CN107783422A - Using the gun laying systems stabilisation control method of inertial navigation - Google Patents

Using the gun laying systems stabilisation control method of inertial navigation Download PDF

Info

Publication number
CN107783422A
CN107783422A CN201710981184.8A CN201710981184A CN107783422A CN 107783422 A CN107783422 A CN 107783422A CN 201710981184 A CN201710981184 A CN 201710981184A CN 107783422 A CN107783422 A CN 107783422A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710981184.8A
Other languages
Chinese (zh)
Other versions
CN107783422B (en
Inventor
李伟
任海波
韩耀鹏
位红军
孔祥宣
张光辉
林子琦
王永梅
刘妙
刘攀玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute Of Mechanical And Electrical Engineering
Original Assignee
Northwest Institute Of Mechanical And Electrical Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute Of Mechanical And Electrical Engineering filed Critical Northwest Institute Of Mechanical And Electrical Engineering
Priority to CN201710981184.8A priority Critical patent/CN107783422B/en
Publication of CN107783422A publication Critical patent/CN107783422A/en
Application granted granted Critical
Publication of CN107783422B publication Critical patent/CN107783422B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G5/00Elevating or traversing control systems for guns
    • F41G5/14Elevating or traversing control systems for guns for vehicle-borne guns
    • F41G5/24Elevating or traversing control systems for guns for vehicle-borne guns for guns on tanks

Abstract

The invention provides a kind of gun laying systems stabilisation control method using inertial navigation, gathers the tri-axis angular rate measured by inertial navigation gyro group first and changes to the angular speed under earth coordinates;Then height and orientation under car body system are calculated and turns angular speed, gun turret pitching and rolling angle rate and car body course angular speed;Secondly, receive stability contorting instruction, collection position feedback, control driver to work in speed-regulating mode when significantly turning;Put into the laggard line position of stable mode, feedforward control, rate stabilization, the control of speed interference compensation, control driver work in electric current or torque mode;Report and aim at after lasting accuracy is reached.Control accuracy of the present invention is high, has saved cost, has improved reliability.

Description

Using the gun laying systems stabilisation control method of inertial navigation
Technical field
The invention belongs to fire zone open field, relates generally to need precise and stable, tracking fire zone open Control method.
Background technology
With the development evolvement of military struggle, there is an urgent need to Suppressed Weapons to possess marching fire for new Military Operational Requirement Ability, it is necessary to self-propelled gun can carry out it is dynamic to quiet, dynamic to dynamic combat duty.So cannon is needed in sighting stabilization system Under control, first, overcoming car body to be disturbed due to the road surface of walking to caused by car body;Second, cannon will follow the tracking of fire control to take aim at Standard turns instruction.Such function is accomplished already in the big gun control system of tank armament or amphibious asault gun.But Tank gun control System employs reel cage combination gyro group, car body/gun turret gyro group completes the steady aim of cannon, and is equipped with inertial navigation system jointly System, on car body, for running inertial navigation.Wherein, reel cage combination gyro group by two groups of twin shaft rate gyroscopes and Two groups of single shaft rate gyroscopes composition, for measuring motion state of the tank gun in space, complete tank gun height to and orientation The control of steady aim automatically and manually of servo;Car body/gun turret gyro group is that three single shaft rate gyroscope groups are used to measure car Body course, the pitching of gun turret and rolling angle rate, for big gun control system speed disturb feedforward compensation, make big gun control system reach or Better than height to 0.8mil and orientation 1.5mil lasting accuracy.But the gyro that tank gun control system is configured is too many, letter Redundancy is ceased, cost is too high, and reliability is relatively low, and the inertial navigation of high value does not utilize well, the big gun control system of this quasi-tradition Scheme, it is not suitable in certain self-propelled gun armament systems of modern Suppressed Weapons.
With inertial navigation (SINS) technological progress, its precision improves and cost reduces, long-time stability and shock resistance Ability greatly improves, by SINS be arranged on direct measurement earth coordinates on the barrel of self-propelled gun sensing be it is modern voluntarily The standard configuration of cannon.The servomechanism of self-propelled gun realizes using SINS directions and attitude value as the angle feed-back of servomechanism Direct control of the cannon under earth coordinates, improves gun aiming accuracy.But the control coordinate and SINS of servomechanism Coupling be present in measuring coordinate disunity, the height and azimuth control system for causing control system.Launched for parked Self-propelled gun is solved using such as quaternary number, the coordinate transform of Euler's horn cupping or serials control.It is but running certainly for needs Row cannon needs use to suppress vehicle disturbance, and and can solves the new method for controlling coupled problem very well.
The content of the invention
For overcome the deficiencies in the prior art, the present invention provides a kind of gun laying systems stabilisation control using inertial navigation Method processed, retain the side angle device of traditional fire zone open composition, using SINS, height side angle device and orientation side angle device, use Space coordinate transformation obtains the pitching of gun turret and traverses angular speed, and the angular speed in car body course, and systems stabilisation is using compound Control method realizes the high-accuracy stable tracing control of cannon.The present invention uses space angles of the SINS as fire zone open With inertial space angular speed velocity feedback device, suppress the disturbance pointed to gun barrel of vehicle body attitude and just to and orientation Coupled to servo-actuated control, realize the high-accuracy stable tracking and controlling method problem of cannon;Utilize SINS direct measurement cannon bodies Pipe is pointed to, and improves and points to control accuracy, and self-propelled gun armament systems can be made to complete autonomous positioning navigation feature again.
The technical solution adopted for the present invention to solve the technical problems comprises the following steps:
(1) setting speed ring controls the initial value for controlling step number k of compensation to increase one by one for 0, k;The control of setting speed ring is mended The controlling cycle T repaids=1ms;
(2) the tri-axis angular rate ω measured by inertial navigation gyro group is gatheredp(k)=[ωpx(k) ωpy(k) ωpz (k)]T
(3) calculate course of the barrel under geodetic coordinates and bring up and turn angular speed
Wherein,For course angle, the angle of pitch and the roll angle of SINS outputs;J is that position ring calculates step number;
(4) the measured value β of direction side angle device and height side angle device is gatheredb(k),εb(k);Extracted using nonlinear observer Gun turret is on car body, cannon turns angular speed on gun turret
Whereine1(k),e2(k) it is observation error, α, δ are respectively fal functions Parameter 0.01≤α≤1,0.01≤δ≤1, β11122122Respectively single order, the second order of direction side angle device and height side angle device Gain, z11(k)、z21(k) it is respectively βb(k),εb(k) estimate, z12(k)、z22(k) it is respectivelyEstimate;
(5) pitching and the rolling angle rate ω of gun turret are calculatedhx(k),ωhy(k):
(6) the course angular speed of car body is calculated
(7) what setting position controlled controls step number j initial value to increase one by one for 0, j, and the controlling cycle that position controls is 10ms;Judge k values, if k is 10 multiple, performs (8) step, otherwise jump to (18) step;
(8) course, posture and the roll angle of inertial navigation are received
(9) the gun laying control instruction ψ under geodetic coordinates is receivedref(j),θref(j), comprisingWherein, ψref(j),θref(j) it is respectively course and attitude angle;
(10) judge to adjust big gun control error eβ(j)=ψref(j)-ψ (j) and eε(j)=θref(j)-θ (j), if adjusting big gun control Error eβ(j)≥eβmaxOr eε(j)≥eεmax, it is transferred to step (11);Otherwise, it is transferred to step (14);
(11) rate control instruction that the orientation under significantly turning is servo-actuated servo-driver is calculated
Wherein:kFor radical sign e control coefrficients;umaxsβAnd uminsβFor the upper and lower bound of PI controllers output;
(12) rate control instruction that the height under significantly turning is servo-actuated servo-driver is calculated
Wherein:kFor radical sign e control coefrficients;umaxsεAnd uminsεFor the upper and lower bound of controller output;
(13) setting driver is operated in speed-regulating mode, is sent out respectively to orientation and height servo-driver by CAN Send rate control instruction
(14) the feedforward control amount u of computer azimuth and high and low position control system(j),u(j)
Wherein, k,kThe respectively feedforward controller coefficient in orientation and height system;
(15) height and orientation disturbance velocity compensation rate u are calculated(j),u(j):
Wherein,The interference speed that respectively height and orientation are servo-actuated;kdβ1,kdβ2,kdβ3Respectively direction compensator Coefficient of colligation;kdε1,kdε2,kdε3, the respectively coefficient of colligation of height compensator;
(16) rate control instruction that the orientation under stable condition is servo-actuated servo-driver is calculated
upsβ(j)=Kpsβe(j)
upresatsβ(j)=upsβ(j)+uisβ(j)+u(j)+u(j)
Wherein:upsβ(j) it is ratio control item;uisβ(j) it is integration control item;uimaxsβAnd uiminsβIt is defeated for integral controller The upper and lower bound gone out, uimaxsβ=max (0, umaxsβ-upeβ(j)), uiminsβ=min (uminsβ-upeβ(j),0);KpsβFor PI ratios Example control coefrficient;KisβFor integral coefficient;
(17) rate control instruction that the height under stable condition is servo-actuated servo-driver is calculated
upsε(j)=Kpsεe(j)
upresatsε(j)=upsε(j)+uisε(j)+u(j)+u(j)
Wherein:upsε(j) it is ratio control item;uisε(j) it is integration control item;uimaxsεAnd uiminsεIt is defeated for integral controller The upper and lower bound gone out, uimaxsε=max (umaxsε-upsε(j), 0), uiminsε=min (uminsε-upsε(j),0);KpsεFor PI ratios Example control coefrficient;KisεFor integral coefficient;
(18) the current control instruction that the orientation under stable condition is servo-actuated servo-driver is calculated
upcβ(k)=Kpcβe(k)
upresatcβ(k)=upcβ(k)+uicβ(k)
Wherein:upcβ(j) it is ratio control item;uicβ(j) it is integration control item;umaxcβAnd umincβExported for PI controllers Upper and lower bound, uimaxcβAnd uimincβFor the upper and lower bound of integral controller output, uimaxcβ=max (0, umaxcβ-upeβ (k)), uimincβ=min (umincβ-upeβ(k),0);KpcβFor PI proportional control factors;KicβFor integral coefficient;iβFor Amimuth Transmission Speed reducing ratio;
(19) the current control instruction that the height under stable condition is servo-actuated servo-driver is calculated
upcε(k)=Kpcεe(k)
upresatcε(k)=upcε(k)+uicε(k)
Wherein:upcε(j) it is ratio control item;uicε(j) it is integration control item;umaxcεAnd umincεExported for PI controllers Upper and lower bound, uimaxcεAnd uimincεFor the upper and lower bound of integral controller output, uimaxcε=max (umaxcε-upcε(k), 0), uimincε=min (umincε-upcε(k),0);KpcεFor PI proportional control factors;KicεFor integral coefficient;iεPassed to be just servo-actuated Dynamic speed reducing ratio;
(20) setting driver is operated in torque mode, and current-order is sent to servo-driver by CAN;
(21) if eβ(j) < eβmin,eε(j) < eεmin, the state of aiming is reported to layer by CAN.
The beneficial effects of the invention are as follows:It is high to play the precision that inertial navigation measurement gun barrel points under earth coordinates Advantage, and effectively overcome attitude of carrier and control interference, and the control coupling that height and orientation are servo-actuated are pointed to gun barrel Conjunction problem, realize stabilization, tracing control that high-precision gun barrel points to, be not easy by the self-propelled gun carrier speed of service and The influence of environment (land, sea), angular speed and interference are not additionally turned using corresponding rate gyroscope measurement barrel Angular speed, cost is saved, improved the reliability of system.
Brief description of the drawings
Fig. 1 is the control principle drawing of the present invention;
Fig. 2 is the control transmission function structure chart of the present invention;
Fig. 3 is the calculation flow chart of the present invention.
Embodiment
The present invention is further described with reference to the accompanying drawings and examples, and the present invention includes but are not limited to following implementations Example.
The present invention implement the step of be:
(1) control is started, it is k to control step number, and the control of setting speed ring compensates, i.e. controlling cycle Ts=1ms,
K=k+1
The initial value for taking k is 0;
(2) the tri-axis angular rate ω measured by inertial navigation gyro group is gatheredp(k)=[ωpx(k) ωpy(k) ωpz (k)]T
(3) calculate barrel and turn angular speed under geodetic coordinates
Wherein:For course angle, the angle of pitch and the roll angle of SINS outputs;J is that position ring calculates step number;
(4) the measured value β of direction side angle device and height side angle device is gatheredb(k),εb(k);Extracted using nonlinear observer Gun turret is on car body, cannon turns angular speed on gun turret
Whereine1(k),e2(k) it is observation error, α, δ are respectively fal functions Parameter, β11122122The respectively single order of observer, second-order gain.
(5) pitching and the rolling angle rate ω of gun turret are calculatedhx(k),ωhy(k):
(6) the course angular speed r (k) of car body is calculated:
(7) if k is 10 multiple, (8) step is performed, otherwise jumps to (18) step;
J=j+1
Wherein j initial value is 0, and this is the cycle 10ms of position control;
(8) course and the attitude angle of inertial navigation are received
(9) the gun laying control instruction ψ under geodetic coordinates is receivedref(j),θref(j), comprising
(10) big gun control error judgment is adjusted:
eβ(j)=ψref(j)-ψ(j)
eε(j)=θref(j)-θ(j)
If adjust big gun control error eβ(j)≥eβmaxOr eε(j)≥eεmax, it is transferred to (11);Otherwise, it is transferred to (14);
(11) rate control instruction that the orientation under significantly turning is servo-actuated servo-driver is calculated
Wherein:kFor radical sign e control coefrficients;umaxsβAnd uminsβFor the upper and lower bound of PI controllers output;
(12) rate control instruction that the height under significantly turning is servo-actuated servo-driver is calculated
Wherein:kFor radical sign e control coefrficients;umaxsεAnd uminsεFor the upper and lower bound of controller output;
(13) setting driver is operated in speed-regulating mode, is sent out respectively to orientation and height servo-driver by CAN Send rate control instruction
(14) the feedforward control amount u of computer azimuth and high and low position control system(j),u(j)
Wherein, k,kThe respectively feedforward controller coefficient in orientation and height system;
(15) height and orientation disturbance velocity compensation rate u are calculated(j),u(j):
Wherein,The interference speed that respectively height and orientation are servo-actuated;kdβ1,kdβ2,kdβ3, respectively orientation compensates The coefficient of colligation of device;kdε1,kdε2,kdε3, the respectively coefficient of colligation of height compensator;
(16) rate control instruction that the orientation under stable condition is servo-actuated servo-driver is calculated
upsβ(j)=Kpsβe(j)
upresatsβ(j)=upsβ(j)+uisβ(j)+u(j)+u(j)
Wherein:upsβ(j) it is ratio control item;uisβ(j) it is integration control item;uimaxsβAnd uiminsβIt is defeated for integral controller The upper and lower bound gone out, uimaxsβ=max (0, umaxsβ-upeβ(j)), uiminsβ=min (uminsβ-upeβ(j),0);KpsβFor PI ratios Example control coefrficient;KisβFor integral coefficient;
(17) rate control instruction that the height under stable condition is servo-actuated servo-driver is calculated
upsε(j)=Kpsεe(j)
upresatsε(j)=upsε(j)+uisε(j)+u(j)+u(j)
Wherein:upsε(j) it is ratio control item;uisε(j) it is integration control item;uimaxsεAnd uiminsεIt is defeated for integral controller The upper and lower bound gone out, uimaxsε=max (umaxsε-upsε(j), 0), uiminsε=min (uminsε-upsε(j),0);KpsεFor PI ratios Example control coefrficient;KisεFor integral coefficient;
(18) the current control instruction that the orientation under stable condition is servo-actuated servo-driver is calculated
upcβ(k)=Kpcβe(k)
upresatcβ(k)=upcβ(k)+uicβ(k)
Wherein:upcβ(j) it is ratio control item;uicβ(j) it is integration control item;umaxcβAnd umincβExported for PI controllers Upper and lower bound, uimaxcβAnd uimincβFor the upper and lower bound of integral controller output, uimaxcβ=max (0, umaxcβ-upeβ (k)), uimincβ=min (umincβ-upeβ(k),0);KpcβFor PI proportional control factors;KicβFor integral coefficient;iβFor Amimuth Transmission Speed reducing ratio;
(19) the current control instruction that the height under stable condition is servo-actuated servo-driver is calculated
upcε(k)=Kpcεe(k)
upresatcε(k)=upcε(k)+uicε(k)
Wherein:upcε(j) it is ratio control item;uicε(j) it is integration control item;umaxcεAnd umincεExported for PI controllers Upper and lower bound, uimaxcεAnd uimincεFor the upper and lower bound of integral controller output, uimaxcε=max (umaxcε-upcε(k), 0), uimincε=min (umincε-upcε(k),0);KpcεFor PI proportional control factors;KicεFor integral coefficient;iεPassed to be just servo-actuated Dynamic speed reducing ratio;
(20) setting driver is operated in torque mode, and current-order is sent to servo-driver by CAN;
(21) if eβ(j) < eβmin,eε(j) < eεmin, the state of aiming is reported to layer by CAN.
The control principle of the present invention is shown in Fig. 1.The absolute angular speed turned in figure using SINS gyros group measurement gun barrel, It is that earth rotation angular speed, angular speed, the gun barrel of vehicle body attitude change turn the summation of angular speed with respect to car body.It is and right It is that gun barrel turns angular speed with respect to car body to control effective angular speed, other to can be seen as disturbing.SINS gyro group Angular speed velocity-stabilization closed loop can be formed with servo-driver, the speed for completing to aim at is directly stable.SINS course angle and Feedback of the attitude angle as sighting stabilization system position ring and the position closed loop under positioner composition earth coordinates.Pass through The serials control of control loop eliminates the interference of height and two control passages in orientation, so as to reach preferable steady aim essence Degree.Because the sighting system has cannon height low and orientation side angle device, barrel is measured respectively with respect to the gun turret pipe angle of pitch, gun turret With respect to bodywork's direction and position angle.Therefore, according to the angular speed of SINS gyro groups, the angle of site and orientation side angle, you can extrapolate influence fire The gun turret rolling angle rate and pitch rate of big gun sighting stabilization, and car body course angular speed.So as to convenient according to actual feelings Condition application design speed interference inverter, to improve gun laying lasting accuracy.
The control method substantially step:First, the tri-axis angular rate ω measured by inertial navigation gyro group is gatheredp(k), will It is changed to the angular speed under earth coordinatesThen, side angle device is gathered, calculates height and orientation under car body system Turn angular speedAnd calculate gun turret pitching and rolling angle rate ωhx(k),ωhy(k), and car body course angle is fast Rate r;Secondly, stability contorting instruction is received, collection position feedback, when significantly turning, control driver works in speed-regulating mode;Again Again, into stable mode is stablized, position, feedforward control is carried out, rate stabilization, the control of speed interference compensation, controls driver Work in electric current or torque mode;Finally, after lasting accuracy is reached, report and aim at.
The control transmission function structure of the present invention is shown in Fig. 2.In order to simplify transmission function, by SINS course angle and can bow Measurement of elevation is by being reduced toCoupled interference is considered as the various interference passed through;By height and the electric current control of bearing servo driving The closed loop of the compositions such as device processed, inverter, current regulating, electric current moment coefficient is reduced to first order inertial loopSide Position and the control of height speed ring areKpsβ,KpsεRespectively proportionality coefficient, Kisβ,KisεFor integration Coefficient;Orientation and the control of high and low position ring areKpcβ,KpcεRespectively proportionality coefficient, Kicβ,Kicε Respectively integral coefficient;Orientation and height feedforward controller are ks,kS, k,kIt is corresponding coefficient;Disturb speed feedforward Controller isf,fRespectively gain coefficient, T,TRespectively time constant, using bilinear transformation By its discretization.
Implement the cannon steady aim system of the control method mainly by steady aim control system, driving governing system, Dynamic power system.Steady aim control system uses the embedded computer based on x86.Governing system is driven with DSP28335 + CPLD is the control panel of core, and driving power electronics IPM (intelligent drives) controlled motor rotates.Orientation permagnetic synchronous motor (PMSM), busbar voltage 540VDC, number of pole-pairs np=3, rated current 175A, moment coefficient 0.46N.m/A, stator electricity Feel for 0.4mH, stator resistance is 3 milliohms, rated speed 5500RPM, nominal torque 79Nm, equivalent turn of rotor and load Dynamic inertia J summation is 0.03kgm2;Height PMSM, busbar voltage 540VDC, number of pole-pairs np=3, rated current 38A, turn Moment coefficient is 0.53N.m/A, stator inductance 0.706mH, and stator resistance is 0.12 Europe, rated speed 4200RPM, specified turn The equivalent moment of inertia J summations of square 38Nm, rotor and load are 0.0068kgm2.Orientation load rotating inertia is 5800kg·m2, transmission speed ratio 210.Height load rotating inertia is 900kgm2.Transmission speed ratio is 275.SINS angle speed Rate measurement range is ± 300 °/s, and heading measure precision is not more than 0.3mil, and attitude measurement accuracy is not more than 0.1mil.
Fig. 3 is the calculation flow chart of control method of the present invention, and specific implementation process is described in detail below in conjunction with flow chart.
(1) control is started, it is k to control step number, and the control of setting speed ring compensates, i.e. controlling cycle Ts=1ms,
K=k+1
The initial value for taking k is 0;
(2) the tri-axis angular rate ω measured by inertial navigation gyro group is gatheredp(k)=[ωpx(k) ωpy(k) ωpz (k)]T
(3) calculate barrel and turn angular speed under geodetic coordinates
Wherein:For course angle, the angle of pitch and the roll angle of SINS outputs;J is that position ring calculates step number;
(4) the measured value β of direction side angle device and height side angle device is gatheredb(k),εb(k);Extracted using nonlinear observer Gun turret is on car body, cannon turns angular speed on gun turret
Whereine1(k),e2(k) it is observation error, the parameter alphas of fal functions= 0.8, δ=0.1 is respectively;Single order, the second-order gain β of observer11=90, β12=1350, β21=90, β22=1350.
(5) pitching and the rolling angle rate ω of gun turret are calculatedhx(k),ωhy(k):
(6) the course angular speed r (k) of car body is calculated:
(7) if k is 10 multiple, (8) step is performed, otherwise jumps to (18) step;
J=j+1
Wherein j initial value is 0, and this is the cycle 10ms of position control;
(8) course and the attitude angle of inertial navigation are received
(9) the gun laying control instruction ψ under geodetic coordinates is receivedref(j),θref(j), comprising
(10) big gun control error judgment is adjusted:
eβ(j)=ψref(j)-ψ(j)
eε(j)=θref(j)-θ(j)
If adjust big gun control error eβ(j)≥eβmaxOr eε(j)≥eεmax, it is transferred to step (11);Otherwise, it is transferred to step (14);
(11) rate control instruction that the orientation under significantly turning is servo-actuated servo-driver is calculated
Wherein:Radical sign e control coefrficients k=11.3;The upper limit u of controller outputmaxsβ=6000 and lower limit uminsβ=- 6000;
(12) rate control instruction that the height under significantly turning is servo-actuated servo-driver is calculated
Wherein:Radical sign e control coefrficients k=6.5;The upper limit u of controller outputmaxsε=4500 and lower limit uminsε=- 4500;
(13) setting driver is operated in speed-regulating mode, is sent out respectively to orientation and height servo-driver by CAN Send rate control instruction
(14) the feedforward control amount u of computer azimuth and high and low position control system(j),u(j)
Wherein, feedforward controller coefficient k=2.06, k=2.46, respectively with orientation governing system and high governing system Transmission function association;
(15) height and orientation disturbance velocity compensation rate u are calculated(j),u(j):
Wherein,The interference speed that respectively height and orientation are servo-actuated;kdβ1=1.11, kdβ2=-2.3, kdβ3= 2.3 be respectively the coefficient of colligation of direction compensator;The coefficient of colligation k of height compensatordε1=1.11, kdε2=-1.56, kdε3= 1.56;
(16) rate control instruction that the orientation under stable condition is servo-actuated servo-driver is calculated
upsβ(j)=Kpsβe(j)
upresatsβ(j)=upsβ(j)+uisβ(j)+u(j)+u(j)
Wherein:The upper limit u of PI controllers outputmaxsβ=6000 and lower limit uminsβ=-6000, integral controller output Upper limit uimaxsβ=1000 and lower limit uiminsβ=-1000;PI proportional control factors Kpsβ=400, integral coefficient Kisβ=5;
(17) rate control instruction that the height under stable condition is servo-actuated servo-driver is calculated
upsε(j)=Kpsεe(j)
upresatsε(j)=upsε(j)+uisε(j)+u(j)+u(j)
Wherein:The upper limit u of PI controllers outputmaxsε=4500 and lower limit uminsε=-4500;Integral controller output Upper limit uimaxsε=1200 and lower limit uiminsε=-1200;For PI proportional control factors Kpsε=250, integral coefficient Kisε=1;
(18) the current control instruction that the orientation under stable condition is servo-actuated servo-driver is calculated
upcβ(k)=Kpcβe(k)
upresatcβ(k)=upcβ(k)+uicβ(k)
Wherein:The upper limit u of PI controllers outputmaxcβ=525 and lower limit umincβ=-525, integral controller export upper Limit uimaxcβ=300 and lower limit uimincβ=-300;PI proportional control factors Kpcβ=30, integral coefficient Kicβ=0.1;Amimuth Transmission Speed reducing ratio iβ=210;
(19) the current control instruction that the height under stable condition is servo-actuated servo-driver is calculated
upcε(k)=Kpcεe(k)
upresatcε(k)=upcε(k)+uicε(k)
Wherein:The upper limit u of PI controllers outputmaxcε=114 and lower limit umincε=-114, integral controller export upper Limit uimaxcε=50 and lower limit uimincε=-50;PI proportional control factors Kpcε=20;Integral coefficient Kicε=1;Height follower actuation Speed reducing ratio iε=275;
(20) setting driver is operated in torque mode, and current-order is sent to servo-driver by CAN;
(21) if eβ(j) < eβmin,eε(j) < eεmin, the state of aiming is reported to layer by CAN.
The scope span of parameter used see the table below:

Claims (1)

1. a kind of gun laying systems stabilisation control method using inertial navigation, it is characterised in that comprise the steps:
(1) setting speed ring controls the initial value for controlling step number k of compensation to increase one by one for 0, k;The control compensation of setting speed ring Controlling cycle Ts=1ms;
(2) the tri-axis angular rate ω measured by inertial navigation gyro group is gatheredp(k)=[ωpx(k) ωpy(k) ωpz(k)]T
(3) calculate course of the barrel under geodetic coordinates and bring up and turn angular speed
Wherein, ψ (j), θ (j),For course angle, the angle of pitch and the roll angle of SINS outputs;J is that position ring calculates step number;
(4) the measured value β of direction side angle device and height side angle device is gatheredb(k),εb(k);Gun turret is extracted using nonlinear observer On car body, cannon turn angular speed on gun turret
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>12</mn> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mn>11</mn> </msub> <mi>f</mi> <mi>a</mi> <mi>l</mi> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>,</mo> <mi>&amp;delta;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>12</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>12</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>&amp;beta;</mi> <mn>12</mn> </msub> <mi>f</mi> <mi>a</mi> <mi>l</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>,</mo> <mi>&amp;delta;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>21</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>21</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>22</mn> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mn>21</mn> </msub> <mi>f</mi> <mi>a</mi> <mi>l</mi> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>,</mo> <mi>&amp;delta;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>22</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>22</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>&amp;beta;</mi> <mn>22</mn> </msub> <mi>f</mi> <mi>a</mi> <mi>l</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>,</mo> <mi>&amp;delta;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <msub> <mover> <mi>&amp;beta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>12</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>22</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow>
Whereine1(k),e2(k) it is observation error, α, δ are respectively the parameter of fal functions 0.01≤α≤1,0.01≤δ≤1, β11122122Respectively the single order of direction side angle device and height side angle device, second order increase Benefit, z11(k)、z21(k) it is respectively βb(k),εb(k) estimate, z12(k)、z22(k) it is respectivelyEstimate;
(5) pitching and the rolling angle rate ω of gun turret are calculatedhx(k),ωhy(k):
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>h</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>h</mi> <mi>z</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>cos&amp;epsiv;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>sin&amp;epsiv;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>sin&amp;epsiv;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>cos&amp;epsiv;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>(</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>p</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>p</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>p</mi> <mi>z</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>)</mo> </mrow> </mrow>
(6) the course angular speed of car body is calculated
(7) what setting position controlled controls step number j initial value to increase one by one for 0, j, and the controlling cycle that position controls is 10ms;Sentence Determine k values, if k is 10 multiple, performs (8) step, otherwise jump to (18) step;
(8) course, posture and the roll angle ψ (j) of inertial navigation, θ (j) are received,
(9) the gun laying control instruction ψ under geodetic coordinates is receivedref(j),θref(j), comprisingWherein, ψref (j),θref(j) it is respectively course and attitude angle;
(10) judge to adjust big gun control error eβ(j)=ψref(j)-ψ (j) and eε(j)=θref(j)-θ (j), if adjusting big gun control error eβ(j)≥eβmaxOr eε(j)≥eεmax, it is transferred to step (11);Otherwise, it is transferred to step (14);
(11) rate control instruction that the orientation under significantly turning is servo-actuated servo-driver is calculated
<mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mi>&amp;beta;</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow> <mi>e</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>|</mo> <msub> <mi>e</mi> <mi>&amp;beta;</mi> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>0.5</mn> </msup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>&lt;</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:kFor radical sign e control coefrficients;umaxsβAnd uminsβFor the upper and lower bound of PI controllers output;
(12) rate control instruction that the height under significantly turning is servo-actuated servo-driver is calculated
<mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>&amp;epsiv;</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>&amp;epsiv;</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>k</mi> <mrow> <mi>e</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mi>&amp;beta;</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>0.5</mn> </msup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>&lt;</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>&amp;epsiv;</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>&amp;epsiv;</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:kFor radical sign e control coefrficients;umaxsεAnd uminsεFor the upper and lower bound of controller output;
(13) setting driver is operated in speed-regulating mode, and speed is sent to orientation and height servo-driver respectively by CAN Spend control instruction
(14) the feedforward control amount u of computer azimuth and high and low position control system(j),u(j)
<mrow> <msub> <mi>u</mi> <mrow> <mi>f</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>f</mi> <mi>&amp;beta;</mi> </mrow> </msub> <msub> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>u</mi> <mrow> <mi>f</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>f</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow>
Wherein, k,kThe respectively feedforward controller coefficient in orientation and height system;
(15) height and orientation disturbance velocity compensation rate u are calculated(j),u(j):
<mrow> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>f</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>h</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>&amp;beta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>f</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>tan&amp;epsiv;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>r</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>u</mi> <mrow> <mi>d</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>d</mi> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>u</mi> <mrow> <mi>d</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>d</mi> <mi>&amp;beta;</mi> <mn>2</mn> </mrow> </msub> <msub> <mover> <mi>&amp;beta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>f</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>d</mi> <mi>&amp;beta;</mi> <mn>3</mn> </mrow> </msub> <msub> <mover> <mi>&amp;beta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>f</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>u</mi> <mrow> <mi>d</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>d</mi> <mi>&amp;epsiv;</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>u</mi> <mrow> <mi>d</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>d</mi> <mi>&amp;epsiv;</mi> <mn>2</mn> </mrow> </msub> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>f</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>d</mi> <mi>&amp;beta;</mi> <mn>3</mn> </mrow> </msub> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>f</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein,The interference speed that respectively height and orientation are servo-actuated;kdβ1,kdβ2,kdβ3Respectively direction compensator is comprehensive Syzygy number;kdε1,kdε2,kdε3, the respectively coefficient of colligation of height compensator;
(16) rate control instruction that the orientation under stable condition is servo-actuated servo-driver is calculated
upsβ(j)=Kpsβe(j)
<mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>p</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
upresatsβ(j)=upsβ(j)+uisβ(j)+u(j)+u(j)
<mrow> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;beta;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;beta;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>&lt;</mo> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;beta;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;beta;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:upsβ(j) it is ratio control item;uisβ(j) it is integration control item;uimaxsβAnd uiminsβFor integral controller output Upper and lower bound, uimaxsβ=max (0, umaxsβ-upeβ(j)), uiminsβ=min (uminsβ-upeβ(j),0);KpsβFor PI ratio controls Coefficient processed;KisβFor integral coefficient;
(17) rate control instruction that the height under stable condition is servo-actuated servo-driver is calculated
upsε(j)=Kpsεe(j)
<mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>p</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
upresatsε(j)=upsε(j)+uisε(j)+u(j)+u(j)
<mrow> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;epsiv;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;epsiv;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>&lt;</mo> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;epsiv;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;epsiv;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:upsε(j) it is ratio control item;uisε(j) it is integration control item;uimaxsεAnd uiminsεFor integral controller output Upper and lower bound, uimaxsε=max (umaxsε-upsε(j), 0), uiminsε=min (uminsε-upsε(j),0);KpsεFor PI ratio controls Coefficient processed;KisεFor integral coefficient;
(18) the current control instruction that the orientation under stable condition is servo-actuated servo-driver is calculated
<mrow> <msub> <mi>e</mi> <mrow> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;beta;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>&amp;beta;</mi> </msub> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow>
upcβ(k)=Kpcβe(k)
<mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
upresatcβ(k)=upcβ(k)+uicβ(k)
<mrow> <msubsup> <mi>I</mi> <mi>&amp;beta;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>I</mi> <mi>&amp;beta;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>&lt;</mo> <msubsup> <mi>I</mi> <mi>&amp;beta;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>I</mi> <mi>&amp;beta;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:upcβ(j) it is ratio control item;uicβ(j) it is integration control item;umaxcβAnd umincβFor the upper limit of PI controllers output And lower limit, uimaxcβAnd uimincβFor the upper and lower bound of integral controller output, uimaxcβ=max (0, umaxcβ-upeβ(k)), uimincβ=min (umincβ-upeβ(k),0);KpcβFor PI proportional control factors;KicβFor integral coefficient;iβFor subtracting for Amimuth Transmission Fast ratio;
(19) the current control instruction that the height under stable condition is servo-actuated servo-driver is calculated
<mrow> <msub> <mi>e</mi> <mrow> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;omega;</mi> <mi>&amp;epsiv;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>&amp;epsiv;</mi> </msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow>
upcε(k)=Kpcεe(k)
<mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>max</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>min</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
upresatcε(k)=upcε(k)+uicε(k)
<mrow> <msubsup> <mi>I</mi> <mi>&amp;epsiv;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>I</mi> <mi>&amp;epsiv;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>&lt;</mo> <msubsup> <mi>I</mi> <mi>&amp;epsiv;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>u</mi> <mrow> <mi>max</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>I</mi> <mi>&amp;epsiv;</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>min</mi> <mi>c</mi> <mi>&amp;epsiv;</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:upcε(j) it is ratio control item;uicε(j) it is integration control item;umaxcεAnd umincεFor the upper limit of PI controllers output And lower limit, uimaxcεAnd uimincεFor the upper and lower bound of integral controller output, uimaxcε=max (umaxcε-upcε(k), 0), uimincε=min (umincε-upcε(k),0);KpcεFor PI proportional control factors;KicεFor integral coefficient;iεFor height follower actuation Speed reducing ratio;
(20) setting driver is operated in torque mode, and current-order is sent to servo-driver by CAN;
(21) if eβ(j) < eβmin,eε(j) < eεmin, the state of aiming is reported to layer by CAN.
CN201710981184.8A 2017-10-20 2017-10-20 Control method of gun aiming stabilization system adopting strapdown inertial navigation Expired - Fee Related CN107783422B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710981184.8A CN107783422B (en) 2017-10-20 2017-10-20 Control method of gun aiming stabilization system adopting strapdown inertial navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710981184.8A CN107783422B (en) 2017-10-20 2017-10-20 Control method of gun aiming stabilization system adopting strapdown inertial navigation

Publications (2)

Publication Number Publication Date
CN107783422A true CN107783422A (en) 2018-03-09
CN107783422B CN107783422B (en) 2020-10-23

Family

ID=61435007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710981184.8A Expired - Fee Related CN107783422B (en) 2017-10-20 2017-10-20 Control method of gun aiming stabilization system adopting strapdown inertial navigation

Country Status (1)

Country Link
CN (1) CN107783422B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361877A (en) * 2020-11-24 2021-02-12 西北机电工程研究所 Universal control module for gun AC servo driver
CN112484563A (en) * 2020-11-24 2021-03-12 西北机电工程研究所 Semi-physical experiment method of fire line stabilizing system
CN112696981A (en) * 2020-12-21 2021-04-23 西北机电工程研究所 Full closed loop interference rate compensation self-stabilization control method under geodetic coordinate system
CN112729012A (en) * 2020-12-21 2021-04-30 西北机电工程研究所 Equivalent closed loop interference rate compensation self-stabilization control method under geodetic coordinates
CN113280678A (en) * 2021-05-19 2021-08-20 中国人民解放军63966部队 Calibration method of artillery aiming performance parameter test system
CN114488794A (en) * 2021-12-30 2022-05-13 北京动力机械研究所 Method for inhibiting nutation of stamping range-increasing cannonball by adopting rudder
CN115342683A (en) * 2022-08-25 2022-11-15 西北机电工程研究所 Gun adjusting method with automatic obstacle avoiding function
CN116301081A (en) * 2023-05-17 2023-06-23 伸瑞科技(北京)有限公司 Speed control method, device, equipment and medium of inertia test equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527003A (en) * 1994-07-27 1996-06-18 Litton Systems, Inc. Method for in-field updating of the gyro thermal calibration of an intertial navigation system
US6163021A (en) * 1998-12-15 2000-12-19 Rockwell Collins, Inc. Navigation system for spinning projectiles
CN103217159A (en) * 2013-03-06 2013-07-24 郭雷 SINS/GPS/polarized light combination navigation system modeling and dynamic pedestal initial aligning method
CN103616030A (en) * 2013-11-15 2014-03-05 哈尔滨工程大学 Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction
CN103759742A (en) * 2014-01-22 2014-04-30 东南大学 Serial inertial navigation nonlinear alignment method based on fuzzy self-adaptation control technology
CN106482749A (en) * 2016-12-07 2017-03-08 西北工业大学 Alignment methods are combined with tachometer based on the inertial navigation of reverse navigation algorithm
CN106871928A (en) * 2017-01-18 2017-06-20 北京工业大学 Strap-down inertial Initial Alignment Method based on Lie group filtering

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527003A (en) * 1994-07-27 1996-06-18 Litton Systems, Inc. Method for in-field updating of the gyro thermal calibration of an intertial navigation system
US6163021A (en) * 1998-12-15 2000-12-19 Rockwell Collins, Inc. Navigation system for spinning projectiles
CN103217159A (en) * 2013-03-06 2013-07-24 郭雷 SINS/GPS/polarized light combination navigation system modeling and dynamic pedestal initial aligning method
CN103616030A (en) * 2013-11-15 2014-03-05 哈尔滨工程大学 Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction
CN103759742A (en) * 2014-01-22 2014-04-30 东南大学 Serial inertial navigation nonlinear alignment method based on fuzzy self-adaptation control technology
CN106482749A (en) * 2016-12-07 2017-03-08 西北工业大学 Alignment methods are combined with tachometer based on the inertial navigation of reverse navigation algorithm
CN106871928A (en) * 2017-01-18 2017-06-20 北京工业大学 Strap-down inertial Initial Alignment Method based on Lie group filtering

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李伟等: "基于捷联惯导的火炮随动系统应用研究", 《火炮发射与控制学报》 *
李伟等: "某全闭环操瞄系统的火炮身管指向控制研究", 《兵工学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112484563A (en) * 2020-11-24 2021-03-12 西北机电工程研究所 Semi-physical experiment method of fire line stabilizing system
CN112361877A (en) * 2020-11-24 2021-02-12 西北机电工程研究所 Universal control module for gun AC servo driver
CN112696981A (en) * 2020-12-21 2021-04-23 西北机电工程研究所 Full closed loop interference rate compensation self-stabilization control method under geodetic coordinate system
CN112729012A (en) * 2020-12-21 2021-04-30 西北机电工程研究所 Equivalent closed loop interference rate compensation self-stabilization control method under geodetic coordinates
CN112729012B (en) * 2020-12-21 2022-12-23 西北机电工程研究所 Equivalent closed-loop interference rate compensation self-stabilization control method under geodetic coordinates
CN112696981B (en) * 2020-12-21 2023-02-21 西北机电工程研究所 Full closed loop interference rate compensation self-stabilization control method under geodetic coordinate system
CN113280678A (en) * 2021-05-19 2021-08-20 中国人民解放军63966部队 Calibration method of artillery aiming performance parameter test system
CN114488794B (en) * 2021-12-30 2024-04-19 北京动力机械研究所 Method for restraining nutation of stamping range-extending shell by adopting rudder
CN114488794A (en) * 2021-12-30 2022-05-13 北京动力机械研究所 Method for inhibiting nutation of stamping range-increasing cannonball by adopting rudder
CN115342683A (en) * 2022-08-25 2022-11-15 西北机电工程研究所 Gun adjusting method with automatic obstacle avoiding function
CN115342683B (en) * 2022-08-25 2023-05-12 西北机电工程研究所 Gun adjusting method with automatic obstacle avoidance function
CN116301081A (en) * 2023-05-17 2023-06-23 伸瑞科技(北京)有限公司 Speed control method, device, equipment and medium of inertia test equipment
CN116301081B (en) * 2023-05-17 2023-08-04 伸瑞科技(北京)有限公司 Speed control method, device, equipment and medium of inertia test equipment

Also Published As

Publication number Publication date
CN107783422B (en) 2020-10-23

Similar Documents

Publication Publication Date Title
CN107783422A (en) Using the gun laying systems stabilisation control method of inertial navigation
CN105539884B (en) A kind of satellite driftage control guidance method
US8924054B1 (en) Systems and methods for positioning a marine vessel
CN109782785B (en) Automatic aircraft landing control method based on direct force control
CN110609553B (en) LOS (line of sight) guide control method for circular arc path of pipe-laying ship
CN109708639B (en) Method for generating lateral guidance instruction of aircraft for tracking straight line and circular arc path in flat flight
CN106871742A (en) A kind of control system being arranged on body
CN106527491A (en) Control system for fixed-wing unmanned aerial vehicle and horizontal and lateral flight track control method
CN106444822A (en) Space vector field guidance based stratospheric airship&#39;s trajectory tracking control method
CN103955224B (en) Attitude control method for relative motion visual line tracking
CN110006419A (en) Vehicle track tracking point determination method based on preview
CN104199303A (en) Stratospheric satellite planar path tracking control method based on vector field guidance
CN112198885B (en) Unmanned aerial vehicle control method capable of meeting autonomous landing requirement of maneuvering platform
CN105334854A (en) Decoupling control device and method for hovercraft course control and heeling control
CN111881514B (en) Guidance reconstruction method under engine fault state
CN112061424B (en) Maneuvering process energy angle dynamic tracking method based on fusion target attitude
CN110456816A (en) A kind of quadrotor Trajectory Tracking Control method based on continuous terminal sliding mode
US20140244076A1 (en) Stability based taxiing and turning method for aircraft with electric taxi system
CN109343551A (en) A kind of gyroplane coordinate turn control method and system
CN102880059B (en) Yawing maneuvering control method based on sinusoidal yawing guidance principle
CN108427429B (en) Spacecraft visual axis maneuvering control method considering dynamic pointing constraint
WO2021052087A1 (en) Manipulation method suitable for non-redundant sgcmg group
CN105094144A (en) Self-adaptive windproof path tracking control method for unmanned airship
CN112696981B (en) Full closed loop interference rate compensation self-stabilization control method under geodetic coordinate system
CN102607556B (en) Integrated navigation method for medium-accuracy heading and attitude system on basis of torpedo speed

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201023

Termination date: 20211020

CF01 Termination of patent right due to non-payment of annual fee