CN107764711A - 基于对油气层碱敏性测试评价的方法 - Google Patents
基于对油气层碱敏性测试评价的方法 Download PDFInfo
- Publication number
- CN107764711A CN107764711A CN201610684780.5A CN201610684780A CN107764711A CN 107764711 A CN107764711 A CN 107764711A CN 201610684780 A CN201610684780 A CN 201610684780A CN 107764711 A CN107764711 A CN 107764711A
- Authority
- CN
- China
- Prior art keywords
- salt solution
- oil
- gas layer
- value
- rock core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003513 alkali Substances 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000011156 evaluation Methods 0.000 title claims abstract description 11
- 238000012360 testing method Methods 0.000 title claims abstract description 9
- 239000012266 salt solution Substances 0.000 claims abstract description 34
- 239000011435 rock Substances 0.000 claims abstract description 18
- 230000035699 permeability Effects 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 4
- 238000002347 injection Methods 0.000 claims abstract description 4
- 239000007924 injection Substances 0.000 claims abstract description 4
- 238000002360 preparation method Methods 0.000 claims abstract description 4
- 239000011780 sodium chloride Substances 0.000 claims abstract description 4
- 230000006641 stabilisation Effects 0.000 claims description 3
- 238000011105 stabilization Methods 0.000 claims description 3
- 238000009738 saturating Methods 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 abstract description 9
- 239000012530 fluid Substances 0.000 abstract description 7
- 239000002734 clay mineral Substances 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 38
- 239000005416 organic matter Substances 0.000 description 17
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000011084 recovery Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
本发明公开了一种基于对油气层碱敏性测试评价的方法,不同pH值盐水的制备,根据实际情况,要从地层水的pH值开始,逐级升高pH值,最后一级盐水pH值可定为12,将选好的岩心抽真空饱和第一级盐水,并浸泡20~24h,在低于临界流速的条件下,用第一级盐水测出岩心稳定的渗透率K1,注入第二级盐水,浸泡20~24h,在低于临界流速的条件下,用第二级盐水测出岩心稳定的渗透率K2,改变注入盐水的级别,直至测出最后一级盐水处理后的岩心的稳定渗透率Kn。该方法通过对油气层的碱敏性进行测试,得到准确的数值,能够防止高pH值流体进入油气层后,将造成油气层中粘土矿物和硅质胶结的结构破坏,从而造成油气层的堵塞损害的问题发生。
Description
技术领域
本发明涉及一种方法,尤其是涉及一种基于对油气层碱敏性测试评价的方法。
背景技术
油气是伴随石油从油井中出来的气体,主要成分是甲烷、乙烷等。用作燃料和化工原料。油气生成有以下条件,首先,要看生油层中有机质数量的多少,通常称为"有机质丰度"。主要测定其中残留的有机碳含量,以确定一个地区有无生油层、有多少生油层,并把它们按一定的标准分成好的、中等的和差的生油层,进行分类评价。第二,要看生油层中有机质质量的优劣,通常称为"有机质类型"。根据生物来源,把生油母质的干酪根分成三大类。第一类为腐泥型有机质,生物来源主要是水中的浮游动植物,为I型干酪根,属质量最好的有机质。第二类为腐植型有机质,生物来源主要是高等植物,为III型干酪根,属质量较差的有机质。第三类是介于二者之间的混合型有机质,为II型干酪根,是质量较好的有机质。实验室通过对样品的分析结果,按一定的标准确定一个地区的有机质类型,对有机质的质量做出评价。第三,要看有机质是否已经生成了油和气,通常称为"有机质的成熟度",当具备一定数量和质量的有机质在一定的条件下转化成油以后。换句话说,如果不具备生成石油的"火候",有机质最多、最好也是没有什么实际价值的。所以研究有机质的成熟度是很重要的一环。分析数据所提供的信息,可以间接反映有机质在地下经历的温度过程。根据这些数据,把成熟度分为不成熟、生油高峰、湿气、干气(干气是指其成因与石油有关,而含乙烷以上的重烃很少,甲烷含量95%以上的可燃天然气。至于生物气和煤型气的成份与此相近,但成因不同,另当别论。)等四个阶段。评价有机质处在什么成熟阶段,可以告诉人们在某个地区是有利于找油还是找气。第四,要看生成的油或气是来自那个生油层的,通常称为"油源对比"。即在找到油气后,运用"指纹化合物"(或称生物标志化合物)把油气与生油岩进行对比,探索生油岩和油气之间的亲缘关系,研究所生成的油和气是来自那个生油层的。不难想象,提供油源的生油层越多,油源就越丰富,对形成油气田就更为有利。现有开采过程中没有对这些损害进行测试,造成油气层开采一段时间后出现损害,使得开采效率受到影响。地层水pH值一般呈中性或弱碱性,而大多数钻井液的pH值在8~12之间,二次采油中的碱水驱也有较高的pH值。当高pH值流体进入油气层后,将造成油气层中粘土矿物和硅质胶结的结构破坏(主要是粘土矿物解理和胶结物溶解后释放微粒),从而造成油气层的堵塞损害;此外,大量的氢氧根与某些二价阳离于结合会生成不溶物,造成油气层的堵塞损害。
发明内容
本发明的目的在于克服上述现有开采过程中没有对这些损害进行测试,造成油气层开采一段时间后出现损害,使得开采效率受到影响的问题,设计了一种基于对油气层碱敏性测试评价的方法,该方法通过对油气层的碱敏性进行测试,得到准确的数值,能够防止高pH值流体进入油气层后,将造成油气层中粘土矿物和硅质胶结的结构破坏,从而造成油气层的堵塞损害;大量的氢氧根与某些二价阳离于结合会生成不溶物,造成油气层的堵塞损害的问题发生。
本发明的目的通过下述技术方案实现:基于对油气层碱敏性测试评价的方法,包括以下步骤:
(1)不同pH值盐水的制备,根据实际情况,要从地层水的pH值开始,逐级升高pH值,最后一级盐水pH值可定为12;
(2)将选好的岩心抽真空饱和第一级盐水,并浸泡20~24h,在低于临界流速的条件下,用第一级盐水测出岩心稳定的渗透率K1;
(3)注入第二级盐水,浸泡20~24h,在低于临界流速的条件下,用第二级盐水测出岩心稳定的渗透率K2;
(4)改变注入盐水的级别,重复第(3)步,直至测出最后一级盐水处理后的岩心的稳定渗透率Kn,pHi-1盐水的渗透率Ki-1与pHi盐水的渗透率Ki之间满足关系式
说明已发生碱敏,则pHi-1即为临界pH值。
碱敏性是指碱液进入地层后与地层中的碱敏矿物及地层流体发生反应,产生沉淀或释放出微粒,使地层渗透率下降的现象。
综上所述,本发明的有益效果是:该方法通过对油气层的碱敏性进行测试,得到准确的数值,能够防止高pH值流体进入油气层后,将造成油气层中粘土矿物和硅质胶结的结构破坏,从而造成油气层的堵塞损害;大量的氢氧根与某些二价阳离于结合会生成不溶物,造成油气层的堵塞损害的问题发生。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明,但本发明的实施方式不仅限于此。
实施例:
基于对油气层碱敏性测试评价的方法,包括以下步骤:
(1)不同pH值盐水的制备,根据实际情况,要从地层水的pH值开始,逐级升高pH值,最后一级盐水pH值可定为12;
(2)将选好的岩心抽真空饱和第一级盐水,并浸泡20~24h,在低于临界流速的条件下,用第一级盐水测出岩心稳定的渗透率K1;
(3)注入第二级盐水,浸泡20~24h,在低于临界流速的条件下,用第二级盐水测出岩心稳定的渗透率K2;
(4)改变注入盐水的级别,重复第(3)步,直至测出最后一级盐水处理后的岩心的稳定渗透率Kn,pHi-1盐水的渗透率Ki-1与pHi盐水的渗透率Ki之间满足关系式
说明已发生碱敏,则pHi-1即为临界pH值。
该方法通过对油气层的碱敏性进行测试,得到准确的数值,能够防止高pH值流体进入油气层后,将造成油气层中粘土矿物和硅质胶结的结构破坏,从而造成油气层的堵塞损害;大量的氢氧根与某些二价阳离于结合会生成不溶物,造成油气层的堵塞损害的问题发生。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术、方法实质上对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。
Claims (1)
1.基于对油气层碱敏性测试评价的方法,其特征在于,包括以下步骤:
(1)不同pH值盐水的制备,根据实际情况,要从地层水的pH值开始,逐级升高pH值,最后一级盐水pH值可定为12;
(2)将选好的岩心抽真空饱和第一级盐水,并浸泡20~24h,在低于临界流速的条件下,用第一级盐水测出岩心稳定的渗透率K1;
(3)注入第二级盐水,浸泡20~24h,在低于临界流速的条件下,用第二级盐水测出岩心稳定的渗透率K2;
(4)改变注入盐水的级别,重复第③步,直至测出最后一级盐水处理后的岩心的稳定渗透率Kn,pHi-1盐水的渗透率Ki-1与pHi盐水的渗透率Ki之间满足关系式
说明已发生碱敏,则pHi-1即为临界pH值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610684780.5A CN107764711A (zh) | 2016-08-18 | 2016-08-18 | 基于对油气层碱敏性测试评价的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610684780.5A CN107764711A (zh) | 2016-08-18 | 2016-08-18 | 基于对油气层碱敏性测试评价的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107764711A true CN107764711A (zh) | 2018-03-06 |
Family
ID=61262353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610684780.5A Withdrawn CN107764711A (zh) | 2016-08-18 | 2016-08-18 | 基于对油气层碱敏性测试评价的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107764711A (zh) |
-
2016
- 2016-08-18 CN CN201610684780.5A patent/CN107764711A/zh not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Delamaide | Polymer flooding of heavy oil-from screening to full-field extension | |
Thyne et al. | Evaluation of the effect of low salinity waterflooding for 26 fields in Wyoming | |
Lüftenegger et al. | Operational challenges and monitoring of a polymer pilot, Matzen field, Austria | |
CN110805432A (zh) | 一种采用量子点示踪剂测试水平井产液剖面的方法 | |
Whitson et al. | Khuff gas condensate development | |
Dawson et al. | Designing an optimized surfactant flood in the Bakken | |
CN110259426B (zh) | 一种非常规平台井井间压窜程度的评价方法 | |
Rostron et al. | Fingerprinting “stray” formation fluids associated and production with hydrocarbon exploration and production | |
Cheng et al. | Pore-scale formation damage caused by fracturing fluids in low-permeability sandy conglomerate reservoirs | |
Cui et al. | Impact of water-rock interactions on indicators of hydraulic fracturing flowback fluids produced from the Jurassic shale of Qaidam Basin, NW China | |
Asadi et al. | Comparative study of flowback analysis using polymer concentrations and fracturing-fluid tracer methods: a field study | |
Yue et al. | Leakage risk evaluation model for single wells of CO2: a case study | |
Du et al. | Formation of natural fractures and their impact on shale oil accumulation in the Mahu Sag, Junggar Basin, NW China | |
Weiwei et al. | Experiment and numerical simulation of water injection induced dynamic fractures in ultra-low permeability reservoirs | |
CN107764971A (zh) | 基于对油气层碱敏性测试评价的方法 | |
Tiong-Hui et al. | Decoding Interwell Tracer Data Using Novel Analytical Approach to Optimise Waterflood Management in a Complex Oil Rim Field, in Offshore East Malaysia | |
CN107764711A (zh) | 基于对油气层碱敏性测试评价的方法 | |
CN107762489A (zh) | 基于对油气层盐敏性的测试方法 | |
Yang et al. | Statistical analyses of reservoir and fracturing parameters for a multifractured shale oil reservoir in Mississippi | |
CN105606516A (zh) | 基于对油气层碱敏性测试评价的方法 | |
Sergeev et al. | Case Studies of Emulsion System with Nanoparticles Application for Stimulation of Stagnant Zones in Carbonate Reservoir | |
Abdollahi et al. | Integrated technical and economical methodology for assessment of undeveloped shale gas prospects: applying in the Lurestan shale gas, Iran | |
Congli et al. | Outline on magmatic ac⁃ tivities controlling oil-gas theory in rift basins | |
CN107764710A (zh) | 基于对油气层的迅敏性测试方法 | |
Simatupang et al. | The Initial State Geochemical Model and Reservoir Response of 2 Years Production at Silangkitang, a Fault-Controlled Geothermal System along the Great Sumatera Fault |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20180306 |