根据所述上界线up_line和所述下界线down_line以及式7获取所述自适应曲线LUT;Obtain the adaptive curve LUT according to the upper boundary line up_line and the lower boundary line down_line and formula 7;
其中,mean_up为1024;并且表达式clip3(mean,0,mean_up)表示:当mean<0时,表达式的值为0,当mean>mean_up时,表达式的值为mean_up;当0<mean<mean_up时,表达式的值为mean。Among them, mean_up is 1024; and the expression clip3(mean,0,mean_up) means: when mean<0, the value of the expression is 0, when mean>mean_up, the value of the expression is mean_up; when 0<mean< When mean_up, the value of the expression is mean.
可以理解地,这里的自适应曲线LUT就是图4中所示的虚线,用于表示HDR视频帧的Y分量与处理之后的Y分量之间的对应关系,因此,可以将HDR视频帧的Y分量作为虚线的输入值,那么相应的输出值就是步骤S102所述的根据自适应曲线对HDR视频帧的Y分量进行调整,输出处理后的Y分量。Understandably, the adaptive curve LUT here is the dotted line shown in Figure 4, which is used to represent the correspondence between the Y component of the HDR video frame and the processed Y component, therefore, the Y component of the HDR video frame can be As the input value of the dotted line, the corresponding output value is the step S102 of adjusting the Y component of the HDR video frame according to the adaptive curve, and outputting the processed Y component.
示例性地,参见图8,对于S203所述的将所述HDR视频帧的C分量按照预设的映射关系进行转换后,再将转换后的C分量按照预设的颜色区间进行颜色饱和度增强,得到处理后的C分量,具体可以包括:For example, referring to FIG. 8, after converting the C component of the HDR video frame according to the preset mapping relationship described in S203, the color saturation of the converted C component is enhanced according to the preset color interval. , to obtain the processed C component, which can specifically include:
S2031:按照预设的转换矩阵将C分量由BT2020域转换到BT709域;S2031: Convert the C component from the BT2020 domain to the BT709 domain according to a preset conversion matrix;
S2032:根据预设的颜色区间以及各颜色区间对应的增强系数对转换后的C分量进行饱和度增强,得到处理后的C分量。S2032: Perform saturation enhancement on the converted C component according to preset color intervals and enhancement coefficients corresponding to each color interval, to obtain a processed C component.
具体地,对于步骤S2031,可以通过式8进行YUV BT2020域到BT709域的转换:Specifically, for step S2031, the conversion from the YUV BT2020 domain to the BT709 domain can be performed by formula 8:
在本实施例中,转换矩阵可以为可以理解地,本领域技术人员可以根据实际情况及需求选取不同的转换矩阵,本实施例不做赘述。In this example, the transformation matrix can be It can be understood that those skilled in the art may select different transformation matrices according to actual conditions and requirements, and details are not described in this embodiment.
对于步骤S2032,预设的颜色区间可以为6个颜色区间,可以包括红、黄、绿、蓝绿、蓝、品红;不同的颜色区间所对应的饱和度增强系数gain依次对应分别为:164,164,196,164,196,164。For step S2032, the preset color range can be 6 color ranges, including red, yellow, green, blue-green, blue, and magenta; the saturation enhancement coefficients corresponding to different color ranges are respectively: 164 , 164, 196, 164, 196, 164.
因此,将转换后的C分量按照式9进行饱和度增强,得到处理后的C分量。Therefore, saturation enhancement is performed on the converted C component according to Equation 9 to obtain a processed C component.
其中,cb_in为经过式8转换后的cb;cr_in为经过式8转换后的cr。Among them, cb_in is cb converted by formula 8; cr_in is cr converted by formula 8.
本实施例提供了一种视频帧的处理方法,将HDR视频帧的Y分量和C分量分别通过自适应曲线和颜色饱和度增强处理,使得处理后的视频帧在SDR显示器播放时,产生HDR的效果。This embodiment provides a method for processing a video frame. The Y component and the C component of the HDR video frame are respectively processed through an adaptive curve and color saturation enhancement, so that when the processed video frame is played on an SDR display, an HDR image is produced. Effect.
实施例二Embodiment two
基于前述实施例相同的技术构思,参见图9,其示出了本发明实施例提供的一种视频帧的处理装置90,所述装置90包括:确定单元901、Y分量调整单元902和C分量处理单元903;其中,Based on the same technical idea of the previous embodiments, see FIG. 9 , which shows a video frame processing device 90 provided by an embodiment of the present invention. The device 90 includes: a determination unit 901, a Y component adjustment unit 902 and a C component processing unit 903; wherein,
所述确定单元901,用于根据高动态范围HDR视频帧的Y分量确定所述HDR视频帧对应的自适应曲线;The determining unit 901 is configured to determine an adaptive curve corresponding to the HDR video frame according to the Y component of the high dynamic range HDR video frame;
所述Y分量调整单元902,用于根据所述自适应曲线对所述HDR视频帧的Y分量进行调整,输出处理后的Y分量;The Y component adjustment unit 902 is configured to adjust the Y component of the HDR video frame according to the adaptive curve, and output the processed Y component;
所述C分量处理单元903,用于将所述HDR视频帧的C分量按照预设的映射关系进行转换后,再将转换后的C分量按照预设的颜色区间进行颜色饱和度增强,得到处理后的C分量。The C component processing unit 903 is configured to convert the C component of the HDR video frame according to a preset mapping relationship, and then enhance the color saturation of the converted C component according to a preset color interval, and obtain the processed After the C component.
在上述方案中,所述确定单元901,用于根据所述HDR视频帧的Y分量获取所述HDR视频帧的元数据;其中,所述元数据用于指示所述HDR视频帧的特征信息;In the above solution, the determining unit 901 is configured to acquire metadata of the HDR video frame according to the Y component of the HDR video frame; wherein the metadata is used to indicate feature information of the HDR video frame;
以及,根据所述HDR视频帧的元数据以及预设的区间数目获取上界线和下界线在各区间端点处的输出值;And, according to the metadata of the HDR video frame and the preset number of intervals, the output values of the upper boundary line and the lower boundary line at the endpoints of each interval are obtained;
以及,根据预设的区间数目以及上界线和下界线在各区间端点处的输出值确定上界线和下界线;And, determine the upper boundary line and the lower boundary line according to the preset number of intervals and the output values of the upper boundary line and the lower boundary line at the endpoints of each interval;
以及,按照预设的拟合算法以及所述上界线和所述下界线获取所述自适应曲线。And, the adaptive curve is acquired according to a preset fitting algorithm and the upper boundary line and the lower boundary line.
在上述方案中,所述HDR视频帧的元数据为所述HDR帧的亮度均值。In the above solution, the metadata of the HDR video frame is the average brightness value of the HDR frame.
在上述方案中,所述确定单元901,用于:In the above solution, the determining unit 901 is configured to:
根据所述HDR帧的亮度均值以及式10进行伽马gamma转换,获得gamma输出值;Perform gamma gamma conversion according to the brightness mean value of the HDR frame and formula 10 to obtain a gamma output value;
其中,input为输入的HDR帧的亮度均值,output为gamma输出值,γ为gamma扭曲系数;Among them, input is the average brightness value of the input HDR frame, output is the gamma output value, and γ is the gamma distortion coefficient;
以及,根据式11获取gamma输出值的导数gradient[n];And, obtain the derivative gradient[n] of the gamma output value according to formula 11;
其中,n为区间内的点序号;Among them, n is the point number in the interval;
以及,根据gamma输出值的导数以及预设的低光划分门限获取低光区间的端点处的输出值;And, obtain the output value at the end point of the low-light interval according to the derivative of the gamma output value and the preset low-light division threshold;
以及,根据高光区间与低光区间之间的对称关系以及低光区间的端点处的输出值,获取高光区间的端点出的输出值。And, according to the symmetrical relationship between the high light interval and the low light interval and the output value at the end point of the low light interval, the output value at the end point of the high light interval is acquired.
在上述方案中,所述确定单元901,用于:In the above solution, the determining unit 901 is configured to:
在获取到低光区间的端点处的输出值和高光区间的端点出的输出值之后,根据式12获取上界线up_line在各区间的曲线;After obtaining the output value at the end point of the low-light interval and the output value at the end point of the high-light interval, obtain the curve of the upper boundary line up_line in each interval according to formula 12;
其中,Δy1表示的是低光区间的output的差值;Δy2表示中光区间的output的差值;中光区间的中点就是上界线和下界线的交汇点;Among them, Δy 1 represents the output difference in the low-light interval; Δy 2 represents the output difference in the medium-light interval; the midpoint of the medium-light interval is the intersection point of the upper boundary line and the lower boundary line;
以及,所述下界线down_line设置为斜率为1的直线。And, the lower boundary line down_line is set as a straight line with a slope of 1.
在上述方案中,所述确定单元901,用于:In the above solution, the determining unit 901 is configured to:
根据所述上界线up_line和所述下界线down_line以及式13获取所述自适应曲线LUT;Obtain the adaptive curve LUT according to the upper boundary line up_line and the lower boundary line down_line and formula 13;
其中,mean_up为1024;并且表达式clip3(mean,0,mean_up)表示:当mean<0时,表达式的值为0,当mean>mean_up时,表达式的值为mean_up;当0<mean<mean_up时,表达式的值为mean。Among them, mean_up is 1024; and the expression clip3(mean,0,mean_up) means: when mean<0, the value of the expression is 0, when mean>mean_up, the value of the expression is mean_up; when 0<mean< When mean_up, the value of the expression is mean.
在上述方案中,所述C分量处理单元903,用于:In the above solution, the C component processing unit 903 is configured to:
按照预设的转换矩阵将C分量由BT2020域转换到BT709域;Convert the C component from the BT2020 domain to the BT709 domain according to the preset conversion matrix;
以及,根据预设的颜色区间以及各颜色区间对应的增强系数对转换后的C分量进行饱和度增强,得到处理后的C分量。And, performing saturation enhancement on the converted C component according to preset color intervals and enhancement coefficients corresponding to each color interval, to obtain a processed C component.
本实施例提供了一种视频帧的处理装置90,将HDR视频帧的Y分量和C分量分别通过自适应曲线和颜色饱和度增强处理,使得处理后的视频帧在SDR显示器播放时,产生HDR的效果。This embodiment provides a video frame processing device 90, which processes the Y component and the C component of the HDR video frame through an adaptive curve and color saturation enhancement processing respectively, so that when the processed video frame is played on an SDR display, HDR Effect.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610798824.7A CN107786865B (en) | 2016-08-31 | 2016-08-31 | A kind for the treatment of method and apparatus of video frame |
PCT/CN2017/082524 WO2018040599A1 (en) | 2016-08-31 | 2017-04-28 | Method and device for processing video frame, and computer-readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610798824.7A CN107786865B (en) | 2016-08-31 | 2016-08-31 | A kind for the treatment of method and apparatus of video frame |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107786865A true CN107786865A (en) | 2018-03-09 |
CN107786865B CN107786865B (en) | 2019-11-26 |
Family
ID=61299953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610798824.7A Active CN107786865B (en) | 2016-08-31 | 2016-08-31 | A kind for the treatment of method and apparatus of video frame |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107786865B (en) |
WO (1) | WO2018040599A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109327734A (en) * | 2018-11-27 | 2019-02-12 | 成都索贝数码科技股份有限公司 | A method for down-converting HDR video to SDR video based on dynamic metering |
CN110691277A (en) * | 2018-07-05 | 2020-01-14 | 华为技术有限公司 | Video signal processing method and device |
CN113906497A (en) * | 2019-05-24 | 2022-01-07 | 交互数字Ce专利控股公司 | Apparatus and method for transitioning between brightness levels |
CN113989161A (en) * | 2021-11-11 | 2022-01-28 | 深圳市中渤光电有限公司 | Method for realizing dynamic nonlinear adjustment of high contrast of video picture based on FPGA algorithm prediction |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101707666A (en) * | 2009-11-26 | 2010-05-12 | 北京中星微电子有限公司 | Adjusting method and device with high dynamic range |
CN101916555A (en) * | 2010-07-26 | 2010-12-15 | 武汉大学 | A method for displaying and reproducing high dynamic range images |
CN103024300A (en) * | 2012-12-25 | 2013-04-03 | 华为技术有限公司 | Device and method for high dynamic range image display |
CN103327323A (en) * | 2012-03-14 | 2013-09-25 | 杜比实验室特许公司 | Efficient tone-mapping of high-bit-depth video to low-bit-depth display |
CN103747225A (en) * | 2014-01-23 | 2014-04-23 | 福州大学 | High-dynamic-range image dual-screen display method based on color space switching |
CN104618700A (en) * | 2015-01-29 | 2015-05-13 | 电子科技大学 | Enhanced display method for color high dynamic range image |
CN105744378A (en) * | 2016-02-15 | 2016-07-06 | 深圳Tcl数字技术有限公司 | Video playing method and device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101082992A (en) * | 2007-07-06 | 2007-12-05 | 浙江大学 | Drawing of real time high dynamic range image and display process |
CN101901475B (en) * | 2010-06-12 | 2011-10-05 | 北京理工大学 | Tone Mapping Method for High Dynamic Range Image Based on Adaptive Retina Model |
CN103295194B (en) * | 2013-05-15 | 2015-11-04 | 中山大学 | Brightness-controllable and detail-preserving tone mapping method |
CN104408752B (en) * | 2014-12-11 | 2017-07-04 | 西安电子科技大学 | A kind of high dynamic range images compression method based on mixed shades mapping algorithm |
-
2016
- 2016-08-31 CN CN201610798824.7A patent/CN107786865B/en active Active
-
2017
- 2017-04-28 WO PCT/CN2017/082524 patent/WO2018040599A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101707666A (en) * | 2009-11-26 | 2010-05-12 | 北京中星微电子有限公司 | Adjusting method and device with high dynamic range |
CN101916555A (en) * | 2010-07-26 | 2010-12-15 | 武汉大学 | A method for displaying and reproducing high dynamic range images |
CN103327323A (en) * | 2012-03-14 | 2013-09-25 | 杜比实验室特许公司 | Efficient tone-mapping of high-bit-depth video to low-bit-depth display |
CN103024300A (en) * | 2012-12-25 | 2013-04-03 | 华为技术有限公司 | Device and method for high dynamic range image display |
CN103747225A (en) * | 2014-01-23 | 2014-04-23 | 福州大学 | High-dynamic-range image dual-screen display method based on color space switching |
CN104618700A (en) * | 2015-01-29 | 2015-05-13 | 电子科技大学 | Enhanced display method for color high dynamic range image |
CN105744378A (en) * | 2016-02-15 | 2016-07-06 | 深圳Tcl数字技术有限公司 | Video playing method and device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110691277A (en) * | 2018-07-05 | 2020-01-14 | 华为技术有限公司 | Video signal processing method and device |
US11750785B2 (en) | 2018-07-05 | 2023-09-05 | Huawei Technologies Co., Ltd. | Video signal processing method and apparatus |
CN110691277B (en) * | 2018-07-05 | 2024-03-05 | 华为技术有限公司 | Video signal processing method and device |
CN109327734A (en) * | 2018-11-27 | 2019-02-12 | 成都索贝数码科技股份有限公司 | A method for down-converting HDR video to SDR video based on dynamic metering |
CN109327734B (en) * | 2018-11-27 | 2020-11-13 | 成都索贝数码科技股份有限公司 | Method for down-converting HDR video to SDR video based on dynamic photometry |
CN113906497A (en) * | 2019-05-24 | 2022-01-07 | 交互数字Ce专利控股公司 | Apparatus and method for transitioning between brightness levels |
US12211463B2 (en) | 2019-05-24 | 2025-01-28 | Interdigital Ce Patent Holdings | Device and method for transition between luminance levels |
CN113989161A (en) * | 2021-11-11 | 2022-01-28 | 深圳市中渤光电有限公司 | Method for realizing dynamic nonlinear adjustment of high contrast of video picture based on FPGA algorithm prediction |
CN113989161B (en) * | 2021-11-11 | 2025-02-14 | 深圳市中渤光电有限公司 | A method for realizing dynamic nonlinear adjustment of high contrast of video images based on FPGA algorithm prediction |
Also Published As
Publication number | Publication date |
---|---|
CN107786865B (en) | 2019-11-26 |
WO2018040599A1 (en) | 2018-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI734978B (en) | Method and apparatus for performing tone-mapping of high-dynamic-range video | |
CN107154059B (en) | High dynamic range video processing method | |
JP6663214B2 (en) | Display method and display device | |
CN101141595B (en) | Image correction method and apparatus | |
CN101075428B (en) | Multi-segment Gamma Curve Correction Method | |
CN101507258B (en) | Gamut mapping method and equipment, related receiver and camera | |
US10332481B2 (en) | Adaptive display management using 3D look-up table interpolation | |
CN103747225B (en) | Based on the high dynamic range images double-screen display method of color space conversion | |
CN101860763B (en) | Video signal processing device and display apparatus | |
CN107786865B (en) | A kind for the treatment of method and apparatus of video frame | |
JP2006146178A (en) | Generation method of transfer curve for adaptive contrast improvement | |
JP2010257100A (en) | Image processing apparatus and image processing method | |
JP5878586B2 (en) | Image color adjustment method and electronic apparatus therefor | |
CN116167950B (en) | Image processing method, device, electronic equipment and storage medium | |
JP6190482B1 (en) | Display control device, display device, television receiver, display control device control method, control program, and recording medium | |
US8284316B2 (en) | Real-time image processing circuit capable of enhancing brightness contrast and color saturation | |
CN111031301A (en) | Method for adjusting color gamut space, storage device and display terminal | |
CN104599241B (en) | The colour consistency method that full automatic high efficiency calculates | |
JP6860415B2 (en) | Video signal converter, dynamic range converter and their programs | |
TWI697873B (en) | Image saturation adjusting method and device | |
KR101634652B1 (en) | Method and apparatus for intensificating contrast in image | |
CN103517048B (en) | Adaptive edge strengthens | |
WO2018003665A1 (en) | Image processing device, image processing method, control program, and recording medium | |
US10419709B2 (en) | Video processing device, transmitting device, control program, and recording medium | |
WO2019044171A1 (en) | Image processing device, display device, image processing method, control program, and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221021 Address after: 610213 Industrial land in Southwest Airport Industrial Development Zone, Shuangliu District, Chengdu, Sichuan Patentee after: Chengdu Kress Semiconductor Technology Co.,Ltd. Address before: No.1 Factory building, Dameisha, Yantian District, Shenzhen, Guangdong 518085 Patentee before: SANECHIPS TECHNOLOGY Co.,Ltd. |