CN107783123A - 无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法 - Google Patents

无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法 Download PDF

Info

Publication number
CN107783123A
CN107783123A CN201610725684.0A CN201610725684A CN107783123A CN 107783123 A CN107783123 A CN 107783123A CN 201610725684 A CN201610725684 A CN 201610725684A CN 107783123 A CN107783123 A CN 107783123A
Authority
CN
China
Prior art keywords
data
signal
passage
frequency
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610725684.0A
Other languages
English (en)
Other versions
CN107783123B (zh
Inventor
田雨农
王鑫照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Roiland Technology Co Ltd
Original Assignee
Dalian Roiland Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Roiland Technology Co Ltd filed Critical Dalian Roiland Technology Co Ltd
Priority to CN201610725684.0A priority Critical patent/CN107783123B/zh
Publication of CN107783123A publication Critical patent/CN107783123A/zh
Application granted granted Critical
Publication of CN107783123B publication Critical patent/CN107783123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法,属于信号处理领域,为了解决无人驾驶汽车行驶时易发生与障碍物之间的碰撞的问题,技术要点是:AD数据采集;去直流;窗函数处理;FFT变换;门限检测;二进制检测;解算速度、距离或角度中的一种或组合。

Description

无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法
技术领域
本发明属于雷达领域,涉及一种无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法。
背景技术
近年来,随着经济的发展,交通需求日益增加,城市交通拥堵、交通事故频发等成为当前世界各国面临的共同问题。对公路交通事故的分析显示,在司机、汽车、道路三个环节中,司机是可靠性最薄弱的环节,因此近几年来,替代司机驾驶的无人驾驶汽车孕育而生,自动驾驶汽车又称无人驾驶汽车、电脑驾驶汽车是一种通过电脑系统实现无人驾驶的智能汽车。
为提高自动驾驶汽车行驶的安全性,自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。因此自动驾驶汽车需要判断汽车行驶状况,对车辆的安全性进行预测,自动采取措施防止交通事故的发生,减小事故发生概率的系统,如车道偏离系统、前向车辆碰撞警告系统、前向避障辅助系统、驾驶员注意力监测等。其中,汽车防撞雷达是自动驾驶汽车最主要的传感器之一。主要是由于汽车防撞雷达是一种主动安全设备,可以准确的测量出周围目标的速度和距离,以及目标所在的方位角等信息,可以准确的发现无人驾驶汽车在行驶过程中的潜在危险,并且根据雷达检测到的障碍物信息,自动采取措施消除危险。
目前应用到汽车上的测距方法主要有激光测距,超声波测距,红外线测距,毫米波雷达测距等几种方法。红外、摄像头等光学技术价格低廉且技术简单,但是全天候工作效果不好,防撞性能有限;超声波受天气状态影响大,探测距离较短。而毫米波雷达克服了上述几种探测方式的缺点,具有稳定的探测性能和良好环境适用性。它不仅具有频率高、波长短、频带宽、体积小、重量轻等特点,而且与上述几种传感器相比,毫米波雷达穿透雾、烟、灰尘的能力强,抗干扰能力强,不受光线影响,探测距离远,具有全天候全天时等特点。成本也有所下降,并且雷达的外型尺寸可以做得很小,便于在汽车上安装,故作为目前国内外自动驾驶汽车防撞雷达的普遍选择方式。
综上所述:无论从安全角度还是经济角度而言,自动驾驶汽车防撞雷达的研制都极具应用价值和现实意义。
发明内容
本发明提供了一种无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法,目的在于得到一种雷达信号处理系统,以实现无人驾驶汽车复杂环境防撞。
本发明采用如下技术方案:
一种无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统,包括天线分系统、射频分系统、信号调理分系统、信号处理分系统;
所述天线分系统形成雷达探测所需的发射和接收波束,并将发射信号向指定区域辐射,并接收指定区域内的目标散射回波信号;
所述射频分系统,产生发射信号且发射信号的频率按照调制信号的规律进行变化,实现输出线性调频连续波;
所述信号调理分系统,对中频模拟信号的滤波和幅值放大;
所述信号处理分系统,使信号调理分系统输出的四路I/Q中频信号,采集到AD采集通道中,并进行无人驾驶汽车复杂环境防撞毫米波雷达信号处理且输出。
上述无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,包括如下步骤:
S1.AD数据采集;
S2.去直流;
S3.窗函数处理;
S4.FFT变换;
S5.门限检测;
S6.二进制检测;
S7.解算速度、距离或角度中的一种或组合。
进一步的,所述步骤S1的具体方法是:
(1)将通道1和通道2中的连续IQ数据,通过AD采样进行数字化处理;
(2)将通道1和通道2中采集到的数据分为三角波的上扫频数据和下扫频数据,去除前部分数据点后去直流,进行时频的FFT变换,将时域数据转换成频率数据;
进一步的,所述步骤S2的具体方法是:
(1)将通道1和通道2中,分别计算各自通道三角波上、下扫频IQ数据的均值;
(2)将各自通道三角波上、下扫频IQ的每一个数据减掉上一步计算得到的均值。
进一步的,所述步骤S3的具体方法是:将通道1和通道2中,三角波的上、下扫频段各自去直流后的时域数据进行加窗处理,选择汉宁窗和/或海明窗。
进一步的,所述步骤S4的具体方法是:将通道1和通道2中,加窗后的三角波的上、下扫频段数据进行FFT变换,将时域数据转换成频率数据。
进一步的,所述步骤S5的具体方法是:
(1)将通道1中的三角波上扫频FFT变换后的各个点的复数模值和通道2中的三角波上扫频FFT变换后的对应点上的复数模值,进行平均处理,将通道1中的三角波下扫频FFT变换后的各个点的复数模值和通道2中的三角波下扫频FFT变换后的对应点上的复数模值,进行平均处理;
(2)将平均后的数据,进行CFAR门限检测。
进一步的,CFAR门限检测选择单元平均选小的门限检测方法,具体流程如下:
1)设置参考窗长L,其值可根据外场实测改变,选取为15~20个点,保护单元选择2~3个点;
2)针对单个锯齿波周期数据FFT后的某个模值点,分别计算其前参考窗内L个数据的均值β1和后参考窗内L个数据的均值β2,若其前或后窗长小于L,取实际窗长计算均值;
3)比较该点前后窗均值β1和β2,选择其中较小者作为其电平估计α,即α=min(β12);
4)设置门限乘积因子γ,则该点的检测门限T=α*γ;
5)比较该点模值和其门限值的大小,若其模值大于门限,则记录该点的位置信息,否则认为其未过门限;
6)对于其他所有模值点,分别执行以上步骤2)~5),即针对所有点进行滑窗检测,记录所有过门限点的位置信息。
进一步的,所述步骤S6的具体方法是:
对CFAR门限检测后的数据,令每一个数据为一个距离单元,对每一个距离单元的数据均进行二进制检测,如果该距离单元的数据过门限,则记为1,如果没过门限,则记为0,然后进行多周期累计,如果某一个距离单元的门限累计1的个数超过K个,则输出该点坐标值,否则不作为过门限的目标输出,其中K表示累计1的个数;
二进制检测后,当同时满足要求的过门限的点数不唯一的时候,只选择输出过门限的第一个峰值点。
进一步的,所述步骤S6,在通过CFAR检测以及二进制检测后,对于上扫频和下扫频段过门限的点进行配对处理,如果上下扫频过门限的点坐标值相差超过阈值,不能确定为同一个目标的上下扫频时,不进行配对处理;
作为优选方案:
所述步骤S7中,对于速度、距离和角度的解算方法是:
(1)将配对成功后的或无需进行配对的峰值点,计算其对应的频率值,设通道1中上扫频段第一个过门限点的峰值坐标为p1_up,则该点对应的频率值为f1_up,对应的FFT变换后的数据为a_p1_up+1j*b_p1_up,相位为通道2中上扫频段对应的该点FFT变换后的数据为a_p2_up+1j*b_p2_up,相位设通道1中下扫频段第一个过门限点的峰值坐标为p1_down,则该点对应的频率值为f1_down;
其中:其中:a表示I路的数据值,b表示Q路的数据值,a_p1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为p1,b_p1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为p1;
(2)将得到的通道1中上扫频频率值f1_up和下扫频对应的频率值f1_down,根据公式计算无人驾驶汽车前向障碍物目标的距离,其中,T为三角波周期,B为调频带宽,c为光速,c=3.0×108;根据公式其中f0为中心频率计算无人驾驶汽车前向障碍物目标的速度,f0是中心频率;
(3)通道1和通道2中,根据各自上扫频分别计算得到的相位再根据计算公式计算得到相位差Δψ;根据公式计算方位角,其中,λ为波长,d为天线间距。
有益效果:本发明提供了一种无人驾驶汽车复杂环境防撞毫米波雷达系统,以实现无人驾驶汽车复杂环境防撞。本发明给出了一种基于线性调频三角波实现无人驾驶汽车防撞毫米波雷达系统的波形设计;本发明给出基于线性调频三角波实现的无人驾驶汽车防撞毫米波雷达高性能信号处理方法,该方法可以实现对前方障碍物的相对距离以及相对速度的检测,同时可以实现目标方向角的检测功能。由于采用了更多信号处理方法,可以使得防撞系统,能够输出更准备更稳定的目标信息,为无人驾驶汽车防撞做出更精准的目标判断。
附图说明
图1无人驾驶汽车防撞毫米波雷达系统工作框图;
图2信号调理分系统整体设计框图;
图3无人驾驶汽车防撞雷达信号处理分系统硬件整体设计框图;
图4线性调频三角波FMCW在一个扫频周期内的频率变化图;
图5无人驾驶汽车短距离防撞系统信号处理流程图。
具体实施方式
实施例1:一种无人驾驶汽车复杂环境防撞毫米波雷达系统,包括天线分系统、射频分系统、信号调理分系统、信号处理分系统;
所述天线分系统形成雷达探测所需的发射和接收波束,并将发射信号向指定区域辐射,并接收指定区域内的目标散射回波信号;
所述射频分系统,产生发射信号且发射信号的频率按照调制信号的规律进行变化,实现输出线性调频连续波;
所述信号调理分系统,对中频模拟信号的滤波和幅值放大;
所述信号处理分系统,使信号调理分系统输出的四路I/Q中频信号,采集到AD采集通道中,并进行无人驾驶汽车复杂环境防撞毫米波雷达信号处理且输出。
作为一种方案,所述天线分系统包括发射天线和接收天线,所述接收天线是由三行接收天线通过背面馈电网络组成的两个接收天线,使用微带矩形贴片形成组阵;所述发射天线、接收天线通过过孔与背面微波电路连接。
作为一种方案,所述信号处理分系统,包括ARM芯片、电源模块、串口模块和CAN模块,所述AMR芯片将信号调理分系统输出的四路I/Q中频信号,采集到ARM芯片自带的四路AD采集通道中,由ARM芯片进行信号处理,通过串口模块和/或CAN模块输出。
作为一种方案,天线分系统包括发射天线和接收天线,所述射频分系统包括压控振荡器和混频器,所述信号处理分系统包括信号调理电路和PLL锁相环,所述信号处理分系统包括A/D转换器和ARM芯片,ARM芯片的一端连接于信号发生器,信号发生器连接于压控振荡器,压控振动器分别连接于发射器和混频器的第一端,混频器的第二端连接接收器,混频器的第三端连接信号调理电路,信号调理电路连接A/D转换器,A/D转换器连接ARM芯片的另一端。
实施例2:如实施例1各方案所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,包括如下步骤:
S1.AD数据采集;
S2.去直流;
S3.窗函数处理;
S4.FFT变换;
S5.门限检测;
S6.二进制检测;
S7.解算速度、距离或角度中的一种或组合。
其中:所述步骤S1的具体方法是:
(3)将通道1和通道2中的连续IQ数据,通过AD采样进行数字化处理;
(4)将通道1和通道2中采集到的数据分为三角波的上扫频数据和下扫频数据,去除前部分数据点后去直流,进行时频的FFT变换,将时域数据转换成频率数据;
所述步骤S2的具体方法是:
(3)将通道1和通道2中,分别计算各自通道三角波上、下扫频IQ数据的均值;
(4)将各自通道三角波上、下扫频IQ的每一个数据减掉上一步计算得到的均值。
所述步骤S3的具体方法是:将通道1和通道2中,三角波的上、下扫频段各自去直流后的时域数据进行加窗处理,选择汉宁窗和/或海明窗。
所述步骤S4的具体方法是:将通道1和通道2中,加窗后的三角波的上、下扫频段数据进行FFT变换,将时域数据转换成频率数据。
所述步骤S5的具体方法是:
(1)将通道1中的三角波上扫频FFT变换后的各个点的复数模值和通道2中的三角波上扫频FFT变换后的对应点上的复数模值,进行平均处理,将通道1中的三角波下扫频FFT变换后的各个点的复数模值和通道2中的三角波下扫频FFT变换后的对应点上的复数模值,进行平均处理;
(2)将平均后的数据,进行CFAR门限检测。
CFAR门限检测选择单元平均选小的门限检测方法,具体流程如下:
1)设置参考窗长L,其值可根据外场实测改变,选取为15~20个点,保护单元选择2~3个点;
2)针对单个锯齿波周期数据FFT后的某个模值点,分别计算其前参考窗内L个数据的均值β1和后参考窗内L个数据的均值β2,若其前或后窗长小于L,取实际窗长计算均值;
3)比较该点前后窗均值β1和β2,选择其中较小者作为其电平估计α,即α=min(β12);
4)设置门限乘积因子γ,则该点的检测门限T=α*γ;
5)比较该点模值和其门限值的大小,若其模值大于门限,则记录该点的位置信息,否则认为其未过门限;
6)对于其他所有模值点,分别执行以上步骤2)~5),即针对所有点进行滑窗检测,记录所有过门限点的位置信息。
所述步骤S6的具体方法是:
对CFAR门限检测后的数据,令每一个数据为一个距离单元,对每一个距离单元的数据均进行二进制检测,如果该距离单元的数据过门限,则记为1,如果没过门限,则记为0,然后进行多周期累计,如果某一个距离单元的门限累计1的个数超过K个,则输出该点坐标值,否则不作为过门限的目标输出,其中K表示累计1的个数;
二进制检测后,当同时满足要求的过门限的点数不唯一的时候,只选择输出过门限的第一个峰值点。
所述步骤S6,在通过CFAR检测以及二进制检测后,对于上扫频和下扫频段过门限的点进行配对处理,如果上下扫频过门限的点坐标值相差超过阈值,不能确定为同一个目标的上下扫频时,不进行配对处理;
作为优选方案:
所述步骤S7中,对于速度、距离和角度的解算方法是:
(3)将配对成功后的或无需进行配对的峰值点,计算其对应的频率值,设通道1中上扫频段第一个过门限点的峰值坐标为p1_up,则该点对应的频率值为f1_up,对应的FFT变换后的数据为a_p1_up+1j*b_p1_up,相位为通道2中上扫频段对应的该点FFT变换后的数据为a_p2_up+1j*b_p2_up,相位设通道1中下扫频段第一个过门限点的峰值坐标为p1_down,则该点对应的频率值为f1_down;
其中:其中:a表示I路的数据值,b表示Q路的数据值,a_p1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为p1,b_p1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为p1;
(4)将得到的通道1中上扫频频率值f1_up和下扫频对应的频率值f1_down,根据公式计算无人驾驶汽车前向障碍物目标的距离,其中,T为三角波周期,B为调频带宽,c为光速,c=3.0×108;根据公式其中f0为中心频率计算无人驾驶汽车前向障碍物目标的速度,f0是中心频率;
(3)通道1和通道2中,根据各自上扫频分别计算得到的相位再根据计算公式计算得到相位差Δψ;根据公式计算方位角,其中,λ为波长,d为天线间距。
实施例3:作为实施例1的补充,本实施例主要介绍的是采用毫米波雷达实现无人驾驶汽车的避障功能。毫米波雷达与其他的探测方式相比,主要有探测性能稳定、环境适应良好、尺寸小、价格低,可以在相对恶劣的雨雪天气使用等优点。
针对无人驾驶汽车行驶过程中对其行驶环境感知能力的不足,尤其是对复杂环境中障碍物的避障能力不足或是缺乏,或是避障时间过短导致无法及时躲避障碍物,从而导致的无人驾驶汽车碰撞,造成无人驾驶汽车损坏等现象,本实施例提供了一种无人驾驶汽车复杂环境防撞毫米波雷达系统,通过对无人驾驶汽车行驶前方环境中雷达检测范围内多个障碍物,包括静止目标以及动态目标,可以得到无人驾驶汽车之间的相对距离、相对速度以及方位角的解算。如果一定时间内对目标障碍物的位置进行实时计算,就可以得到动目标障碍物的轨迹以及航迹从而可以判定目标的绝对速度和运动方向,可以对动目标未来的位置进行预测以及跟踪,或是静止目标的实时空间位置的跟踪,根据无人驾驶汽车的行驶速度,提前做好避障路径的规划。
无人驾驶汽车避障毫米波雷达的实现原理主要是通过天线向无人驾驶汽车行驶的雷达前方一定波束空间辐射电磁能量,使其在空中传播,其中部分辐射能量被离无人驾驶汽车雷达某个距离上的反射障碍物目标所截获,障碍物目标将截获的能量重新辐射到许多方向上,其中一部分重新辐射的能量返回到无人驾驶汽车雷达天线上,被雷达天线所接收。前方障碍物的相关信息经过接收机放大和合适的信号处理后,在接收机输出端做出目标回波信号是否存在的判决,此时,目标的位置和其他可能有关目标的信息就得到了,例如相对速度以及方位角等信息。
本实施例所设计的毫米波雷达的工作频率在24GHz或77GHz,采用FMCW连续波体制,采用线性调频其距离分辨率高。波形可以采用线性调频三角波FMCW、锯齿波以及恒频波或是这几种波形的组合波形。采用单一的三角波发射波形,可以对目标进行距离以及速度方位角的检测、锯齿波主要是对目标距离以及方位角的检测,恒频波是对目标速度以及方位角的解算,同时由这几种波形组合而成的波形,可以实现多目标距离、速度以及方位角的解算,虚警率更低等特点,可以根据不同的应用场景选择发射波形,从而达到不同的应用领域。
本实施例设计的无人驾驶汽车的最大行驶速度为250km/h,无人驾驶汽车防撞的雷达最大测距为200m,比目前市面上的无人驾驶汽车防撞距离高出很多倍。
无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的工作原理是利用发射信号和回波信号之间的频率差来确定被测目标的距离、速度。该系统一般由调制信号发生器、压控振荡器(VCO)、发射器、接收器、混频器及信号处理模块、数字信号处理模块等组成。其组成框图如图1所示。
如图1所示,本实施例把无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统主要分为天线分系统,射频分系统,信号调理分系统、信号处理分系统以及报警控制系统等。
本实施例给出无人驾驶汽车防撞毫米波雷达的基本工作原理为:
1、通过ARM芯片通过控制PLL锁相环来发射线性调频三角波,即输出具有一定幅值和频率的调制信号(本实施例为线性调频连续三角波),采用锁相环可以是发射波形数据更精准,从而提高系统的性能.
2、压控振荡器VCO在PLL锁相环的作用下产生一定范围内的发射信号且发射信号的频率按照调制信号的规律进行变化,从而实现线性调频连续波FMCW的工作模式。
3、发射信号一路通过发射器辐射到无人驾驶汽车行驶前方的空间中,另一路则与反射回来的回波信号进行混频。回波信号与之前的发射信号相比,其频率已经发生变化,经混频器之后得到的信号就是差频信号。
4、无人驾驶汽车行驶前方目标信息就包含在此差频信号中。通过将差频信号经过信号调理即信号放大滤波后输入到ARM芯片进行AD采样。
5、在ARM芯片中将采样后的两路IQ数据进行数字信号处理。数字信号处理主要包括FFT时频变化,CFAR门限检测以及距离、速度解耦计算、方位角的计算,对于一些场合可能需要进行动目标显示(MTI)技术和动目标检测(MTD)技术等。
6、然后经过一定的信号处理得到目标的距离、速度、角度等相关信息,通过CAN或是其他通信方式接入到无人驾驶汽车主控制器中或是输出通过无线传输方式传回到上位机或是手机等终端进行实时显示。
7、通过对无人驾驶汽车前方危险障碍物距离、速度以及方位的计算,无人驾驶汽车主控制器根据对前方目标实时更新的数据信息进行数据处理,主要包括滤波预测等处理,可以采用卡尔曼滤波以及预测等方法进行,通过滤波以及预测算法对其前方障碍目标可以做到实时检测以及跟踪,通过判断前方目标距离以及速度方位角,结合无人驾驶汽车自身的行驶速度,提前规划好避障策略,从而使得无人驾驶汽车完成整个避障过程。
下面根据各个分系统,详细介绍分系统的主要功能和设计方法。
天线分系统主要任务是形成雷达探测所需的发射和接收波束,并将发射信号向指定区域辐射,并接收指定区域内的目标散射回波信号。本实施例所设计的天线阵包括一个发射天线、两行接收天线单元,采用微带矩形贴片形式组阵收发天线均通过过孔与背面微波电路连接。该天线发射波束可以根据应用场景进行设计,可选择水平方向采用比相法或是比幅发法进行测角或是俯仰方向测角。本实施例选择微带天线主要是由于,微带天线具有以下优点:体积小、重量轻、低剖面、低成本,并且除了在馈电点处要开出引线外,不破坏载体的机械机械结构;性能多样化,设计的微带元最大辐射方向可以在边射到端射范围内调整,实现多种几何方式;能与有源器件、电路集成为统一的组件,适合大规模生产,简化整机的制作和调试,大大降低成本。
射频分系统的设计方法主要是根据无人驾驶汽车防撞毫米波雷达的应用场景和功能需求进行设计,主要完成任务是压控振荡器VCO在PLL锁相环的作用下产生一定范围内的发射信号且发射信号的频率按照调制信号的规律进行变化,从而实现线性调频连续波工作模式。射频分系统射频前端主要由收发集成芯片BGT24MTR12与锁相环ADF4158两个部分组成。其中英飞凌雷达芯片BGT24MTR12是英飞凌公司专门为24G汽车雷达定制,里面集成了包括VCO,PA,LNA,MIXER等发射和接收通道的所有射频模块,该芯片体积小,价格低,性能稳定;ADF4158为ADI公司推出的业界唯一的汽车雷达应用的PLL,其功能多样,使用方便可靠。工作时,由ADF4158产生所需发射波形(一般为三角波,锯齿波及其组合),然后驱动雷达芯片VCO调谐管脚,VCO根据调谐管脚电压产生对应射频信号,其中一路射频信号经过PA放大送到发射天线,另外一路经过分频器6分频,送到ADF4158输入进行锁定。发射信号遇到目标反射,回波经过接收天线送到低噪放大器LNA,LNA将信号放大后经过混频器MIXER下变频至中频模拟信号输出。使用ADF4158进行锁定的目的是为了使VCO输出频率更加稳定。
信号调理分系统主要是实现中频模拟信号的滤波和幅值放大等功能,包含信号放大和滤波两部分。具体设计方法可以参考图2,所示。
信号处理分系统硬件部分采用单ARM处理结构;主要电路包括ARM处理模块、电源模块、串口模块和CAN模块。
ARM处理模块主要是将信号调理电路输出的四路I/Q中频信号线通过信号调理模块,进入到ARM自带的四路AD采集通道。经过一定的信号处理后通过串口或CAN口输出结果。串口和CAN口根据不同场景可以进行选择。
电源模块提供整个信号处理模块的电压。并且提供给射频前端模块和信号调理模块5V和3.3V电压。电源输入采用宽范围输入电压,兼容12V和24V。
无人驾驶汽车防撞雷达基带信号处理模块整体设计框图如图3:
信号处理分系统软件部分主要进行控制射频前端锁相环PLL发射波形和对回波信号进行接收、解算并输出测量结果。
报警控制分系统主要是通过对信号处理分系统所获得无人驾驶汽车前方危险障碍物距离、速度以及方位的进一步计算,实现无人驾驶汽车主控制器根据对前方目标实时更新的距离、速度、角度等数据信息,进行滤波预测等处理,控制器根据计算的出的数据,结合无人驾驶汽车自身行驶状态,包括行驶速度等,提前做出报警以及控制决策,从而使得无人驾驶汽车可以在复杂环境中自主完成避障过程。
实施例4:本实施例作为实施例2的补充,本实施例主要介绍的是采用毫米波雷达实现无人驾驶汽车的避障功能。由于毫米波雷达工作波长介于1mm~10mm之间,与其他的探测方式相比,主要有探测性能稳定、环境适应良好、尺寸小、价格低,可以在相对恶劣的雨雪天气使用等优点。因此,本发明重点介绍基于毫米波雷达的无人驾驶汽车避障功能系统信号处理方法的实现。
本实施例主要是完成无人驾驶汽车对其行驶前方环境障碍物的距离、速度以及方位进行测量。本实施例专利主要通过采用毫米波雷达,将无人驾驶汽车避障的最大距离达到200m,同时由于雷达对环境的感知性能,可以实现对周围目标的快速感知,可以准确的判断出前向危险目标的相对距离、相对速度以及方位角。
本实施例所设计的毫米波雷达的工作频率在24GHz或77GHz,采用FMCW连续波体制,采用线性调频其距离分辨率高。波形采用线性调频三角波FMCW,主要是因为本实施例要实现对目标距离以及速度的计算。通过三角波的上扫频和下扫频可以实现目标距离以及速度解算。本实施例设计的无人驾驶汽车的最大行驶速度为250km/h,无人驾驶汽车防撞的最大测距为200m。
本实施例主要是给出无人驾驶汽车防撞毫米波雷达信号处理部分的设计以及信号处理方法。
本实施例设计的雷达中心频率f为24.125GHz。发射波形选择三角波,周期为20ms,带宽为200MHz。发射波形如图4所示。
本实施例通过单路IQ数据实现对目标距离速度的解算,由于本实施例实现目标方位角的计算,所以本实施例采用双接收天线的方式,即双通道IQ数据,通过对双通道各自上扫频段的计算实现该目标的测角功能。
无人驾驶汽车防撞毫米波雷达信号处理流程图,如图5所示:具体实现步骤如下:
1、AD数据采集即数据处理
(1)将通道1和通道2中的连续IQ数据,通过AD采样进行数字化处理;
(2)将通道1和通道2中采集到的数据分为三角波的上扫频数据和下扫频数据,并分别选取线性度好的数据做后续处理;
2、去直流
(1)将通道1和通道2中,分别计算各自通道三角波上、下扫频IQ数据的均值;
(2)将各自通道三角波上、下扫频IQ的每一个数据减掉上一步计算得到的均值,从而完成去直流的目的,降低直流部分对目标门限检测的影响。
3、窗函数处理
将通道1和通道2中,三角波的上、下扫频段各自去直流后的时域数据进行加窗处理,可以选择汉宁窗、海明窗等,降低旁瓣,从而提高目标的检测性能;汉宁窗会导致主瓣加宽并降低,但是旁瓣会显著减小。海明窗与汉宁窗都是余弦窗,只是加权系数不同。海明窗加权的系数能使旁瓣达到更小。
4、FFT变换
将通道1和通道2中,加窗后的三角波的上、下扫频段数据进行FFT变换,将时域数据转换成频率数据。
5、CFAR门限检测
(1)将通道1中的三角波上扫频FFT变换后的各个点的复数模值和通道2中的三角波上扫频FFT变换后的对应点上的复数模值,进行平均处理,同理将通道1中的三角波下扫频FFT变换后的各个点的复数模值和通道2中的三角波下扫频FFT变换后的对应点上的复数模值,进行平均处理;
(2)将平均后的数据,进行CFAR门限检测。CFAR门限检测可以选择单元平均选小的门限检测方法SO-CFAR,保护单元可以选择1到2个点,窗点数可以选择15~20个。
6、二进制检测
对CFAR门限检测后的数据,令每一个数据为一个距离单元。对每一个距离单元的数据均进行二进制检测,即如果该距离单元的数据过门限,则记为1,如果没过门限,则记为0。然后进行多周期累计,如果某一个距离单元的门限累计1的个数超过K个,则输出该点坐标值,否则不作为过门限的目标输出。
(3)二进制检测后,当同时满足要求过门限的点数很多的时候,只选择输出过门限的第一个峰值点,主要是考虑到对无人驾驶汽车飞机危险程度最大的为距离无人驾驶汽车最近的物体,所以并不是找所有过门限的最大峰值点,而是选择第一个过门限的峰值。
7、配对处理
通过CFAR检测以及二进制检测,对于上扫频和下扫频段过门限的点进行配对处理。如果上下扫频过门限的点坐标值相差太大,不能确定为同一个目标的上下扫频时,不进行配对处理。
8、速度、距离解算
(1)将配对成功后的峰值点,计算其对应的频率值,设通道1中上扫频段第一个过门限点的峰值坐标为p1_up,则该点对应的频率值为f1_up,对应的FFT后的数据为a_p1_up+1j*b_p1_up,相位,通道2中上扫频段对应的该点FFT后的数据为a_p2_up+1j*b_p2_up,相位;设通道1中下扫频段第一个过门限点的峰值坐标为p1_down,则该点对应的频率值为f1_down;
(2)将步骤三中得到的通道1中上扫频频率值f1_up和下扫频对应的频率值f1_down,根据公式,其中,T为三角波周期,T=20ms,B为调频带宽,B=200MHz,c为光速,;根据公式,其中为中心频率,=24.125GHz。根据这两个公式,得到无人驾驶汽车前向障碍物目标的距离和速度;
9、角度解算
通道1和通道2中,根据各自上扫频分别计算得到的相位和,计算根据计算公式得到相位差为。
根据公式,计算方位角,其中,d为天线间距。
至此,完成单次检测完成无人驾驶汽车防撞毫米波雷达对无人驾驶汽车运行前方障碍物距离、速度以及方位角等信息的的解算功能。
为了提高解算目标的距离、速度以及角度信息的准确性,采用多次周期数据滑窗处理方式,即将多个周期的各个通道的AD采集到的IQ数据进行平均处理。采用多周期滑窗式的处理方法可以有效的提高检测目标的准确度。采用滑窗的周期数个数的选择主要是依据目标在该周期数内,没有发生跨距离单元情况为前提,然后考虑到芯片处理能力能够达到实时性的原则。
实施例5:对于上述各方案中,峰值处理,本实施例提供一种应用于无人驾驶汽车信号的峰值处理方法:
设置一个峰值点阈值因子α,其用于限制检测出的过门限最大峰值点与上一周期出现的最大峰值点的差值绝对值,使得该差值绝对值不得大于该峰值点阈值因子α:
表达式如下:
|L_max(k)-L_max(k-1)|≤α;
其中:L_max(k)为k周期的过门限最大峰值点坐标,L_max(k-1)为上一周期的最大峰值点坐标,k表示第k时刻;vmax为无人驾驶汽车最大速度,λ为毫米波雷达波长,fs为采样率,N为FFT的点数;
如果k时刻,过门限最大峰值点与k-1时刻过门限最大峰值点的绝对值差值在所设置的峰值点阈值因子α范围内,则认为第k周期的峰值点有效;如果k时刻,过门限最大峰值点超过所设置的峰值点阈值因子α,则k时刻输出的峰值点用k-1时刻的峰值点进行替换。
作为上述技术手段的解释,在相邻周期的一个时间单元内,当前周期解算出的峰值点,与上个周期的峰值点,如果在相邻周期内,速度没有发生变化,则峰值点在相邻周期内也会保持不变,但是如果在相邻周期时间内,无人驾驶汽车速度发生变化,会导致当前周期的峰值点在上一周期的峰值点发生一定的变化,如果目标是远离无人驾驶汽车,则当前周期的点数会大于上一周期的点数,如果目标是靠近无人驾驶汽车,则当前周期的点数会小于上一周期的点数,该峰值点的变化范围即是所设计的峰值点阈值因子α,该因子选取的取值范围,主要取决于在相邻周期内,无人驾驶汽车的最大速度,即公式其中vmax为无人驾驶汽车最大速度,λ为毫米波雷达波长,fs为采样率,N为FFT的点数。
但是如果无人驾驶汽车环境发生突变后,对应的过门限的峰值点数也可能会连续发生超出所设计的阈值因子。如果不进行修正,发生突变后,每个周期检测到的过门限最大峰值点都会超过设置的阈值因子,每次过门限最大峰值点坐标都会被修正为上一时刻的峰值点坐标,即同理值也会保持突变前的值,不能适应突变后的值。为了提高无人驾驶汽车雷达表对各种环境的适应能力,为此引入一个峰值点突变累计因子φ。
设置一个峰值点突变累计因子φ,该峰值点突变累计因子φ的定义为,如果从k时刻开始,连续b个周期,b的取值范围为5~10,过门限最大峰值点与前一周期的过门限最大峰值点相比,都超过阈值门限因子a,则第k+b时刻,将当前时刻解算出的过门限最大峰值点作为当前时刻的过门限最大峰值点。为了保证跟踪的实时性,建议b的取值为5~10个。
通过上一步得出过门限最大峰值点后,为了提高系统值测量的精度,提出提高测距精度的谱最大估计算法。
理想情况下,回波差频信号的频谱只有一个谱线,但是实际在使用过程中,由于采样存在栅栏效应,离散频谱最大幅值谱线必然会发生偏移谱峰位置,从而通过峰值点计算出的距离值与实际距离将会存在一定的误差。当谱峰发生偏移的时候,相对于主瓣峰值所对应的中央谱线将会两种情况,即左偏或是右偏。如果过门限最大值峰值点的左右峰值中,左边峰值大于右边峰值,则中央谱线所在的位置,在最大峰值点与左边峰值点之间,反之,则在最大峰值点与右边峰值点之间。
由于FFT计算得到的频谱对连续距离普等间距采样,其频谱幅值最大点必定位于其曲线的主瓣内,主瓣内有且仅有两个采样点。设过门限最大峰值点A1的坐标为(a1,k1),其中,a1表示过门限最大峰值点的值,k1表示过门限峰值点对应的幅度值;最大峰值点左右两边,次峰值点坐标为A3(a3,k3),设所求的中央峰值点A为(amax,kmax),则e=amax-a1,则A1点,关于A点对称点A2坐标为(a2,k1)=(a1+2e,k1),复包络的零点A4为(a4,k1)=(a3+e,0);
其中:a2、a3、a4是对应点的过门限最大峰值点的值,k3、k4是对应点的过门限峰值点对应的幅度值;
A2、A3和A4近似为一条直线,其线性关系为:
设定误差E与偏差e进行比对,如果|e|<E,则此时的过门限峰值点的值则为所要求的中央峰值点的值,如果偏差e大于所设定的误差E时,β为修正因子,取值范围为1.5~1.9,该修正因子的选取理由是:由于初始的时候A点对称点A2坐标为(a2,k1)=(a1+2e,k1),初始条件时A点横轴坐标点与A2横轴坐标是关于最大峰值点对称的,即A2的坐标点是a1+2e,如果偏差e大于所设定的误差E时,说明A2的坐标选取过大,也即是最大峰值点在a1+2e之间,2倍的偏差e需要进行取小,本发明采用的修正方法是,通过改变修正因子β的大小从而改变l值,然后进行e的不断迭代,直到e小于设定的误差E为止。修正因子β的取值原则可以根据所需求达到的E值进行选取,如果E需求精度不高,修正因子β可以选择1.9进行修正,如果E需求精度很高,可能需要多次迭代达到要求,则需要修正因子β尽量选择小一点,可以选择1.5进行修正,本发明给出了一个快速解算出最大峰值点的修正因子的区间范围值,即修正因子β=1.5~1.9。改变修正因子计算出e的值,以计算得到中央峰值点的值amax=a1+e。
作为另一种实施例,还包括步骤:距离跟踪:设置一个阈值因子ε,其用于限制当前数据H(k)与上一周期出现的数据H(k-1)的差值绝对值,使得该差值绝对值不得大于该阈值因子ε;
表达式如下:
|H(k)-H(k-1)|≤ε,ε取值范围为0.8~1.3;
如果k时刻的数据与k-1时刻的绝对值差值,在所设置的阈值因子ε范围内,则认为第k周期的峰值点有效;如果k时刻,数据超过所设置的阈值因子ε,则k时刻输出的数据用k-1时刻的数据进行替换。
设置一个突变累计因子θ,该突变累计因子θ的定义为,如果从k时刻开始,连续b个周期,数据与前一周期的数据相比,都超过阈值门限因子θ,则第k+b时刻,将当前时刻解算出的数据作为当前时刻的数据。
作为一种实施例,具体到本实施例中,对于上述未执行距离跟踪或执行了距离跟踪的,输出时,对于单次输出的数据,采用滑窗算法进行值的输出;
第k时刻的数据等于滑窗中的Nc个值去掉最大值和最小值后的均值,作为最后的数据输出,其计算公式为其中Nc表示滑窗所采用的数据点数。
采用峰值跟踪算法和跟踪算法,可以有效避免由于单次或是多次峰值搜索的错误而导致一次或是多次数据解算的异常现象,如在单次峰值搜索过程中,发生峰值跳变,相邻周期之间的峰值差值很大,同时由与峰值的跳变,而引起的发生很大的跳变,即该周期内,峰值跳变引起的的跳变范围,已经远远大于由无人驾驶汽车速度引起的一个周期所产生的距离变化范围。由此峰值跟踪以及跟踪可以有效避免这种异常峰值导致的异常值,从而有效地的提高跟踪的数据的稳定度。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (10)

1.一种无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统,其特征在于,包括天线分系统、射频分系统、信号调理分系统、信号处理分系统;
所述天线分系统形成雷达探测所需的发射和接收波束,并将发射信号向指定区域辐射,并接收指定区域内的目标散射回波信号;
所述射频分系统,产生发射信号且发射信号的频率按照调制信号的规律进行变化,实现输出线性调频连续波;
所述信号调理分系统,对中频模拟信号的滤波和幅值放大;
所述信号处理分系统,使信号调理分系统输出的四路I/Q中频信号,采集到AD采集通道中,并进行无人驾驶汽车复杂环境防撞毫米波雷达信号处理且输出。
2.如权利要求1所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,包括如下步骤:
S1.AD数据采集;
S2.去直流;
S3.窗函数处理;
S4.FFT变换;
S5.门限检测;
S6.二进制检测;
S7.解算速度、距离或角度中的一种或组合。
3.如权利要求2所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,所述步骤S1的具体方法是:
(1)将通道1和通道2中的连续IQ数据,通过AD采样进行数字化处理;
(2)将通道1和通道2中采集到的数据分为三角波的上扫频数据和下扫频数据,去除前部分数据点后去直流,进行时频的FFT变换,将时域数据转换成频率数据。
4.如权利要求2所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,所述步骤S2的具体方法是:
(1)将通道1和通道2中,分别计算各自通道三角波上、下扫频IQ数据的均值;
(2)将各自通道三角波上、下扫频IQ的每一个数据减掉上一步计算得到的均值。
5.如权利要求2所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,所述步骤S3的具体方法是:将通道1和通道2中,三角波的上、下扫频段各自去直流后的时域数据进行加窗处理,选择汉宁窗和/或海明窗。
6.如权利要求2所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,所述步骤S4的具体方法是:将通道1和通道2中,加窗后的三角波的上、下扫频段数据进行FFT变换,将时域数据转换成频率数据。
7.如权利要求2所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,所述步骤S5的具体方法是:
(1)将通道1中的三角波上扫频FFT变换后的各个点的复数模值和通道2中的三角波上扫频FFT变换后的对应点上的复数模值,进行平均处理,将通道1中的三角波下扫频FFT变换后的各个点的复数模值和通道2中的三角波下扫频FFT变换后的对应点上的复数模值,进行平均处理;
(2)将平均后的数据,进行CFAR门限检测。
8.如权利要求2所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,CFAR门限检测选择单元平均选小的门限检测方法,具体流程如下:
1)设置参考窗长L,其值可根据外场实测改变,选取为15~20个点,保护单元选择2~3个点;
2)针对单个锯齿波周期数据FFT后的某个模值点,分别计算其前参考窗内L个数据的均值β1和后参考窗内L个数据的均值β2,若其前或后窗长小于L,取实际窗长计算均值;
3)比较该点前后窗均值β1和β2,选择其中较小者作为其电平估计α,即α=min(β12);
4)设置门限乘积因子γ,则该点的检测门限T=α*γ;
5)比较该点模值和其门限值的大小,若其模值大于门限,则记录该点的位置信息,否则认为其未过门限;
6)对于其他所有模值点,分别执行以上步骤2)~5),即针对所有点进行滑窗检测,记录所有过门限点的位置信息。
9.如权利要求2所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,所述步骤S6的具体方法是:
对CFAR门限检测后的数据,令每一个数据为一个距离单元,对每一个距离单元的数据均进行二进制检测,如果该距离单元的数据过门限,则记为1,如果没过门限,则记为0,然后进行多周期累计,如果某一个距离单元的门限累计1的个数超过K个,则输出该点坐标值,否则不作为过门限的目标输出,其中K表示累计1的个数;
二进制检测后,当同时满足要求的过门限的点数不唯一的时候,只选择输出过门限的第一个峰值点。
10.如权利要求2所述的无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统的信号处理方法,其特征在于,所述步骤S6,在通过CFAR检测以及二进制检测后,对于上扫频和下扫频段过门限的点进行配对处理,如果上下扫频过门限的点坐标值相差超过阈值,不能确定为同一个目标的上下扫频时,不进行配对处理;
作为优选方案:
所述步骤S7中,对于速度、距离和角度的解算方法是:
(1)将配对成功后的或无需进行配对的峰值点,计算其对应的频率值,设通道1中上扫频段第一个过门限点的峰值坐标为p1_up,则该点对应的频率值为f1_up,对应的FFT变换后的数据为a_p1_up+1j*b_p1_up,相位为通道2中上扫频段对应的该点FFT变换后的数据为a_p2_up+1j*b_p2_up,相位设通道1中下扫频段第一个过门限点的峰值坐标为p1_down,则该点对应的频率值为f1_down;
其中:其中:a表示I路的数据值,b表示Q路的数据值,a_p1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为p1,b_p1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为p1;
(2)将得到的通道1中上扫频频率值f1_up和下扫频对应的频率值f1_down,根据公式计算无人机前向障碍物目标的距离,其中,T为三角波周期,B为调频带宽,c为光速,c=3.0×108;根据公式其中f0为中心频率计算无人机前向障碍物目标的速度,f0是中心频率;
(3)通道1和通道2中,根据各自上扫频分别计算得到的相位再根据计算公式计算得到相位差Δψ;根据公式计算方位角,其中,λ为波长,d为天线间距。
CN201610725684.0A 2016-08-25 2016-08-25 无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法 Active CN107783123B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610725684.0A CN107783123B (zh) 2016-08-25 2016-08-25 无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610725684.0A CN107783123B (zh) 2016-08-25 2016-08-25 无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法

Publications (2)

Publication Number Publication Date
CN107783123A true CN107783123A (zh) 2018-03-09
CN107783123B CN107783123B (zh) 2021-07-06

Family

ID=61438804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610725684.0A Active CN107783123B (zh) 2016-08-25 2016-08-25 无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法

Country Status (1)

Country Link
CN (1) CN107783123B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107783116A (zh) * 2016-08-25 2018-03-09 大连楼兰科技股份有限公司 无人驾驶汽车复杂环境防撞毫米波雷达系统
CN108983210A (zh) * 2018-06-13 2018-12-11 桂林电子科技大学 一种汽车雷达测角方法
CN109324620A (zh) * 2018-09-25 2019-02-12 北京主线科技有限公司 基于车道线平行偏移进行避障及超车的动态轨迹规划方法
CN109343052A (zh) * 2018-11-08 2019-02-15 湖南铁路科技职业技术学院 基于mimo的毫米波雷达有轨电车防碰撞预警方法及系统
CN109782216A (zh) * 2018-12-26 2019-05-21 中国电子科技集团公司第二十研究所 一种二维空间谱峰值搜索的简易方法
CN110361726A (zh) * 2019-06-21 2019-10-22 广东工业大学 一种毫米波雷达测速方法
CN110531336A (zh) * 2019-09-20 2019-12-03 山东大学 一种物体检测识别方法及系统
CN114859338A (zh) * 2022-04-21 2022-08-05 南通大学 一种基于旋转云台的毫米波雷达目标追踪装置及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707285A (zh) * 2012-05-28 2012-10-03 河海大学 车载毫米波防撞雷达系统的频域恒虚警检测方法
CN103257346A (zh) * 2013-05-15 2013-08-21 桂林电子科技大学 一种汽车防撞雷达多目标探测方法与系统
US20150109164A1 (en) * 2013-10-17 2015-04-23 Denso Corporation Target detection apparatus
CN104635233A (zh) * 2015-02-17 2015-05-20 苏州安智汽车零部件有限公司 基于车载毫米波雷达的前方物体运动状态估计及分类方法
CN104793188A (zh) * 2015-04-29 2015-07-22 芜湖航飞科技股份有限公司 一种车载毫米波防撞雷达天线系统
CN105445714A (zh) * 2015-11-24 2016-03-30 大连楼兰科技股份有限公司 汽车前向防撞系统信号处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707285A (zh) * 2012-05-28 2012-10-03 河海大学 车载毫米波防撞雷达系统的频域恒虚警检测方法
CN103257346A (zh) * 2013-05-15 2013-08-21 桂林电子科技大学 一种汽车防撞雷达多目标探测方法与系统
US20150109164A1 (en) * 2013-10-17 2015-04-23 Denso Corporation Target detection apparatus
CN104635233A (zh) * 2015-02-17 2015-05-20 苏州安智汽车零部件有限公司 基于车载毫米波雷达的前方物体运动状态估计及分类方法
CN104793188A (zh) * 2015-04-29 2015-07-22 芜湖航飞科技股份有限公司 一种车载毫米波防撞雷达天线系统
CN105445714A (zh) * 2015-11-24 2016-03-30 大连楼兰科技股份有限公司 汽车前向防撞系统信号处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宋俊福: "基于杂波图和变换域的恒虚警率处理", 《中国优秀硕士学位论文全文数据库—信息科技辑》 *
李星: "反舰导弹复杂攻防对抗仿真系统实现", 《中国优秀硕士学位论文全文数据库—工程科技II辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107783116A (zh) * 2016-08-25 2018-03-09 大连楼兰科技股份有限公司 无人驾驶汽车复杂环境防撞毫米波雷达系统
CN108983210A (zh) * 2018-06-13 2018-12-11 桂林电子科技大学 一种汽车雷达测角方法
CN109324620A (zh) * 2018-09-25 2019-02-12 北京主线科技有限公司 基于车道线平行偏移进行避障及超车的动态轨迹规划方法
CN109343052A (zh) * 2018-11-08 2019-02-15 湖南铁路科技职业技术学院 基于mimo的毫米波雷达有轨电车防碰撞预警方法及系统
CN109343052B (zh) * 2018-11-08 2024-04-19 湖南铁路科技职业技术学院 基于mimo的毫米波雷达有轨电车防碰撞预警方法及系统
CN109782216A (zh) * 2018-12-26 2019-05-21 中国电子科技集团公司第二十研究所 一种二维空间谱峰值搜索的简易方法
CN109782216B (zh) * 2018-12-26 2022-08-23 中国电子科技集团公司第二十研究所 一种二维空间谱峰值搜索的简易方法
CN110361726A (zh) * 2019-06-21 2019-10-22 广东工业大学 一种毫米波雷达测速方法
CN110361726B (zh) * 2019-06-21 2022-12-16 广东工业大学 一种毫米波雷达测速方法
CN110531336A (zh) * 2019-09-20 2019-12-03 山东大学 一种物体检测识别方法及系统
CN114859338A (zh) * 2022-04-21 2022-08-05 南通大学 一种基于旋转云台的毫米波雷达目标追踪装置及检测方法

Also Published As

Publication number Publication date
CN107783123B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN107783123A (zh) 无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法
US10205457B1 (en) RADAR target detection system for autonomous vehicles with ultra lowphase noise frequency synthesizer
US10404261B1 (en) Radar target detection system for autonomous vehicles with ultra low phase noise frequency synthesizer
CN107783116A (zh) 无人驾驶汽车复杂环境防撞毫米波雷达系统
US10598764B2 (en) Radar target detection and imaging system for autonomous vehicles with ultra-low phase noise frequency synthesizer
US20210208272A1 (en) Radar target detection system for autonomous vehicles with ultra-low phase-noise frequency synthesizer
US20220043108A1 (en) Systems methods and apparatus for deep-learning multidimensional detection segmentation and classification
CN1242274C (zh) 检测主车辆盲区中的物体的侧视雷达系统和方法
CN107783115A (zh) 旋翼无人机远距离复杂环境防撞毫米波雷达系统
CN107783114A (zh) 旋翼无人机远距离复杂环境防撞毫米波雷达信号处理系统及方法
Kaliyaperumal et al. An algorithm for detecting roads and obstacles in radar images
US9689963B2 (en) Navigation system and method
CN110596731A (zh) 一种地铁车辆主动障碍物检测系统及方法
CN107783133A (zh) 毫米波雷达的固定翼无人机防撞系统及防撞方法
CN107783121B (zh) 基于组合波形的无人驾驶汽车防撞雷达系统信号处理系统及方法
CN109358322A (zh) 前向目标检测雷达和方法
CN112162283A (zh) 一种全路段组网交通雷达多目标探测系统
Cui et al. 3D detection and tracking for on-road vehicles with a monovision camera and dual low-cost 4D mmWave radars
CN107783107A (zh) 植保旋翼无人机的毫米波雷达高度表
CN107783118A (zh) 基于毫米波雷达的固定翼无人机多目标防撞系统的防撞方法
CN101915921A (zh) 双波束四天线微波交通信息检测雷达及信息检测方法
CN107783128B (zh) 基于毫米波雷达的固定翼无人机多目标防撞系统
CN107783113A (zh) 基于组合波形的无人驾驶汽车复杂环境防碰撞雷达系统及信号处理方法
CN107783132B (zh) 自动驾驶汽车防撞毫米波雷达系统及信号处理方法
CN111983602A (zh) 一种微小目标探测雷达装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant