CN107764368B - 用于监测机器中的油位的方法和装置 - Google Patents

用于监测机器中的油位的方法和装置 Download PDF

Info

Publication number
CN107764368B
CN107764368B CN201710700805.0A CN201710700805A CN107764368B CN 107764368 B CN107764368 B CN 107764368B CN 201710700805 A CN201710700805 A CN 201710700805A CN 107764368 B CN107764368 B CN 107764368B
Authority
CN
China
Prior art keywords
transmission power
oil
light beam
optical system
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710700805.0A
Other languages
English (en)
Other versions
CN107764368A (zh
Inventor
C·埃尔威恩
C·莱亚
F·斯托尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kriwan Industrie Elektronik GmbH
Original Assignee
Kriwan Industrie Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kriwan Industrie Elektronik GmbH filed Critical Kriwan Industrie Elektronik GmbH
Publication of CN107764368A publication Critical patent/CN107764368A/zh
Application granted granted Critical
Publication of CN107764368B publication Critical patent/CN107764368B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
    • G01F23/2925Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms using electrical detecting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/06Means for keeping lubricant level constant or for accommodating movement or position of machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/06Means for keeping lubricant level constant or for accommodating movement or position of machines or engines
    • F01M11/061Means for keeping lubricant level constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/04Filling or draining lubricant of or from machines or engines
    • F01M11/0408Sump drainage devices, e.g. valves, plugs
    • F01M2011/0416Plugs
    • F01M2011/0433Plugs with a device defining the lubricant level during filling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/155Monitoring cleanness of window, lens, or other parts
    • G01N2021/157Monitoring by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N2021/434Dipping block in contact with sample, e.g. prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

根据本发明的用于监测机器中的油位的方法采用光学传感器,发送器将光束发送到光学系统中,光束根据待监测的油位从光学系统反射到接收器或者被折射,并且在接收器中产生接收信号,光束在监测运行中以经调节的发送功率被发出,并且当接收信号超过预先给出的电平值时识别出缺油。在此,光束的发送功率可在最小和最大发送功率之间调节,并且一旦识别出缺油就根据如下测试运行来检验光学系统的污染程度:a.发送器以最大发送功率发出第一光束,由此在接收器处产生第一接收信号,b.然后在第一接收信号和第二接收信号之间构成差值,其中由具有比最大发送功率小的发送功率的光束产生第二接收信号,其中差值的大小是光学系统的污染程度的度量。

Description

用于监测机器中的油位的方法和装置
技术领域
本发明涉及借助光学传感器来监测机器中的油位,其中,发送器将光束发送到光学系统中,且光束根据待监测的油位从光学系统反射到接收器或者被折射,并且在那里产生接收信号,其中,光束在监测运行中以经调节的发送功率被发出,并且当接收信号超过预先给出的电平值时识别出缺油。
背景技术
为此方法采用所谓的油位调节器,该油位调节器监测机器、例如压缩机中的油位(油高)并且一旦确定缺油则从贮存器中补充油。然而,为了监测而采用的光学系统随着时间会被污染,这是因为污染层积聚在光学系统上并且使光束的反射/折射歪曲。当接收信号弱到它不再达到预先给出的电平值并且尽管实际上已经发生缺油但总是报告足够的油高时,这特别会是有问题的。
发明内容
因此,本发明的任务在于给出一种用于监测机器中的油位的方法和装置,由此确保可靠的监测运行。
根据本发明,该任务通过权利要求1和9来解决。
根据本发明的用于监测机器中的油位的方法采用了光学传感器,其中,发送器将光束发送到光学系统中,且光束根据待监测的油位从光学系统反射到接收器或者被折射,并且在接收器中产生接收信号,其中,光束在监测运行中以经调节的发送功率被发出,并且当接收信号超过预先给出的电平值时识别出缺油。在此,光束的发送功率可在最小和最大发送功率之间调节,并且一旦识别出缺油就根据如下测试运行来检验光学系统的污染程度:
a.发送器以最大发送功率发出第一光束,由此在接收器处产生第一接收信号,
b.然后在第一接收信号和第二接收信号之间构成差值,其中由具有比最大发送功率小的发送功率的光束产生第二接收信号,其中该差值的大小是光学系统的污染程度的度量。
根据本发明的用于监测机器中的油位的装置具有光学传感器,该光学传感器具有发送器和接收器,该发送器用于将光束发出到光学系统中,而接收器用于接收根据待监测的油位从光学系统反射或者折射的光束并且用于产生接收信号。此外设有用于将接收信号与预先给出的电平值相比较的分析装置,其中当接收信号超出预先给出的电平值时识别出缺油。此外,设有功率调节装置,该功率调节装置与发送器一起用于使光束的发送功率在最小发送功率和最大发送功率之间调节,以及设有用于根据前述方法步骤a)和b)来检验光学系统的污染程度的分析装置。
通过使发送功率能在最小发送功率和最大发送功率之间调节,在测试运行中存在这样的可能性:检验光学系统的污染程度并且由此及早注意到有缺陷的监测运行。
此外还存在这样的可能性:在已经使用了略受污染的光学系统时,还能以可靠的方式保持监测运行。这通过在监测运行中根据第一接收信号和第二接收信号之间的差值的大小来提高光束的发送功率而实现。由此,可以在干净的光学系统的情况下以相对较低的发送功率、例如10%发送功率来进行工作,由此节约运行成本。当在测试运行中识别出一定的污染程度,才开始通过在监测运行中提高发送功率来继续维持可靠的监测运行。当第一接收信号和第二接收信号之间的差值低于预先给出的值时,才适宜地执行光学系统的清洁。
根据本发明的较佳实施方式,将在监测运行中借助其识别出缺油的接收信号用作监测运行中的第二接收信号。此外规定,在执行测试运行之后确定缺油的情况下通过补充油来升高机器中的油位。
可选地还可规定,当在监测运行中没有测得缺油、但自从上一次确定的缺油起已过去了一段确定的时间段时,也可以进行测试运行。因此,按照惯常可以例如在一个小时之后执行测试运行。以此方式,特别是能识别出光学系统在开机时已经存在的严重污染。
另一选项在于,当在监测运行中没有测到缺油、但自从上一次补充油起的时间间隔与过去记录的两次补充油之间的时间间隔相比超过预定的限值时,也执行测试运行。这也被认为是安全措施,借助该安全措施可以识别出在两个测试运行阶段之间突然出现的光学系统的严重污染。在此还可规定,为了比较过去记录的时间间隔,采用由预定数目的最近记录的时间间隔构成的平均值。
附图说明
接下来,根据下面的说明和附图进一步阐释本发明的其它设计。
在附图中:
图1示出根据本发明的用于监测油位的装置的示意图,
图2示出在缺油时光学传感器的示意详图,
图3示出在充足油位时光学传感器的示意详图,
图4示出在干净的光学系统的情况下基于不同的发送功率的接收信号的特性曲线图,
图5示出在略受污染的光学系统的情况下基于不同的发送功率的接收信号的特性曲线图,
图6示出在严重污染的光学系统的情况下基于不同的发送功率的接收信号的特性曲线图。
具体实施方式
在图1中所示的用于监测机器2中的油位的装置由油位调节器1构成。机器2是指例如压缩机。油位调节器1的任务是在缺油时从贮油器6将油补入机器2中。油位调节器1为此具有光学传感器3,该光学传感器3测量机器2中的油高。如果确定缺油,则调节器4打开电磁阀5以将油从贮存器6填充到机器2中。
接下来,根据图2和3来进一步阐释光学传感器3的测量原理。光学传感器3具有光学反射体7,该反射体例如构造成玻璃锥体,并且以锥形尖端7a突出到机器2的容器2a内。在容器2a中存在待监测的油9。在与光学反射体7的锥形尖端7a相对的端部7b处,经由光学发送器8将光束10射入光学反射体7中。在待监测的油9的水平在图2中处于光学反射体7的下方之后,在光学反射体7的锥形尖端7a处发生射入的光束10的全反射,以使得被反射的光束在相对的端部7b处从光学反射体达到光学接收器11,并且在那里作为接收信号12被探测到。
在分析装置13中将接收信号12与预先给出的电平值相比较。如果油位过低,如图2中所示,则足够高的接收信号12到达接收器11,以使得超过了预先给出的电平值,并且由此识别出缺油。在图3中所示的情况下,突出到容器2a内的光学反射体7的锥形尖端7a位于待监测的油9之内。这使得从发送器8发出的光束10在锥形尖端7a处不反射,而是被折射。因此,仅极少的光或者根本没有光到达光学接收器11。由此分析装置13将接收器11处缺少或者较低的接收信号理解为容器2a中的待监测的油9具有足够的水平(0,足够的油位)。
如果光学反射体7的锥形尖端7a被污染,则在缺油的情况下射入的光束10的仅一部分会反射。这意味着随着污染程度增加,接收信号12会越来越弱。在极端情况下,污染程度大到在缺油时在接收器11处产生的接收信号12处于预先给出的电平值之下并且由此分析装置不再能够识别出缺油。
借助下面描述的方法可以识别出光学系统或者光学反射体7的锥形尖端7a是否被污染。为此,发送器8与功率调节装置14连接,以使得射入的光束10的发送功率能在最小(例如,10%)发送功率和最大(例如,100%)发送功率之间进行调节。
图4涉及干净的光学系统的情况并且示出接收信号12的特性曲线,这些接收信号是基于射入的光束10的不同发送功率(10%、20%和100%)的。在横坐标上以百分比绘出油位的监测范围。在纵坐标上示出在接收器11处产生的接收信号12的电压。油位的监测范围在所示实施例中由光学反射体7的一半直径构成,其中,锥形尖端示出在100%水平下的油位。光学反射体7的下端对应于0%(参见图2)。监测范围因此在光学反射体7的尖端7a和下端之间,并且例如为4毫米。当接收信号12大于预先给出的电平值PW时存在缺油。该电平值在所示实施例中被假定为接收信号的最大电平的一半。可以认识到,接收信号在充足的油位时在所有情况下都是低的,并且所有特性曲线在越来越下降的油位情况下达到最大可能的接收信号(在此为5V)。通过将接收信号与预先给出的电平值PW比较可以识别出缺油,其中,当接收信号超出电平值PW时存在缺油。
根据不同的特性曲线可以认识到,确认缺油时的油位的实际水平取决于所发出的光束10的发送功率。如果在监测运行中由发送器8发出的光束10以10%的发送功率发出,则特性曲线在约30%油位时与由电平值PW确定的阈值相交。在20%发送功率的情况下,交点处于约40%,并且在发送功率为100%的情况下,在46%的水平下达到缺少的油位。
这然后导致经由调节器4和电磁阀5从贮存器6补充油,以使得油位又升高并且接收信号保持在电平值PW之下,直到油位再次下降。
如果现在在机器的运行中光学系统被污染,则得到图5中所示的曲线。可以看到,基于10%的发送功率的接收信号刚好达到电平值PW以识别出缺油。在图6中示出光学系统被严重污染的情况。可以看到,在监测运行中采用的光束以10%的发送功率不再适于达到电平值PW。因此规定,在监测运行中随着污染增加而提高发送功率,以确保可靠地识别出缺油。
但为此需要确定光学系统的污染程度。这根据本发明这样来进行:一旦识别出缺油就执行下面描述的测试运行。为此,发送器8以最大发送功率(100%)发出第一光束,由此在接收器11处产生第一接收信号。然后,在第一接收信号与第二接收信号之间构成差值,其中,第二接收信号由具有比最大发送功率小的发送功率的光束来产生。在形成两个接收信号的差值的情况下,形成对应的接收信号的最大电平的差值。差值的大小在此表示光学系统的污染程度的度量。
作为测试运行中的第二接收信号,适宜的是采用监测运行中确定缺油的接收信号。但也可以设想,在测试运行中为了产生第二接收信号而采用具有较小的发送功率(例如10%)的单独(测试)光束。
在图4-6中将发送功率100%时的第一接收信号与发送功率为10%时的第二接收信号之间的差值示出为差值信号D。可以看到,随着污染程度增加,差值信号D的最大电平变得更低。因此,差值信号的最大电平在根据图4的干净的光学系统的情况下为约4.7V,而在稍被污染的光学系统的情况下降低到3.2V,并且在严重污染的光学系统的情况下仅还为2.3V。由具有射入的光束的不同发送功率的接收信号产生的差值信号D因此可被视作光学系统的污染程度的度量。为了节约运行成本,有意义的是从发送器8发出的光束10以尽可能低的发送功率来发出。该发送功率但是必须足够高以使得可靠地识别出缺油。借助上述测试方法,现在可根据第一接收信号和第二接收信号之间的差值的大小来提高发送功率。因此,图5中的情况示出了必须提高初始的10%发送功率的最迟时刻。在图5中所示的污染程度下,针对缺油的可靠识别,20%的发送功率就够了。
以此方式,随着污染加剧,发送功率继续越来越高。在严重污染的情况下,如在根据图6的示图中所示,当光束在监测运行中以100%的发送功率被射入时还是能确定缺油的。这也是光学系统、特别是光学反射体7的锥形尖端7a要进行清洁的最晚时刻。例如,通过如下方式来确定清洁光学系统的正确时刻:第一接收信号和第二接收信号之间的差值低于预先给出的值。
识别出缺油时总是还按常规地执行测试运行。可选的是,当在监测运行中没有测得缺油、但自从上一次确定的缺油起已过去了一段确定的时间段时,也可以进行测试运行。因此例如可以想象,光学系统已在接通机器时被严重污染,以使得所采用的发送功率不足以在缺油时产生足够高的接收信号。但如果按照惯例在确定的一时间段(例如,30分钟或者60分钟)之后执行测试运行,则可以可靠地识别出这种污染。
在运行机器、例如特别是压缩机时,总是必须补充油是常见的。在此,可以获悉两次补充油之间的时间间隔,并且当从上一次补充油起的时间间隔与过去记录的时间间隔相比超过预先给出的程度时,可以进行测试运行。在此特别是建议,通过例如考虑最近五个时间间隔来对过去记录的时间间隔取平均。

Claims (9)

1.一种借助光学传感器(3)来监测机器(2)中的油位的方法,其中,发送器(8)将光束(10)发送到光学系统(7)中,且所述光束根据待监测的油位从所述光学系统反射或者被折射到接收器(11),并且在所述接收器处产生接收信号,其中,所述光束在监测运行中以经调节的发送功率被发出,并且当所述接收信号超过预先给出的电平值时识别出缺油,
其特征在于,所述光束(10)的所述发送功率可在最小发送功率和最大发送功率之间调节,并且一旦识别出缺油就根据如下测试运行来检验所述光学系统(7)的污染程度,所述测试运行有以下步驟:
a.用所述发送器(8)以最大发送功率发出第一光束在所述接收器(11)处产生第一接收信号,
b.用所述发送器(8)以预先设定发送功率发出第二光束在所述接收器(11)处产生第二接收信号,其中所述预先设定发送功率小于所述最大发送功率,
c.确定所述第一接收信号和所述第二接收信号之间的差值,
d.将所述第一接收信号和所述第二接收信号之间的所述差值与参考值进行比较以表示所述光学系统(7)的污染程度。
2.如权利要求1所述的方法,其特征在于,在所述监测运行中,所述光束(10)的所述发送功率根据所述第一接收信号和所述第二接收信号之间的所述差值的大小来提高。
3.如权利要求1所述的方法,其特征在于,将所述监测运行中借助其识别出缺油的所述接收信号用作所述测试运行中的所述第二接收信号。
4.如权利要求1所述的方法,其特征在于,所述机器(2)中的油位在执行所述测试运行之后确定缺油的情况下通过补充油(9)来升高。
5.如权利要求1所述的方法,其特征在于,当在所述监测运行中没有测得缺油、但自从上一次确定的缺油起已过去了一段确定的时间段时,也执行所述测试运行。
6.如权利要求1所述的方法,其特征在于,当在所述监测运行中没有测到缺油、但自从上一次补充油起的时间间隔与过去记录的两次补充油之间的时间间隔相比超过预定的限值时,也执行所述测试运行。
7.如权利要求1所述的方法,其特征在于,为了比较过去记录的时间间隔,采用由预定数目的最近记录的时间间隔构成的平均值。
8.如权利要求1所述的方法,其特征在于,当所述第一接收信号和所述第二接收信号之间的所述差值低于预先给出的值时,执行所述光学系统(7)的清洁。
9.一种用于监测机器(2)中的油位的装置,所述装置具有光学传感器(3)和分析装置(13),所述光学传感器具有发送器(8)和接收器,所述发送器用于将光束(10)发送到光学系统(7)中,而所述接收器用于接收根据待监测的油位由所述光学系统反射或者折射的光束并且用于产生接收信号,所述分析装置用于将所述接收信号与预先给出的电平值进行比较,其中当所述接收信号超出所述预先给出的电平值时识别出缺油,
其特征在于,设有功率调节装置(14),所述功率调节装置与所述发送器(8)一起用于使所述光束(10)的所述发送功率在最小发送功率和最大发送功率之间调节,以及设有用于根据权利要求1中所述的测试运行来检验所述光学系统(7)的污染程度的所述分析装置(13)。
CN201710700805.0A 2016-08-17 2017-08-16 用于监测机器中的油位的方法和装置 Active CN107764368B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016115228.5 2016-08-17
DE102016115228.5A DE102016115228B4 (de) 2016-08-17 2016-08-17 Verfahren und Vorrichtung zur Überwachung eines Ölspiegels in einer Maschine

Publications (2)

Publication Number Publication Date
CN107764368A CN107764368A (zh) 2018-03-06
CN107764368B true CN107764368B (zh) 2020-08-07

Family

ID=61082603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710700805.0A Active CN107764368B (zh) 2016-08-17 2017-08-16 用于监测机器中的油位的方法和装置

Country Status (4)

Country Link
US (1) US10151617B2 (zh)
CN (1) CN107764368B (zh)
DE (1) DE102016115228B4 (zh)
IT (1) IT201700090110A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20164350A1 (it) * 2016-06-14 2017-12-14 Emak Spa Utensile da taglio
JP6822897B2 (ja) * 2017-05-19 2021-01-27 サンデン・リテールシステム株式会社 飲料供給装置
US10654450B2 (en) * 2018-09-11 2020-05-19 Rockwell Automation Technologies, Inc. Droplet sensor
DE102021104356A1 (de) 2021-02-24 2022-08-25 Kriwan Industrie-Elektronik Gmbh Messgerät zur Fluidniveau-Überwachung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898462A (en) * 1987-02-26 1990-02-06 Nippondenso Co., Ltd. Device for detecting a transmissivity of a substance
US5005005A (en) * 1986-03-10 1991-04-02 Brossia Charles E Fiber optic probe system
CN103826756A (zh) * 2011-09-19 2014-05-28 皇家飞利浦有限公司 气雾剂输出的分析和控制
CN105300862A (zh) * 2015-11-13 2016-02-03 金陵科技学院 基于云处理车载移动大气颗粒污染物的环境检测方法及系统
WO2016067228A1 (en) * 2014-10-30 2016-05-06 Univerza V Ljubljani, Fakulteta Za Elektrotehniko Sensor for measuring surface moisture on an uneven surface

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2036326B (en) 1978-10-20 1983-08-17 Klinger Ag Liquid level sensor
US5452076A (en) 1993-09-29 1995-09-19 Optiguard, Inc. Fluid detection system
KR100303161B1 (ko) * 1998-08-31 2001-10-19 장철주 실시간윤활유오염도측정장치
DE19936574A1 (de) 1999-08-03 2001-02-08 Schrodt Stephan Optischer Sensor zur kontinuierlichen Feststellung des Füllstandes eines flüssigen Mediums in einem Behälter
DE10201768A1 (de) 2001-11-30 2003-06-12 Aquis Wasser Luft Systeme Gmbh Getränkeautomat, insbesondere Kaffee- oder Teemaschine
US9105181B2 (en) * 2006-06-08 2015-08-11 Mueller International, Llc Systems and methods for generating power through the flow of water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005005A (en) * 1986-03-10 1991-04-02 Brossia Charles E Fiber optic probe system
US4898462A (en) * 1987-02-26 1990-02-06 Nippondenso Co., Ltd. Device for detecting a transmissivity of a substance
CN103826756A (zh) * 2011-09-19 2014-05-28 皇家飞利浦有限公司 气雾剂输出的分析和控制
WO2016067228A1 (en) * 2014-10-30 2016-05-06 Univerza V Ljubljani, Fakulteta Za Elektrotehniko Sensor for measuring surface moisture on an uneven surface
CN105300862A (zh) * 2015-11-13 2016-02-03 金陵科技学院 基于云处理车载移动大气颗粒污染物的环境检测方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用;董凤忠;《量子电子学报》;20050630;第22卷(第3期);第315-324页 *

Also Published As

Publication number Publication date
IT201700090110A1 (it) 2019-02-03
DE102016115228A1 (de) 2018-02-22
DE102016115228B4 (de) 2021-12-16
CN107764368A (zh) 2018-03-06
US10151617B2 (en) 2018-12-11
US20180052034A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
CN107764368B (zh) 用于监测机器中的油位的方法和装置
US20210033704A1 (en) Adaptive laser power and ranging limit for time of flight sensor
US20170045040A1 (en) Automatic lubrication system for a bearing, and method for operating an automatic lubrication system
US8483902B2 (en) Method for controlling the consumption and for detecting leaks in the lubrication system of a turbine engine
US5880480A (en) Optical liquid level sensor including built-in test circuitry
EP3259415B1 (en) Pump station monitoring system and method
US11906672B2 (en) Method for detecting a degradation in a distance-measuring system
US20160122173A1 (en) Automatic extraction device and method for controlling automatic extraction
US10416021B2 (en) Method for fill level measurement using the travel time principle
CA2024555A1 (en) Oil level regulator
EP2333394B1 (en) Device for oil or fluid grease lubrication
JP4395627B2 (ja) ミスト測定装置
CN109653835B (zh) 发动机机油粘度的检测方法、检测系统及汽车
US20180045194A1 (en) Pump monitoring method
US8833695B2 (en) Aircraft hydraulic air bleed valve system
US11143190B2 (en) Pump assembly having an impeller, a motor, and a shaft, with the shaft passing from the motor to the impeller through a fluid reservoir and a seal arrangemnet with a tration
KR20200111544A (ko) 차량용 연료게이지의 작동 제어 장치 및 방법
KR20230070031A (ko) 오일 윤활 압축기의 오일 레벨을 모니터링하기 위한 방법, 방법을 수행하기 위한 오일 레벨 모니터링 시스템 및 그러한 오일 레벨 모니터링 시스템을 구비하는 압축기 시스템
JP3248327B2 (ja) エンジンオイルの劣化判定装置
KR101045322B1 (ko) 투광창 오염 검출부를 갖는 오일 미스트 검출 장치 및 오일 미스트 검출 장치의 투광창 오염 검출 방법
EP1752743A1 (en) An improved liquid level sensor
JP2005351767A (ja) 磁歪式液面計
KR101266787B1 (ko) 초음파 센서의 브러시를 제어하는 회로, 그 방법, 및 상기 회로를 포함하는 초음파 계면계
JP2023553678A (ja) エレベータのシャフト内のキャビンの現在位置に関する情報を評価するための方法およびコントローラ
CN109884922B (zh) 缝纫机转速调节方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant