CN107778493A - 一种可自动修复电击穿损伤的绝缘材料及其制备方法 - Google Patents

一种可自动修复电击穿损伤的绝缘材料及其制备方法 Download PDF

Info

Publication number
CN107778493A
CN107778493A CN201711052528.3A CN201711052528A CN107778493A CN 107778493 A CN107778493 A CN 107778493A CN 201711052528 A CN201711052528 A CN 201711052528A CN 107778493 A CN107778493 A CN 107778493A
Authority
CN
China
Prior art keywords
insulating materials
electrical breakdown
supermolecule polymer
supermolecule
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711052528.3A
Other languages
English (en)
Other versions
CN107778493B (zh
Inventor
王东瑞
郭学娜
张素美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201711052528.3A priority Critical patent/CN107778493B/zh
Publication of CN107778493A publication Critical patent/CN107778493A/zh
Application granted granted Critical
Publication of CN107778493B publication Critical patent/CN107778493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D187/00Coating compositions based on unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种可自动修复电击穿损伤的绝缘材料,所述绝缘材料由聚烯烃类绝缘材料与基于多重氢键的超分子聚合物共混形成,所述绝缘材料具有特定的共混物结构,并且在直流绝缘强度高于200 MV/m的电击穿发生后,室温静置1分钟绝缘强度可恢复至初始绝缘强度的90%,本发明制备的具有较高绝缘强度并可自动修复电击穿损伤的绝缘材料,其用途为电力电子设备的绝缘涂层、电缆绝缘层等。

Description

一种可自动修复电击穿损伤的绝缘材料及其制备方法
技术领域
本发明属于绝缘材料技术领域,具体涉及一种可自动修复电击穿损伤的绝缘材料及其制备方法。
背景技术
绝缘材料在电气设备中起着重要作用,主要是隔离不同电位的导体、作为导体的支承、储存电能,它适应环境的能力往往决定了电气设备适应环境的能力。在强电场下,绝缘材料由于性能的差异容易发生电击穿,导致材料性能失效,给人的生活带来隐患,甚至影响到人们的生命安全。目前没有明确有效的方法来修复电击穿造成的损伤,所以研究和发展抗击穿性能优良的绝缘材料是绝缘材料发展的普遍趋势。近年来,人们对于自修复材料的研究日趋成熟,自修复聚合物材料通常指力学强度的修复,包括本征型自修复与外援型自修复。前者是指通过可逆的化学键(可逆共价键、较弱的非共价键)的断裂与重新合成进行修复,后者是通过在材料内部填埋含有修复剂的微胶囊,微脉络,热塑性添加剂等进行修复。自修复聚合物材料的重要性在于可延长材料的使用寿命,可以在材料的使用过程中修补材料,尤其是在人不可及的地方如空间站或恶劣条件、腐蚀、辐射环境下,更需要材料具备自修复的功能。
当前电力、电子技术的发展迫切需要一种制备可自动修复电击穿损伤的绝缘材料。目前关于自修复绝缘材料的研究专利主要是向自修复聚合物材料中添加纳米粒子如二氧化硅纳米粒子、磁性纳米粒子,热固性环氧树脂与含液态修复剂的微胶囊、制备耐腐蚀涂层等。传统的绝缘材料如聚烯烃聚乙烯、聚丙烯为主的聚烯烃应用广泛,这主要是因为聚乙烯、聚丙烯微孔膜具有较高孔隙率、较高的抗撕裂强度、较好的抗酸碱能力,但是由于聚烯烃微孔膜电阻较低,导致其在使用的过程中往往因为击穿而失去绝缘性能。本发明提出了一种可自动修复电击穿损伤的绝缘材料及其制备方法,制备策略为将室温可自愈的聚合物填充入具有通孔结构的聚烯烃微孔膜,得到一种具有特殊共混结构的自修复聚合物/聚烯烃共混物薄膜。该薄膜结合了聚烯烃材料高绝缘强度、自愈聚合物可自动修复电击穿损伤的特点,同时实现了高绝缘强度和自修复性能。
发明内容
为了解决上述问题,本发明提供一种可自动修复电击穿损伤的绝缘材料,所述绝缘材料由聚烯烃类绝缘材料与基于多重氢键的超分子聚合物共混形成,所述绝缘材料具有特定的共混物结构,并且在直流绝缘强度高于200MV/m的电击穿发生后,室温静置1分钟绝缘强度可恢复至初始绝缘强度的90%;
进一步地,所述聚烯烃类绝缘材料包括聚乙烯、聚丙烯、或基于二者的改性产物及复合产物;
进一步地,所述超分子聚合物包括一类由多酸、多胺反应生成的玻璃化转变温度低于20oC的自修复超分子聚合物,所述自修复超分子聚合物如下:
进一步地,所述特定的共混物结构为由聚烯烃材料构成连续的基体、且在厚度方向有孔径10-100微米的孔道,由超分子聚合物填充所述孔道;
进一步地,一种可自动修复电击穿损伤的绝缘材料的制备方法,所述方法包括:
1):超分子聚合物合成:将42.1g二聚酸溶液,其中二聚体含量为80%,三聚体含量为12%,与17.3g二乙基三胺(DETA),以及质量分数为1%的二氧化硅(SiO2)粉末加入到150mL三颈烧瓶中在1500rpm的转速下持续搅拌12h,反应过程中持续通入N2,反应结束后,将反应温度降到130℃,向三颈烧瓶中加入0.2g尿素,在1500rpm的转速下持续搅拌30min,得到超分子聚合物;
2):共混物制备:首先通过双向拉伸制备厚度约20-50微米、厚度方向上具有孔径为10-100微米通孔的聚烯烃薄膜;再利用减压法将1)中制得的超分子聚合物灌注至聚烯烃薄膜的通孔中,去除残留在聚烯烃膜表面的自修复聚合物,烘干后得到复合绝缘薄膜;
本发明的有益效果如下:
1):高压下,当电流由电极注入聚合物时产生大量的电荷激增,导致绝缘体内部的电荷积累,进而导致电击穿,由于超分子聚合物绝缘强度明显低于聚烯烃材料,使得击穿总是发生在超分子聚合物区域,发生电击穿损伤的超分子聚合物,可通过动态化学键的重构重新形成聚合物链进行修复。因此该共混物可在击穿后的较短时间内恢复其绝缘强度;
2):通过上述方法制备的具有较高绝缘强度并可自动修复电击穿损伤的绝缘材料,其用途为电力电子设备的绝缘涂层、电缆绝缘层等;
附图说明
图1为本发明所述超分子聚合物的化学结构;
图2为本发明所述绝缘共混物的相结构示意图;
图3为本发明所述绝缘强度的自动修复能力图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
下面结合附图和具体实施例对本发明作进一步说明,但不作为对本发明的限定。下面为本发明的举出最佳实施例:
实施例1:超分子聚合物的合成举例
将42.1g二聚酸(其中二聚体含量为80%,三聚体含量为12%)与17.3g二乙基三胺(DETA),以及质量分数为1%的二氧化硅(SiO2)粉末加入到150mL三颈烧瓶中在1500rpm的转速下持续搅拌12h,反应过程中持续通入N2。反应结束后,将反应温度降到130℃,向三颈烧瓶中加入0.2g尿素,在1500rpm的转速下持续搅拌30min,得到自修复聚合物。
实施例2:共混物制备举例
首先通过双向拉伸制备厚度约20-50微米、厚度方向上具有孔径为10-100微米通孔的聚烯烃薄膜;再利用减压法将实施例1中制得的自修复聚合物灌注至聚烯烃薄膜的通孔中,仔细地去除残留在聚烯烃膜表面的自修复聚合物,烘干后得到复合绝缘薄膜。所得的绝缘薄膜复合结构如图2所示。
实施例3:绝缘强度测试举例
本实施例是测试复合膜绝缘性能测试的方法。对根据本发明的试验方法制备出的绝缘材料进行击穿测试,采用耐压测试仪测试材料的直流绝缘强度,结果显示所得复合绝缘薄膜的绝缘强度高于200MV/m。
实施例4:击穿-修复循环测试举例
本实施例是测试绝缘材料绝缘自愈性能的一种方法。根据本发明的试验方法制备出的绝缘材料,采用耐压测试仪测试材料的绝缘强度,在电击穿后材料静置1分钟后继续进行击穿测试。记录电击穿强度并与首次击穿强度进行对比。所得3种典型复合绝缘薄膜循环击穿强度变化比率如图3所示,在击穿—自修复一次以后,击穿强度可恢复至首次击穿强度的90%左右,在击穿—自修复两次以后,击穿强度可恢复至首次击穿强度的60%左右。
以上所述的实施例,只是本发明较优选的具体实施方式的一种,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。

Claims (5)

1.一种可自动修复电击穿损伤的绝缘材料,其特征在于,所述绝缘材料由聚烯烃类绝缘材料与基于多重氢键的超分子聚合物共混形成,所述绝缘材料具有特定的共混物结构,并且在直流绝缘强度高于200MV/m的电击穿发生后,室温静置1分钟绝缘强度可恢复至初始绝缘强度的90%。
2.根据权利要求1所述的绝缘材料,其特征在于,所述聚烯烃类绝缘材料包括聚乙烯、聚丙烯、或基于二者的改性产物及复合产物。
3.根据权利要求1所述的绝缘材料,其特征在于,所述超分子聚合物包括一类由多酸、多胺反应生成的玻璃化转变温度低于20℃的自修复超分子聚合物,所述自修复超分子聚合物如下:
4.根据权利要求1所述的绝缘材料,其特征在于,所述特定的共混物结构为由聚烯烃材料构成连续的基体、且在厚度方向有孔径10-100微米的孔道,由超分子聚合物填充所述孔道。
5.一种可自动修复电击穿损伤的绝缘材料的制备方法,基于上述权利要求1-4之一所述的绝缘材料,其特征在于,所述方法包括:
1):超分子聚合物合成:将42.1g二聚酸溶液,其中二聚体含量为80%,三聚体含量为12%,与17.3g二乙基三胺,以及质量分数为1%的二氧化硅粉末加入到150mL三颈烧瓶中在1500rpm的转速下持续搅拌12h,反应过程中持续通入N2,反应结束后,将反应温度降到130℃,向三颈烧瓶中加入0.2g尿素,在1500rpm的转速下持续搅拌30min,得到超分子聚合物;
2):共混物制备:首先通过双向拉伸制备厚度约20-50微米、厚度方向上具有孔径为10-100微米通孔的聚烯烃薄膜;再利用减压法将1)中制得的超分子聚合物灌注至聚烯烃薄膜的通孔中,去除残留在聚烯烃膜表面的自修复聚合物,烘干后得到复合绝缘薄膜。
CN201711052528.3A 2017-10-30 2017-10-30 一种可自动修复电击穿损伤的绝缘材料及其制备方法 Active CN107778493B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711052528.3A CN107778493B (zh) 2017-10-30 2017-10-30 一种可自动修复电击穿损伤的绝缘材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711052528.3A CN107778493B (zh) 2017-10-30 2017-10-30 一种可自动修复电击穿损伤的绝缘材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107778493A true CN107778493A (zh) 2018-03-09
CN107778493B CN107778493B (zh) 2020-04-10

Family

ID=61432621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711052528.3A Active CN107778493B (zh) 2017-10-30 2017-10-30 一种可自动修复电击穿损伤的绝缘材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107778493B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309623A (zh) * 2020-10-10 2021-02-02 安徽龙庵电缆集团有限公司 一种潜艇消磁电缆及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242810A (ja) * 2009-07-28 2009-10-22 Asahi Kasei Fibers Corp 繊維強化複合材料及びその製造方法
CN105601912A (zh) * 2016-01-06 2016-05-25 北京科技大学 一种自修复超分子绝缘材料及其制备方法
CN106633317A (zh) * 2017-01-10 2017-05-10 重庆大学 一种早期电树枝缺陷自修复的电缆绝缘材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242810A (ja) * 2009-07-28 2009-10-22 Asahi Kasei Fibers Corp 繊維強化複合材料及びその製造方法
CN105601912A (zh) * 2016-01-06 2016-05-25 北京科技大学 一种自修复超分子绝缘材料及其制备方法
CN106633317A (zh) * 2017-01-10 2017-05-10 重庆大学 一种早期电树枝缺陷自修复的电缆绝缘材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309623A (zh) * 2020-10-10 2021-02-02 安徽龙庵电缆集团有限公司 一种潜艇消磁电缆及其制备方法
CN112309623B (zh) * 2020-10-10 2022-03-01 安徽龙庵电缆集团有限公司 一种潜艇消磁电缆及其制备方法

Also Published As

Publication number Publication date
CN107778493B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
Li et al. Bacterial cellulose composite solid polymer electrolyte with high tensile strength and lithium dendrite inhibition for long life battery
Wang et al. A mechanically and electrically self‐healing supercapacitor
CN105355968B (zh) 电解液以及包括该电解液的锂离子电池
Zhou et al. Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery
CN103903870B (zh) 一种可变色和可拉伸的超级电容器及其制备方法
CN101961935B (zh) 一种耐电晕少胶云母带及其用胶粘剂
CN103400638B (zh) 一种耐电晕槽绝缘材料及其制备方法
CN106883724A (zh) 绝缘粉末涂料及其制备方法、施涂方法,涂有该绝缘粉末涂料的锂电池金属外壳
CN106887537A (zh) 一种铝塑膜复合层及其制备方法和锂离子电池
CN103440902B (zh) 适用于纯环氧vpi绝缘树脂的高透气性少胶云母带及其制备方法
CN106340401A (zh) 一种复合电极材料的制备方法及其应用
US20150255227A1 (en) Self-healing composite, self-healing supercapacitor and methods of fabrication thereof
CN108232285A (zh) 一种高倍率钛酸锂电池及其制作方法
CN105140042A (zh) 一种细菌纤维素/活性碳纤维/碳纳米管膜材料的制备方法及其应用
CN106903959B (zh) 一种太阳能背板用阻隔膜及其制备方法
Wan et al. Self‐Healing and Flexible Ionic Gel Polymer Electrolyte Based on Reversible Bond for High‐Performance Lithium Metal Batteries
CN107778493A (zh) 一种可自动修复电击穿损伤的绝缘材料及其制备方法
CN103021667B (zh) 用于染料敏化太阳能电池的原位化学交联凝胶电解质及其制备方法
Huang et al. An in situ‐Fabricated Composite Polymer Electrolyte Containing Large‐Anion Lithium Salt for All‐Solid‐State LiFePO4/Li Batteries
Gao et al. Over 16% Efficiency of Thick‐Film Organic Photovoltaics with Symmetric and Asymmetric Non‐Fullerene Materials as Alloyed Acceptor
Angalane et al. A review on polymeric insulation for high‐voltage application under various stress conditions
CN111129192A (zh) 聚烯烃薄膜及其制备方法、太阳能电池背板和太阳能电池
CN106079738A (zh) 一种具有电磁屏蔽作用的防水卷材
CN109605850A (zh) 一种火力发电机用耐电晕低收缩柔性绝缘复合膜材料
CN204991769U (zh) 一种锂电池复合包装功能化铝塑膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant