CN103616030A - Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction - Google Patents

Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction Download PDF

Info

Publication number
CN103616030A
CN103616030A CN201310566710.6A CN201310566710A CN103616030A CN 103616030 A CN103616030 A CN 103616030A CN 201310566710 A CN201310566710 A CN 201310566710A CN 103616030 A CN103616030 A CN 103616030A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
msup
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310566710.6A
Other languages
Chinese (zh)
Inventor
于飞
于春阳
兰海钰
周广涛
卢宝峰
史宏洋
林萌萌
张丽丽
赵博
李佳璇
白红美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201310566710.6A priority Critical patent/CN103616030A/en
Publication of CN103616030A publication Critical patent/CN103616030A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Navigation (AREA)

Abstract

The invention discloses an autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction. According to the autonomous navigation system positioning method, output data of an MEMS (Micro-electromechanical Systems) accelerometer and an MEMS magnetometer in a pedestrian autonomous navigation system is used for carrying out initial alignment on the system; a strapdown inertial navigation resolving algorithm is used for estimating the state of the pedestrian autonomous navigation system; when a static detecting algorithm detects that pedestrian footsteps are stopped, a zero-speed correction error compensator based on Kalman filtering is designed and a navigation resolving result of the pedestrian autonomous navigation system is corrected by adopting a manner of outputting correction; the defects that an MEMS inertia measurement device is low in precision and has a great positioning error when being used for long time are overcome; a high-precision positioning function of the pedestrian autonomous navigation system is realized under the condition of not increasing external cost. The autonomous navigation system positioning method is simple and high in stability and reliability; the use precision of a single-pawn autonomous navigation system is improved effectively; the autonomous navigation system positioning method has important meanings of realizing autonomous pedestrian navigation and positioning with the high positioning precision.

Description

Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction
Technical Field
The invention belongs to the technical field of navigation positioning, and particularly relates to an autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction.
Background
The pedestrian autonomous navigation system (comprising an MEMS three-axis magnetometer, an MEMS three-axis accelerometer and an MEMS three-axis gyroscope) is mainly used for autonomous navigation and real-time positioning of individuals under known or unknown conditions, and assists in completing various types of emergency rescue tasks. When emergencies such as fire disasters and earthquakes occur, conditions which are unfavorable for rescue, such as visibility reduction, inherent environment change and the like, may exist on the accident site, and rescue personnel cannot rapidly and accurately distinguish the self position. At the moment, the positioning information provided by the pedestrian navigation system can provide effective technical support for rescue workers.
Most of the existing products with individual navigation and positioning functions mainly depend on a GPS (Global positioning System) for positioning, but when a GPS signal is lost, the system cannot work, and then the autonomous, real-time and stable positioning requirements of the pedestrian autonomous navigation system cannot be met. Therefore, the research on the individual soldier autonomous positioning technology under the condition without the GPS has certain application value. The pedestrian autonomous navigation system based on the MEMS inertial measurement technology does not depend on any external information when working, and has good anti-interference performance, so that the research on the pedestrian autonomous navigation system based on the MEMS inertial measurement technology has good application value. However, the measurement accuracy of the existing MIMU is generally low, and the drift of the sensor error along with the time is serious, so that the navigation error accumulation of the MIMU is increased rapidly.
Disclosure of Invention
The embodiment of the invention aims to provide an MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction, and aims to solve the problems that an existing MEMS inertial measurement device is low in precision, and a pedestrian autonomous navigation system based on an MEMS inertial measurement technology is large in navigation positioning error during long-time use.
The embodiment of the invention is realized in such a way that an MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction comprises the following steps:
the method comprises the following steps: the pedestrian autonomous navigation system is fixed on the foot of an individual soldier, the measurement information output by the system during the motion of the pedestrian is received and stored in real time by the handheld PDA, and the system output information received at any time k is yk
Step two: obtaining initial carrier attitude information by using output values of MEMS accelerometer and MEMS magnetometer and formula
Figure BSA0000097593480000021
Step three: using the output data of the pedestrian autonomous navigation system stored in the step one and the direction cosine matrix updated by the differential equation
Figure BSA0000097593480000022
Step four: attitude matrix of pedestrian autonomous navigation system obtained in step three
Figure BSA0000097593480000023
And estimating the navigation state of the individual soldier system by a formula
Figure BSA0000097593480000024
Including three-dimensional position, velocity, attitude vectors of pedestrian navigation systems, i.e.
Figure BSA0000097593480000025
Step five: judging a zero-speed interval of the autonomous pedestrian navigation system by using the output values of the MEMS accelerometer and the MEMS gyroscope in the pedestrian navigation system obtained in the step one and a formula;
step six: judging a zero-speed state in the step five, and correcting a navigation resolving result by using a zero-speed error corrector based on Kalman filtering in an output correction mode;
the state quantity at any time k can be estimated through the above loop.
Further, in step one, the pedestrian navigation system includes: MEMS gyroscope, MEMS accelerometer, MEMS magnetometer.
Further, in step one, the system output information received at an arbitrary time k is yk=[fk ωk mk]T
Wherein, <math> <mrow> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>&omega;</mi> <mi>k</mi> <mi>x</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&omega;</mi> <mi>k</mi> <mi>y</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&omega;</mi> <mi>k</mi> <mi>z</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> angular rate information output by the MEMS triaxial gyroscope at the moment k; f k = f k x f k y f k z T specific force information output by the MEMS triaxial accelerometer at the moment k; m k = m k x m k y m k z T outputting information of the MEMS three-axis magnetometer at the moment k; t denotes a transpose operation.
Further, in step two, the output values and the formula of the MEMS accelerometer and the MEMS magnetometer are utilized:
g b = C b n g n
m b = C b n m n
r b = C b n r n
obtaining initial carrier attitude information
Figure BSA00000975934800000317
Wherein, gnIs a gravity vector
Figure BSA00000975934800000318
Projection in a geographic coordinate system, gb=[0 0 g]T;mnAs a vector of geomagnetism
Figure BSA0000097593480000037
Projection in a geographic coordinate system, mn=[mex mey mez]T;gbIs a gravity vector
Figure BSA0000097593480000038
Projection in a carrier coordinate system, gb=[gbx gby gbz]T;mbAs a vector of geomagnetism
Figure BSA0000097593480000039
Projection in a carrier coordinate system, mb=[mbx mby mbz]T
Further, a differential equation is used in step three:
<math> <mrow> <msubsup> <mover> <mi>C</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&Omega;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
updated direction cosine matrix
In the formula,a strapdown matrix from a carrier system to a geographic system at the time t, wherein omega (t) is a vector omegab(t) an anti-symmetric array of,
<math> <mrow> <mi>&Omega;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>z</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>y</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>z</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>x</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>y</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>x</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
omega is the angular rate measured by the MEMS gyroscope in the pedestrian navigation system,
<math> <mrow> <mi>&omega;</mi> <mo>&ap;</mo> <msubsup> <mi>&omega;</mi> <mi>nb</mi> <mi>b</mi> </msubsup> </mrow> </math>
in the formula,
Figure BSA00000975934800000315
angular rate of rotation of a vehicle coordinate system of a pedestrian navigation system relative to a geographic coordinate system: <math> <mrow> <msup> <mi>&omega;</mi> <mi>b</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&omega;</mi> <mi>nb</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>&omega;</mi> <mi>bx</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <mi>by</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <mi>bz</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>;</mo> </mrow> </math>
further, in step four, the formula is utilized:
α=arctan(-C31/C33)
θ=arcsin(C32)
ψ=arctan(-C12/C22)
vn(t)=vn(0)+∫an(t)dt
sn(t)=sn(0)+∫vn(t)dt
estimating individual soldier system navigation stateIncluding three-dimensional position, velocity, attitude vectors of pedestrian navigation systems, i.e.
Figure BSA0000097593480000044
Wherein, Cij(i, j ═ 1, 2, 3) as a strapdown matrix
Figure BSA0000097593480000045
The alpha is a roll angle of the inertia measurement unit, the theta is a pitch angle of the inertia measurement unit, and the psi is a course angle of the inertia measurement unit; wherein v isn(0) Is the initial velocity, sn(0) Is an initial position, an(t) acceleration due to movement of the carrier:
an(t)=fn(t)-gn
wherein f isn(t) is the projection of the specific force measured by the MEMS accelerometer along the geodetic direction:
f n ( t ) = C b n ( t ) f b ( t )
in the formula (f)b(t)=[fbx(t) fby(t) fbz(t)]TIs the specific force measured by the MEMS accelerometer.
Further, in step five, the formula is utilized:
<math> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mrow> </munder> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msubsup> <mi>&sigma;</mi> <mi>a</mi> <mn>2</mn> </msubsup> </mfrac> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>f</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>g</mi> <mfrac> <msub> <mover> <mi>f</mi> <mo>&OverBar;</mo> </mover> <mi>n</mi> </msub> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>f</mi> <mo>&OverBar;</mo> </mover> <mi>n</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <msubsup> <mi>&sigma;</mi> <mi>&omega;</mi> <mn>2</mn> </msubsup> </mfrac> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&lt;</mo> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> </mrow> </math>
judging a zero-speed interval of the autonomous navigation system of the traveling person, and if the above formula is established, enabling the steps of the user of the autonomous navigation system of the traveling person to be static;
wherein,
Figure BSA00000975934800000411
i | · | | represents the norm, T ( z n ) = - 2 N ln L G ( z n ) , γ′=-(2/N)ln(γ),
Figure BSA0000097593480000049
ln (-) represents the logarithm based on e,
Figure BSA00000975934800000410
respectively representing the noise variance of the MEMS accelerometer and the MEMS gyroscope, wherein the value of gamma is determined by the following formula:
<math> <mrow> <msub> <mi>P</mi> <mi>FA</mi> </msub> <mo>=</mo> <msub> <mo>&Integral;</mo> <mrow> <mo>{</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>:</mo> <mi>L</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mi>&gamma;</mi> <mo>}</mo> </mrow> </msub> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>;</mo> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>dz</mi> <mi>n</mi> </msub> <mo>=</mo> <mi>&alpha;</mi> <mo>.</mo> </mrow> </math>
further, the kalman filtering model used in step six is:
X k = F k , k - 1 X k - 1 + G k - 1 W k - 1 Z k = H k X k + N k
the estimated state vector is:
X=[φT δvT δsT]T
when the measurement vector is in a zero-speed state, the navigation resolving speed value and the course error information are as follows:
<math> <mrow> <mi>Z</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;&psi;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&delta;v</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;&psi;</mi> </mtd> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
the measurement array is:
H = 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
the state transition matrix is:
<math> <mrow> <mi>F</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;tS</mi> <mrow> <mo>(</mo> <msubsup> <mi>f</mi> <mi>t</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mi>&Delta;t</mi> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein G isk-1For system noiseAcoustically driven array, Wk-1For systematic excitation of noise sequences, HkIs a measuring array; n is a radical ofkFor measuring noise sequences, [ phi ]TIs an attitude error and phiT=[δψ φy φz]Where δ y is ψMagnetometerNavigation solution,δsTFor position error, δ vTIs a velocity error and δ vT=[vx Vx vz]The three error terms are all three-dimensional;
Figure BSA0000097593480000056
is an anti-symmetric matrix of carrier motion acceleration along the geographic system.
Further, the optimal estimation and mean square error of the kalman filter only performing time update in step six are:
X ^ k + 1 / k = E [ X k + 1 ] = E [ F k + 1 , k X k + G k W k ] = F k + 1 . k X ^ k
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>E</mi> <mo>[</mo> <mi>&delta;</mi> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>&delta;</mi> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <msub> <mi>F</mi> <mi>k</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> <msubsup> <mi>F</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>GQ</mi> <mi>k</mi> </msub> <msup> <mi>G</mi> <mi>T</mi> </msup> </mtd> </mtr> </mtable> </mfenced> </math>
wherein E [. cndot. ] represents the expectation;
the optimal estimation and mean square error in time update + measurement update is:
X ^ k + 1 = X ^ k + 1 / k + K ( Z k + 1 - H k + 1 X ^ k + 1 / k )
P k + 1 - 1 = ( P ^ k + 1 / k ) - 1 + ( H k + 1 T R k + 1 - 1 H k + 1 ) - 1
wherein, K = P k + 1 H k + 1 T R k + 1 - 1 .
according to the MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction, output data of an MEMS accelerometer and an MEMS magnetometer in the pedestrian autonomous navigation system are adopted to carry out initial alignment on the system, the state of the pedestrian autonomous navigation system is initially estimated by using a strapdown inertial navigation solution algorithm, the step motion state of a pedestrian is detected by using a static detection algorithm, and when the step of the pedestrian is detected to be static, a zero-speed correction error compensator based on Kalman filtering is designed to correct the navigation solution result of the pedestrian autonomous navigation system by using an output correction mode, so that the defects that an MEMS inertial measurement device is low in precision, the positioning error is large when the device is used for a long time and the like are overcome, and the high-precision positioning function of the pedestrian autonomous navigation system is realized under the condition that the external cost is not increased. The method is simple, high in stability and reliability, improves a convenient navigation positioning method, effectively improves the use precision of an individual soldier autonomous navigation system, and has important significance for realizing pedestrian autonomous navigation positioning with higher positioning precision.
Drawings
FIG. 1 is a flow chart of a method for positioning an MEMS pedestrian autonomous navigation system based on strapdown inertial navigation solution and zero-speed correction according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of a principle of a positioning method of an MEMS pedestrian autonomous navigation system based on strapdown inertial navigation solution and zero-speed correction according to an embodiment of the present invention;
FIG. 3 is a schematic diagram of a result of a method for positioning an MEMS pedestrian autonomous navigation system based on strapdown inertial navigation solution and zero-speed correction according to an embodiment of the present invention.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail with reference to the following embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
The application of the principles of the present invention will be further described with reference to the accompanying drawings and specific embodiments.
As shown in fig. 1, the method for positioning an MEMS pedestrian autonomous navigation system based on strapdown inertial navigation solution and zero-speed correction according to the embodiment of the present invention includes the following steps:
s101: the handheld PDA receives measurement information output by the steps in the pedestrian autonomous navigation system in real time;
s102: obtaining initial carrier attitude information by using output values and formulas of the MEMS accelerometer and the MEMS magnetometer;
s103: an updated direction cosine matrix;
s104: estimating the navigation state of the individual soldier system by utilizing the attitude matrix and the formula of the pedestrian navigation system;
s105: judging a zero-speed interval of the autonomous navigation system of the trip person;
s106: and correcting the navigation calculation result in an output correction mode.
The method comprises the following specific steps:
the method comprises the following steps: fixing the pedestrian navigation system on the foot of the individual soldier, receiving and storing the measurement information output by the system in real time when the pedestrian moves by using the handheld PDA, wherein the system output information received at any time k is yk,yk=[fk ωk mk]T
Wherein, <math> <mrow> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>&omega;</mi> <mi>k</mi> <mi>x</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&omega;</mi> <mi>k</mi> <mi>y</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&omega;</mi> <mi>k</mi> <mi>z</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> angular rate information output by the MEMS triaxial gyroscope at the moment k; f k = f k x f k y f k z T specific force information output by the MEMS triaxial accelerometer at the moment k; m k = m k x m k y m k z T outputting information of the MEMS three-axis magnetometer at the moment k; t represents a transpose operation;
step two: obtaining initial carrier attitude information by using output values and formulas of MEMS accelerometer and MEMS magnetometer
Figure BSA0000097593480000081
Outputting values and formulas by using the MEMS accelerometer and the MEMS magnetometer:
g b = C b n g n
m b = C b n m n
r b = C b n r n
get the initial loadBody posture information
Figure BSA0000097593480000084
Wherein, gnIs a gravity vector
Figure BSA00000975934800000819
Projection in a geographic coordinate system, gn=[0 0 g]T;mnAs a vector of geomagnetism
Figure BSA0000097593480000085
Projection in a geographic coordinate system, mn=[mex mey mez]T;gbIs a gravity vector
Figure BSA0000097593480000086
Projection in a carrier coordinate system, gb=[gbx gby gbz]T;mbAs a vector of geomagnetism
Figure BSA0000097593480000087
Projection in a carrier coordinate system, mb=[mbx mby mbz]T
Step three: using the pedestrian autonomous navigation system output data stored in the step one and a differential equation:
<math> <mrow> <msubsup> <mover> <mi>C</mi> <mo>.</mo> </mover> <mi>b</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&Omega;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
updated direction cosine matrix
Figure BSA0000097593480000089
In the formula,
Figure BSA00000975934800000810
a strapdown matrix from a carrier system to a geographic system at the time t, wherein omega (t) is a vector omegab(t) an anti-symmetric array of,
<math> <mrow> <mi>&Omega;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>z</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>y</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>z</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>x</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>y</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>x</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
ω is the output angular rate measured by the MEMS gyroscope in the pedestrian navigation system:
<math> <mrow> <mi>&omega;</mi> <mo>&ap;</mo> <msubsup> <mi>&omega;</mi> <mi>nb</mi> <mi>b</mi> </msubsup> </mrow> </math>
in the formula,
Figure BSA00000975934800000813
angular rate of a vehicle coordinate system of a pedestrian navigation system relative to a geographic coordinate system:
<math> <mrow> <msup> <mi>&omega;</mi> <mi>b</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&omega;</mi> <mi>nb</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>&omega;</mi> <mi>bx</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <mi>by</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <mi>bz</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>;</mo> </mrow> </math>
step four: attitude matrix of pedestrian navigation system obtained in step threeAnd estimating the navigation state of the individual soldier system by a formula
Figure BSA00000975934800000816
Including three-dimensional position, velocity, attitude vectors of pedestrian navigation systems, i.e.
Figure BSA00000975934800000817
α=arctan(-C31/C33)
θ=arcsin(C32)
ψ=arctan(-C12/C22)
vn(t)=vn(0)+∫an(t)dt
sn(t)=sn(0)+∫vn(t)dt
Estimating individual soldier system navigation state
Figure BSA0000097593480000093
Including three-dimensional position vector, velocity vector, attitude vector of pedestrian navigation system
Figure BSA00000975934800000911
Wherein, Cij(i, j ═ 1, 2, 3) as a strapdown matrix
Figure BSA0000097593480000094
The element in (1) is that alpha is a roll angle of the IMU, theta is a pitch angle of the IMU, and psi is a course angle of the IMU; wherein v isn(0) Is the initial velocity, sn(0) Is an initial position, vn(0)=[0 0 0]T,sn(0)=[0 0 0]T;an(t) acceleration due to movement of the carrier:
an(t)=fn(t)-gn
wherein f isn(t) is the projection of the specific force measured by the MEMS accelerometer along the geodetic direction:
f n ( t ) = C b n ( t ) f b ( t )
in the formula (f)b(t)=[fbx(t) fby(t) fbz(t)]TSpecific force measured for the MEMS accelerometer;
step five: judging the zero-speed interval of the autonomous pedestrian navigation system by using the output values and formulas of the MEMS accelerometer and the MEMS gyroscope in the pedestrian navigation system obtained in the step one, and using the output values and formulas of the MEMS accelerometer and the MEMS gyroscope in the pedestrian navigation system obtained in the step one:
<math> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mrow> </munder> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msubsup> <mi>&sigma;</mi> <mi>a</mi> <mn>2</mn> </msubsup> </mfrac> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>f</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>g</mi> <mfrac> <msub> <mover> <mi>f</mi> <mo>&OverBar;</mo> </mover> <mi>n</mi> </msub> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>f</mi> <mo>&OverBar;</mo> </mover> <mi>n</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <msubsup> <mi>&sigma;</mi> <mi>&omega;</mi> <mn>2</mn> </msubsup> </mfrac> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&lt;</mo> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> </mrow> </math>
judging a zero-speed interval of the autonomous navigation system of the trip person, and if the above formula is established, making the IMU static;
wherein,
Figure BSA00000975934800000912
i | · | | represents the norm, T ( z n ) = - 2 N ln L G ( z n ) , γ′=-(2/N)ln(γ),
Figure BSA0000097593480000098
ln (-) represents the logarithm based on e,respectively representing the noise variance of the MEMS accelerometer and the MEMS gyroscope, wherein the value of gamma is determined by the following formula:
<math> <mrow> <msub> <mi>P</mi> <mi>FA</mi> </msub> <mo>=</mo> <msub> <mo>&Integral;</mo> <mrow> <mo>{</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>;</mo> <mi>L</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mi>&gamma;</mi> <mo>|</mo> </mrow> </msub> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>;</mo> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mi>d</mi> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>=</mo> <mi>&alpha;</mi> <mo>;</mo> </mrow> </math>
step six: and sixthly, judging a zero-speed state by utilizing the step six, using a Kalman filtering-based zero-speed error corrector, and correcting a navigation resolving result by adopting an output correction mode, wherein a Kalman filtering model for zero-speed correction is as follows:
X k = F k , k - 1 X k - 1 + G k - 1 W k - 1 Z k = H k X k + N k
the estimated state vector is:
X=[φT δvT δsT]T
when the measurement vector is in a zero-speed state, the navigation resolving speed value and the course error information are as follows:
<math> <mrow> <mi>Z</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;&psi;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&delta;v</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;&psi;</mi> </mtd> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
the measurement array is:
H = 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
the state transition matrix is:
<math> <mrow> <mi>F</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;tS</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>f</mi> <mi>t</mi> </msub> <mi>n</mi> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mi>&Delta;t</mi> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein G isk-1Driving the array for system noise; wk-1Exciting a noise sequence for the system; hkIs a measuring array; n is a radical ofkTo measure the noise sequence; phi is aTIs an attitude error and phiT=[δψ φy φz]Wherein delta psi ═ psiMagnetometerNavigation solution,δsTFor position error, δ vTAnd δ vT=[vx vy vz]For the speed error, the three error terms are all three-dimensional;
Figure BSA0000097593480000105
is an anti-symmetric array of carrier motion accelerations along the geographic system;
storing state estimates for each time instant
Figure BSA0000097593480000106
Estimating mean square error matrix PkAnd a filter gain K, if the step MIMU zero-speed detection result at the moment K +1 is in a motion state, the Kalman filter only updates the time,
if the step MIMU zero-speed detection result at the moment k +1 is static, the KF performs complete updating, time updating + measurement updating, and the Kalman filtering only performs time updating:
and (3) optimal estimation:
X ^ k + 1 / k = E [ X k + 1 ] = E [ F k + 1 , k X k + G k W k ] = F k + 1 , k X ^ k
mean square error:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>E</mi> <mo>[</mo> <mi>&delta;</mi> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>&delta;</mi> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <msub> <mi>F</mi> <mi>k</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> <msubsup> <mi>F</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <mi>G</mi> <msub> <mi>Q</mi> <mi>k</mi> </msub> <msup> <mi>G</mi> <mi>T</mi> </msup> </mtd> </mtr> </mtable> </mfenced> </math>
wherein E [. cndot. ] represents the expectation;
if the step MIMU zero-speed detection result at the moment k +1 is static, the KF is completely updated, and the time updating and the measurement updating are carried out:
mean square error:
P k + 1 - 1 = ( P ^ k + 1 / k ) - 1 + ( H k + 1 T R k + 1 - 1 H k + 1 ) - 1 K = P k + 1 H k + 1 T R k + 1 - 1
and (3) optimal estimation:
X ^ k + 1 = X ^ k + 1 / k + K ( Z k + 1 - H k + 1 X ^ k + 1 / k )
the state quantity at any time k can be estimated through the above loop.
The beneficial effects of the present invention are further illustrated in conjunction with the following experiments:
the method comprises the steps that a true dual-IMU system individual navigation system model is built by utilizing a self-developed triaxial inertia measurement assembly (integrating a micro-mechanical system triaxial magnetometer, an accelerometer and a gyroscope), equipment parameters are shown in a table 1, reliability, practicability and accuracy of an MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction are verified through reasonable tests, and a test scene is selected in an outdoor open Harbin engineering university military operation field;
TABLE 1 Performance indexes of sensors of inertia measurement assembly of self-grinding micro inertia measurement unit
Figure BSA0000097593480000121
The relevant parameters in the experimental process are set as follows:
sampling frequency of the individual navigation autonomous positioning system: 100Hz
Gyro standard deviation of micro-mechanical system: sigmaa=0.01m/s2
Standard deviation of micro-mechanical accelerometer: sigmag=0.1*pi/180rad/s
Initial speed: v. ofn(0)=[0 0 0]T
Initial position coordinates: sn(0)=[0 0 0]T
Before the experiment begins, a tester carries out static preheating of the system for 15 minutes in an experiment field to finish the initial alignment of the system and the initialization of GPS positioning information; GPS positioning information is collected in real time in an experiment and used as a reference of a real track;
the experimental contents are as follows: a tester walks around a rectangular football field for a circle (about 500 meters), the walking time is about 300 seconds, the output values of all sensors in the pedestrian autonomous navigation system are collected in real time in the experimental process, and the collected experimental data are analyzed in an off-line manner; the experimental results are shown in fig. 3;
the positioning result of the MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction is shown in FIG. 2, in order to more vividly illustrate the superiority of the MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction provided by the present general invention, the table 2 gives the root mean square error RMS of the positioning result when the positioning method is used, wherein the calculation truth value is GPS positioning information, the positioning error is still kept within 4.2m and less than 1% of the walking distance of a single soldier under the condition that the walking time is more than 300 seconds, and experiments prove that the positioning result of the MEMS autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction provided by the invention is more ideal, and can meet the use requirements of the single soldier fighters in a short time.
TABLE 2
Figure BSA0000097593480000131
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents and improvements made within the spirit and principle of the present invention are intended to be included within the scope of the present invention.

Claims (9)

1. An autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction is characterized by comprising the following steps of:
the method comprises the following steps: the pedestrian autonomous navigation system is fixed on the foot of an individual soldier, the measurement information output by the system during the motion of the pedestrian is received and stored in real time by the handheld PDA, and the system output information received at any time k is yk
Step two: calculating initial carrier by using output values of MEMS accelerometer and MEMS magnetometer and formulaAttitude information
Step three: using the output data of the pedestrian autonomous navigation system stored in the step one and the direction cosine matrix updated by the differential equation
Step four: attitude matrix of pedestrian autonomous navigation system obtained in step three
Figure FSA0000097593470000013
And estimating the navigation state of the individual soldier system by a formula
Figure FSA0000097593470000014
Including three-dimensional position, velocity, attitude vectors of pedestrian navigation systems, i.e.
Step five: judging a zero-speed interval of the autonomous pedestrian navigation system by using the output values of the MEMS accelerometer and the MEMS gyroscope in the pedestrian navigation system obtained in the step one and a formula;
step six: judging a zero-speed state in the step five, and correcting a navigation resolving result by using a zero-speed error corrector based on Kalman filtering in an output correction mode;
the state quantity at any time k can be estimated through the above loop.
2. The method for MEMS pedestrian autonomous navigation system positioning based on strapdown inertial navigation solution and zero velocity correction of claim 1, wherein in step one, the pedestrian navigation system comprises: MEMS gyroscope, MEMS accelerometer, MEMS magnetometer.
3. The MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction as claimed in claim 1, wherein in step one, the system output information received at any time k is yk=[fk ωk mk]T
Wherein, <math> <mrow> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>&omega;</mi> <mi>k</mi> <mi>x</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&omega;</mi> <mi>k</mi> <mi>y</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&omega;</mi> <mi>k</mi> <mi>z</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> angular rate information output by the MEMS triaxial gyroscope at the moment k; f k = f k x f k y f k z T specific force information output by the MEMS triaxial accelerometer at the moment k; m k = m k x m k y m k z T outputting information of the MEMS three-axis magnetometer at the moment k; t denotes a transpose operation.
4. The MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction as claimed in claim 1, wherein in step two, the output values and the formula of the MEMS accelerometer and the MEMS magnetometer are utilized:
g b = C b n g n
m b = C b n m n
r b = C b n r n
obtaining initial carrier attitude information
Figure FSA0000097593470000027
Wherein, gnIs a gravity vector
Figure FSA00000975934700000214
Projection in a geographic coordinate system, gn=[0 0 g]T;mnAs a vector of geomagnetism
Figure FSA0000097593470000028
Projection in a geographic coordinate system, mn=[mex mey mez]T;gbIs a gravity vector
Figure FSA0000097593470000029
Projection in a carrier coordinate system, gb=[gbx gby gbz]T;mbAs a vector of geomagnetism
Figure FSA00000975934700000211
The projection in the carrier coordinate system is, m b = m bx m by m bz T .
5. the MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero velocity correction of claim 1, wherein differential equations are used in step three:
<math> <mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&Omega;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
updated direction cosine matrix
Figure FSA0000097593470000031
In the formula,a strapdown matrix from a carrier system to a geographic system at the time t, wherein omega (t) is a vector omegab(t) an anti-symmetric array of,
<math> <mrow> <mi>&Omega;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>z</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>y</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>z</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>x</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>y</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <msub> <mi>b</mi> <mi>x</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
omega is the angular rate measured by the MEMS gyroscope in the pedestrian navigation system,
<math> <mrow> <mi>&omega;</mi> <mo>&ap;</mo> <msubsup> <mi>&omega;</mi> <mi>nb</mi> <mi>b</mi> </msubsup> </mrow> </math>
in the formula,angular rate of rotation of a vehicle coordinate system of a pedestrian navigation system relative to a geographic coordinate system:
<math> <mrow> <msup> <mi>&omega;</mi> <mi>b</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&omega;</mi> <mi>nb</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>&omega;</mi> <mi>bx</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <mi>by</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msup> <mi>&omega;</mi> <mi>bz</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>.</mo> </mrow> </math>
6. the MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction as claimed in claim 1, wherein in step four, the formula is utilized:
α=arctan(-C31/C33)
θ=arcsin(C32)
ψ=arctan(-C12/C22)
vn(t)=vn(0)+∫an(t)dt
sn=(t)sn(0)+∫vn(t)dt
estimating individual soldier system navigation state
Figure FSA0000097593470000039
Including three-dimensional position, velocity, attitude vectors of pedestrian navigation systems, i.e.
Figure FSA00000975934700000310
Wherein, Ci(i, j ═ 1, 2, 3) as a strapdown matrix
Figure FSA0000097593470000041
The alpha is a roll angle of the inertia measurement unit, the theta is a pitch angle of the inertia measurement unit, and the psi is a course angle of the inertia measurement unit; wherein v isn(O) is the initial velocity, sn(O) is an initial position, an(t) acceleration due to movement of the carrier:
an(t)=fn(t)-gn
wherein f isn(t) is the projection of the specific force measured by the MEMS accelerometer along the geodetic direction:
f n ( t ) = C b n f b ( t )
in the formula, f b ( t ) = f bx ( t ) f by ( t ) f bz ( t ) ] T is the specific force measured by the MEMS accelerometer.
7. The MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction as claimed in claim 1, wherein in step five, the formula is utilized:
<math> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mrow> </munder> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msubsup> <mi>&sigma;</mi> <mi>a</mi> <mn>2</mn> </msubsup> </mfrac> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>f</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>g</mi> <mfrac> <msub> <mover> <mi>f</mi> <mo>&OverBar;</mo> </mover> <mi>n</mi> </msub> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>f</mi> <mo>&OverBar;</mo> </mover> <mi>n</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <msubsup> <mi>&sigma;</mi> <mi>&omega;</mi> <mn>2</mn> </msubsup> </mfrac> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&lt;</mo> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> </mrow> </math>
judging a zero-speed interval of the autonomous navigation system of the traveling person, and if the above formula is established, enabling the steps of the user of the autonomous navigation system of the traveling person to be static;
wherein,
Figure FSA0000097593470000049
| l | · | | represents the norm calculation; T ( z n ) = - 2 N ln L G ( z n ) , γ′=-(2/N)ln(γ);
Figure FSA0000097593470000046
ln (·) represents the logarithm based on e;
Figure FSA0000097593470000047
representing the noise variance of the MEMS accelerometer and the MEMS gyroscope respectively; the value of gamma is determined by the following formula:
<math> <mrow> <msub> <mi>P</mi> <mi>FA</mi> </msub> <mo>=</mo> <msub> <mo>&Integral;</mo> <mrow> <mo>{</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>:</mo> <mi>L</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mi>&gamma;</mi> <mo>}</mo> </mrow> </msub> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>;</mo> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>dz</mi> <mi>n</mi> </msub> <mo>=</mo> <mi>&alpha;</mi> <mo>.</mo> </mrow> </math>
8. the MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction as claimed in claim 1, wherein the Kalman filtering model used in the sixth step is:
X k = F k , k - 1 X k - 1 + G k - 1 W k - 1 Z k = H k X k + N k
the estimated state vector is:
X=[φT δvT δsT]T
when the measurement vector is in a zero-speed state, the navigation resolving speed value and the course error information are as follows:
<math> <mrow> <mi>Z</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;&psi;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&delta;v</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;&psi;</mi> </mtd> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
the measurement array is:
H = 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
the state transition matrix is:
<math> <mrow> <mi>F</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;tS</mi> <mrow> <mo>(</mo> <msubsup> <mi>f</mi> <mi>t</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mi>&Delta;t</mi> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein G isk-1For system noise-driven arrays, Wk-1For systematic excitation of noise sequences, HkFor measurement array, NkFor measuring noise sequences, [ phi ]TIs an attitude error and phiT=[δψφy φz]Wherein, delta psi ═ psiMagnetometerNavigation solution,δsTFor position error, δ vTIs a velocity error and δ vT=[vx vy vz]The three error terms are all three-dimensional,
Figure FSA0000097593470000055
is an anti-symmetric matrix of carrier motion acceleration along the geographic system.
9. The MEMS pedestrian autonomous navigation system positioning method based on strapdown inertial navigation solution and zero-speed correction as claimed in claim 1, wherein the optimal estimation and mean square error of Kalman filtering only time update in step six are:
X ^ k + 1 / k = E [ X k + 1 ] = E [ F k + 1 , k X k + G k W k ] = F k + 1 , k X ^ k
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>E</mi> <mo>[</mo> <mi>&delta;</mi> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>&delta;</mi> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <msub> <mi>F</mi> <mi>k</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> <msubsup> <mi>F</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <mi>G</mi> <msub> <mi>Q</mi> <mi>k</mi> </msub> <msup> <mi>G</mi> <mi>k</mi> </msup> </mtd> </mtr> </mtable> </mfenced> </math>
wherein E [. cndot. ] represents the expectation;
the optimal estimation and mean square error in time update + measurement update is:
X ^ k + 1 = X ^ k + 1 / k + K ( Z k + 1 - H k + 1 X ^ k + 1 / k )
P k + 1 - 1 = ( P ^ k + 1 / k ) - 1 + ( H k + 1 T R k + 1 - 1 H k + 1 ) - 1
K = P k + 1 H k + 1 T R k + 1 - 1
storing state estimates for each time instant
Figure FSA0000097593470000066
Estimating mean square error matrix PkAnd a filter gain K, if the step MIMU zero-speed detection result at the moment K +1 is in a motion state, the Kalman filter only updates the time,
if the step MIMU zero-speed detection result at the moment k +1 is static, the KF is completely updated, and the time and measurement are updated.
CN201310566710.6A 2013-11-15 2013-11-15 Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction Pending CN103616030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310566710.6A CN103616030A (en) 2013-11-15 2013-11-15 Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310566710.6A CN103616030A (en) 2013-11-15 2013-11-15 Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction

Publications (1)

Publication Number Publication Date
CN103616030A true CN103616030A (en) 2014-03-05

Family

ID=50166737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310566710.6A Pending CN103616030A (en) 2013-11-15 2013-11-15 Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction

Country Status (1)

Country Link
CN (1) CN103616030A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900613A (en) * 2014-03-31 2014-07-02 哈尔滨工程大学 Micro-electromechanical system (MEMS) error estimation method based on magnetometer and N step interval detection
CN104132662A (en) * 2014-07-25 2014-11-05 辽宁工程技术大学 Closed-loop Kalman filter inertial positioning method based on zero velocity update
CN104406586A (en) * 2014-12-04 2015-03-11 南京邮电大学 Pedestrian navigation device and pedestrian navigation method based on inertial sensor
CN104613964A (en) * 2015-01-30 2015-05-13 中国科学院上海高等研究院 Pedestrian positioning method and system for tracking foot motion features
CN104897155A (en) * 2015-06-05 2015-09-09 北京信息科技大学 Personal portable auxiliary multisource locating information correcting method
CN104931049A (en) * 2015-06-05 2015-09-23 北京信息科技大学 Movement classification-based pedestrian self-positioning method
CN104977020A (en) * 2014-04-02 2015-10-14 北京自动化控制设备研究所 Course error inhibiting method applied to individual indoor navigation system
CN104977001A (en) * 2014-04-02 2015-10-14 北京自动化控制设备研究所 Relative navigation method applied to individual indoor navigation system
CN105783923A (en) * 2016-01-05 2016-07-20 山东科技大学 Personnel positioning method based on RFID and MEMS inertial technologies
CN105841717A (en) * 2016-06-07 2016-08-10 哈尔滨工业大学 Rapid correction method for course error of strapdown inertial navigation system
CN105865450A (en) * 2016-04-19 2016-08-17 武汉理工大学 Zero-speed update method and system based on gait
CN106017461A (en) * 2016-05-19 2016-10-12 北京理工大学 Pedestrian navigation system three-dimensional spatial positioning method based on human/environment constraints
CN106123923A (en) * 2016-08-03 2016-11-16 哈尔滨工程大学 A kind of inertial navigation system gyroscope drift correction method based on velocity aid
CN106908759A (en) * 2017-01-23 2017-06-30 南京航空航天大学 A kind of indoor pedestrian navigation method based on UWB technology
CN106908060A (en) * 2017-02-15 2017-06-30 东南大学 A kind of high accuracy indoor orientation method based on MEMS inertial sensor
CN107228664A (en) * 2017-05-02 2017-10-03 太原理工大学 Mining gyrolevel SINS attitude algorithm and zero speed correcting method
CN107289941A (en) * 2017-06-14 2017-10-24 湖南格纳微信息科技有限公司 A kind of indoor orientation method and device based on inertial navigation
CN107289930A (en) * 2016-04-01 2017-10-24 南京理工大学 Pure inertia automobile navigation method based on MEMS Inertial Measurement Units
CN107783422A (en) * 2017-10-20 2018-03-09 西北机电工程研究所 Using the gun laying systems stabilisation control method of inertial navigation
CN107830858A (en) * 2017-09-30 2018-03-23 南京航空航天大学 A kind of mobile phone course estimation method based on gravity auxiliary
CN107883953A (en) * 2017-09-26 2018-04-06 广州新维感信息技术有限公司 VR handles static detection algorithm, VR handles and storage medium
CN108362282A (en) * 2018-01-29 2018-08-03 哈尔滨工程大学 A kind of inertia pedestrian's localization method based on the adjustment of adaptive zero-speed section
CN108444467A (en) * 2017-11-17 2018-08-24 西北工业大学 A kind of pedestrian's localization method based on feedback complementary filter and algebraic approximation
CN108507572A (en) * 2018-05-28 2018-09-07 清华大学 A kind of attitude orientation error correcting method based on MEMS Inertial Measurement Units
CN108534744A (en) * 2018-01-30 2018-09-14 歌尔科技有限公司 A kind of attitude angle acquisition methods, device and handle
CN109115207A (en) * 2017-06-23 2019-01-01 北京方位捷讯科技有限公司 Pedestrian's foot path detection method, apparatus and system
CN109520508A (en) * 2018-12-10 2019-03-26 湖南国科微电子股份有限公司 Localization method, device and positioning device
CN109764878A (en) * 2019-04-01 2019-05-17 中国民航大学 Accelerate modified smart phone inertial sensor indoor orientation method based on zero
CN109891049A (en) * 2016-11-29 2019-06-14 赫尔实验室有限公司 Increment track estimating system based on real-time inertia sensing
CN110398245A (en) * 2019-07-09 2019-11-01 武汉大学 The indoor pedestrian navigation Attitude estimation method of formula Inertial Measurement Unit is worn based on foot
CN110553646A (en) * 2019-07-30 2019-12-10 南京林业大学 Pedestrian navigation method based on inertia, magnetic heading and zero-speed correction
CN110954102A (en) * 2019-12-18 2020-04-03 无锡北微传感科技有限公司 Magnetometer-assisted inertial navigation system and method for robot positioning
CN111189473A (en) * 2020-01-08 2020-05-22 湖北三江航天红峰控制有限公司 Heading and attitude system gyro error compensation method based on magnetic sensor and additional meter
CN112762944A (en) * 2020-12-25 2021-05-07 上海商汤临港智能科技有限公司 Zero-speed interval detection and zero-speed updating method
CN112798010A (en) * 2019-11-13 2021-05-14 北京三快在线科技有限公司 Initialization method and device for VIO system of visual inertial odometer
CN113483753A (en) * 2021-06-30 2021-10-08 北京航空航天大学 Inertial heading error elimination method based on environmental constraint

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090150075A1 (en) * 2007-12-06 2009-06-11 Takayuki Watanabe Angular Velocity Correcting Device, Angular Velocity Correcting Method, and Navigation Device
CN102445200A (en) * 2011-09-30 2012-05-09 南京理工大学 Microminiature personal combined navigation system as well as navigating and positioning method thereof
CN102645223A (en) * 2012-04-27 2012-08-22 北京航空航天大学 Serial inertial navigation vacuum filtering correction method based on specific force observation
CN102680000A (en) * 2012-04-26 2012-09-19 北京航空航天大学 Zero-velocity/course correction application online calibrating method for optical fiber strapdown inertial measuring unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090150075A1 (en) * 2007-12-06 2009-06-11 Takayuki Watanabe Angular Velocity Correcting Device, Angular Velocity Correcting Method, and Navigation Device
CN102445200A (en) * 2011-09-30 2012-05-09 南京理工大学 Microminiature personal combined navigation system as well as navigating and positioning method thereof
CN102680000A (en) * 2012-04-26 2012-09-19 北京航空航天大学 Zero-velocity/course correction application online calibrating method for optical fiber strapdown inertial measuring unit
CN102645223A (en) * 2012-04-27 2012-08-22 北京航空航天大学 Serial inertial navigation vacuum filtering correction method based on specific force observation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISAAC SKOG ET AL.: "Zero-Velocity Detection——An Algorithm Evaluation", 《IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING》, vol. 57, no. 11, 30 November 2010 (2010-11-30), pages 2657 - 2660, XP011327074, DOI: doi:10.1109/TBME.2010.2060723 *

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900613A (en) * 2014-03-31 2014-07-02 哈尔滨工程大学 Micro-electromechanical system (MEMS) error estimation method based on magnetometer and N step interval detection
CN103900613B (en) * 2014-03-31 2016-08-17 哈尔滨工程大学 A kind of MEMS system error estimation based on magnetometer N rank away from detection
CN104977020A (en) * 2014-04-02 2015-10-14 北京自动化控制设备研究所 Course error inhibiting method applied to individual indoor navigation system
CN104977020B (en) * 2014-04-02 2017-12-29 北京自动化控制设备研究所 A kind of course error suppressing method applied to personal indoor navigation system
CN104977001A (en) * 2014-04-02 2015-10-14 北京自动化控制设备研究所 Relative navigation method applied to individual indoor navigation system
CN104132662B (en) * 2014-07-25 2020-01-17 辽宁工程技术大学 Closed loop Kalman filtering inertial positioning method based on zero-speed correction
CN104132662A (en) * 2014-07-25 2014-11-05 辽宁工程技术大学 Closed-loop Kalman filter inertial positioning method based on zero velocity update
CN104406586B (en) * 2014-12-04 2017-03-15 南京邮电大学 Pedestrian navigation apparatus and method based on inertial sensor
CN104406586A (en) * 2014-12-04 2015-03-11 南京邮电大学 Pedestrian navigation device and pedestrian navigation method based on inertial sensor
CN104613964A (en) * 2015-01-30 2015-05-13 中国科学院上海高等研究院 Pedestrian positioning method and system for tracking foot motion features
CN104931049A (en) * 2015-06-05 2015-09-23 北京信息科技大学 Movement classification-based pedestrian self-positioning method
CN104897155A (en) * 2015-06-05 2015-09-09 北京信息科技大学 Personal portable auxiliary multisource locating information correcting method
CN104897155B (en) * 2015-06-05 2018-10-26 北京信息科技大学 A kind of individual's portable multi-source location information auxiliary revision method
CN105783923A (en) * 2016-01-05 2016-07-20 山东科技大学 Personnel positioning method based on RFID and MEMS inertial technologies
CN105783923B (en) * 2016-01-05 2018-05-08 山东科技大学 Personnel positioning method based on RFID and MEMS inertial technologies
CN107289930A (en) * 2016-04-01 2017-10-24 南京理工大学 Pure inertia automobile navigation method based on MEMS Inertial Measurement Units
CN105865450A (en) * 2016-04-19 2016-08-17 武汉理工大学 Zero-speed update method and system based on gait
CN106017461B (en) * 2016-05-19 2018-11-06 北京理工大学 Pedestrian navigation system three-dimensional fix method based on human body/environmental constraints
CN106017461A (en) * 2016-05-19 2016-10-12 北京理工大学 Pedestrian navigation system three-dimensional spatial positioning method based on human/environment constraints
CN105841717A (en) * 2016-06-07 2016-08-10 哈尔滨工业大学 Rapid correction method for course error of strapdown inertial navigation system
CN105841717B (en) * 2016-06-07 2018-09-11 哈尔滨工业大学 A kind of Strapdown Inertial Navigation System course error rapid correction method
CN106123923A (en) * 2016-08-03 2016-11-16 哈尔滨工程大学 A kind of inertial navigation system gyroscope drift correction method based on velocity aid
CN106123923B (en) * 2016-08-03 2019-02-26 哈尔滨工程大学 A kind of inertial navigation system gyroscope drift correction method based on velocity aid
CN109891049A (en) * 2016-11-29 2019-06-14 赫尔实验室有限公司 Increment track estimating system based on real-time inertia sensing
CN106908759A (en) * 2017-01-23 2017-06-30 南京航空航天大学 A kind of indoor pedestrian navigation method based on UWB technology
CN106908060A (en) * 2017-02-15 2017-06-30 东南大学 A kind of high accuracy indoor orientation method based on MEMS inertial sensor
CN107228664A (en) * 2017-05-02 2017-10-03 太原理工大学 Mining gyrolevel SINS attitude algorithm and zero speed correcting method
CN107289941A (en) * 2017-06-14 2017-10-24 湖南格纳微信息科技有限公司 A kind of indoor orientation method and device based on inertial navigation
CN109115207A (en) * 2017-06-23 2019-01-01 北京方位捷讯科技有限公司 Pedestrian's foot path detection method, apparatus and system
US11162795B2 (en) 2017-06-23 2021-11-02 Beijing Fine Way Technology Co., Ltd. Method and device for detecting pedestrian stride length and walking path
CN107883953A (en) * 2017-09-26 2018-04-06 广州新维感信息技术有限公司 VR handles static detection algorithm, VR handles and storage medium
CN107883953B (en) * 2017-09-26 2021-05-25 广州新维感信息技术有限公司 VR handle static detection algorithm, VR handle and storage medium
CN107830858B (en) * 2017-09-30 2023-05-23 南京航空航天大学 Gravity-assisted mobile phone heading estimation method
CN107830858A (en) * 2017-09-30 2018-03-23 南京航空航天大学 A kind of mobile phone course estimation method based on gravity auxiliary
CN107783422A (en) * 2017-10-20 2018-03-09 西北机电工程研究所 Using the gun laying systems stabilisation control method of inertial navigation
CN107783422B (en) * 2017-10-20 2020-10-23 西北机电工程研究所 Control method of gun aiming stabilization system adopting strapdown inertial navigation
CN108444467A (en) * 2017-11-17 2018-08-24 西北工业大学 A kind of pedestrian's localization method based on feedback complementary filter and algebraic approximation
CN108444467B (en) * 2017-11-17 2021-10-12 西北工业大学 Pedestrian positioning method based on feedback complementary filtering and algebraic approximation
CN108362282A (en) * 2018-01-29 2018-08-03 哈尔滨工程大学 A kind of inertia pedestrian's localization method based on the adjustment of adaptive zero-speed section
CN108534744A (en) * 2018-01-30 2018-09-14 歌尔科技有限公司 A kind of attitude angle acquisition methods, device and handle
CN108507572B (en) * 2018-05-28 2021-06-08 清华大学 Attitude positioning error correction method based on MEMS inertial measurement unit
CN108507572A (en) * 2018-05-28 2018-09-07 清华大学 A kind of attitude orientation error correcting method based on MEMS Inertial Measurement Units
CN109520508A (en) * 2018-12-10 2019-03-26 湖南国科微电子股份有限公司 Localization method, device and positioning device
CN109764878B (en) * 2019-04-01 2022-03-29 中国民航大学 Indoor positioning method of intelligent mobile phone inertial sensor based on zero acceleration correction
CN109764878A (en) * 2019-04-01 2019-05-17 中国民航大学 Accelerate modified smart phone inertial sensor indoor orientation method based on zero
CN110398245B (en) * 2019-07-09 2021-04-16 武汉大学 Indoor pedestrian navigation attitude estimation method based on foot-worn inertial measurement unit
CN110398245A (en) * 2019-07-09 2019-11-01 武汉大学 The indoor pedestrian navigation Attitude estimation method of formula Inertial Measurement Unit is worn based on foot
CN110553646B (en) * 2019-07-30 2023-03-21 南京林业大学 Pedestrian navigation method based on inertia, magnetic heading and zero-speed correction
CN110553646A (en) * 2019-07-30 2019-12-10 南京林业大学 Pedestrian navigation method based on inertia, magnetic heading and zero-speed correction
CN112798010A (en) * 2019-11-13 2021-05-14 北京三快在线科技有限公司 Initialization method and device for VIO system of visual inertial odometer
CN110954102A (en) * 2019-12-18 2020-04-03 无锡北微传感科技有限公司 Magnetometer-assisted inertial navigation system and method for robot positioning
CN110954102B (en) * 2019-12-18 2022-01-07 无锡北微传感科技有限公司 Magnetometer-assisted inertial navigation system and method for robot positioning
CN111189473A (en) * 2020-01-08 2020-05-22 湖北三江航天红峰控制有限公司 Heading and attitude system gyro error compensation method based on magnetic sensor and additional meter
CN112762944A (en) * 2020-12-25 2021-05-07 上海商汤临港智能科技有限公司 Zero-speed interval detection and zero-speed updating method
CN112762944B (en) * 2020-12-25 2024-03-22 上海商汤临港智能科技有限公司 Zero-speed interval detection and zero-speed updating method
CN113483753B (en) * 2021-06-30 2022-11-01 北京航空航天大学 Inertial course error elimination method based on environmental constraint
CN113483753A (en) * 2021-06-30 2021-10-08 北京航空航天大学 Inertial heading error elimination method based on environmental constraint

Similar Documents

Publication Publication Date Title
CN103616030A (en) Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction
Tong et al. A double-step unscented Kalman filter and HMM-based zero-velocity update for pedestrian dead reckoning using MEMS sensors
CN103776446B (en) A kind of pedestrian&#39;s independent navigation computation based on double MEMS-IMU
CN108426574A (en) A kind of MEMS pedestrian navigation methods of the course angle correction algorithm based on ZIHR
CN101706287B (en) Rotating strapdown system on-site proving method based on digital high-passing filtering
CN102445200A (en) Microminiature personal combined navigation system as well as navigating and positioning method thereof
CN104132662A (en) Closed-loop Kalman filter inertial positioning method based on zero velocity update
CN104406586A (en) Pedestrian navigation device and pedestrian navigation method based on inertial sensor
Chen et al. IMU/GPS based pedestrian localization
CN105698822A (en) Autonomous inertial navigation action initial alignment method based on reverse attitude tracking
CN108007477A (en) A kind of inertia pedestrian&#39;s Positioning System Error suppressing method based on forward and reverse filtering
Zhang et al. Pedestrian motion based inertial sensor fusion by a modified complementary separate-bias Kalman filter
CN109764870A (en) Carrier initial heading evaluation method based on transformation estimator modeling scheme
Woyano et al. Evaluation and comparison of performance analysis of indoor inertial navigation system based on foot mounted IMU
Yuan et al. Indoor pedestrian navigation using miniaturized low-cost MEMS inertial measurement units
CN104897155B (en) A kind of individual&#39;s portable multi-source location information auxiliary revision method
Glanzer et al. Self-contained indoor pedestrian navigation by means of human motion analysis and magnetic field mapping
CN104154914A (en) Initial attitude measurement method of space stabilization type strapdown inertial navigation system
CN103901459A (en) Filtering method for measurement hysteresis in MEMS/GPS integrated navigation system
Tian et al. A pedestrian navigation system based on MEMS inertial measurement unit
Xue et al. MEMS-based multi-sensor integrated attitude estimation technology for MAV applications
Hasan et al. Evaluation of a low-cost MEMS IMU for indoor positioning system
Bravo et al. Comparison of step length and heading estimation methods for indoor environments
CN103411614A (en) Iteration SKF (Schmidt Kalman Filter) method of multi-source information integrated navigation of Mars power descent stage
Dorveaux et al. Presentation of a magneto-inertial positioning system: navigating through magnetic disturbances

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140305