CN107755656A - 超大断面重轨钢铸坯内部质量控制方法 - Google Patents

超大断面重轨钢铸坯内部质量控制方法 Download PDF

Info

Publication number
CN107755656A
CN107755656A CN201711021410.4A CN201711021410A CN107755656A CN 107755656 A CN107755656 A CN 107755656A CN 201711021410 A CN201711021410 A CN 201711021410A CN 107755656 A CN107755656 A CN 107755656A
Authority
CN
China
Prior art keywords
crystallizer
heavy rail
large section
rail steel
section properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711021410.4A
Other languages
English (en)
Inventor
李红光
陈天明
郭华
李扬洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority to CN201711021410.4A priority Critical patent/CN107755656A/zh
Publication of CN107755656A publication Critical patent/CN107755656A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Abstract

本发明公开了一种超大断面重轨钢铸坯内部质量控制方法,特别是一种涉及钢铁冶金领域的超大断面重轨钢铸坯内部质量控制方法。本发明的超大断面重轨钢铸坯内部质量控制方法,结晶器采用抛物线型锥度曲线的管式结晶器,冷却水管路设置有两个冷却水进口和两个冷却水出口,超大断面重轨钢结晶器采用浸入式水口,浸入式水口采用双侧孔,搅拌电流强度为300A至400A,电流频率为2.4Hz,在结晶器后续凝固区间进行二次冷却水比水量与拉速匹配,凝固末端压下;搅拌电流强度200~350A,搅拌电流频率7.0Hz。采用本申请的通过有效控制结晶器钢液流场及凝固冷却,在此基础上合理控制二冷制度,对铸坯外施力场,优化铸坯凝固组织、改善溶质元素偏析、提高铸坯中心致密性。

Description

超大断面重轨钢铸坯内部质量控制方法
技术领域
本发明涉及一种超大断面重轨钢铸坯内部质量控制方法,特别是一种涉及钢铁冶金领域的超大断面重轨钢铸坯内部质量控制方法。
背景技术
钢轨是铁路轨道的主要组成部件,在铁路运输过程中,对机车提供有效支撑及引导,需承受来自车轮的巨大垂向压力。基于我国基础建设发展需求,铁路运输正以迅猛的速度发展,并不断趋于高速化、重载化。钢轨规格尺寸也逐渐增大,为减少焊接接头,保证铁路钢轨更高的整体性,大规格钢轨的定尺也在增加。通过以前较小断面铸坯轧制大规格长定尺的钢轨无疑要求铸坯长度定尺更长,这造成后续热处理设备需要进行较大改造;此外,如若铸坯断面尺寸不变,而钢轨规格尺寸变大,这对轧制过程的压缩比无疑造成影响,最终影响钢轨致密度等物性指标。连铸生产过程中,铸坯出结晶器以后,钢液的所有热量基本通过坯壳释放,坯壳的质量极大程度地影响铸坯内部钢液的凝固演变,包括凝固组织整体均匀性及周向一致性等等,而且对于超大断面重轨钢连铸生产而言,由于其钢种成分以及钢液凝固传热原理的影响,铸坯凝固过程横截面温度梯度较大,液芯更长,铸坯内部钢液凝固持续时间更长,坯壳质量的有效控制将为铸坯内部凝固组织的均匀生长奠定重要基础。
结晶器在连铸生产中是最关键的部件,它被业界称为连铸机的“心脏”,其对坯壳质量控制的重要作用体现在:保证出结晶器时铸坯形状合格,并有足够的厚度抵抗钢液静压而避免拉漏;保证坯壳在沿结晶器周向均匀生长,上述作用决定了连铸生产率及铸坯质量控制。有很多学者对连铸坯坯壳质量控制进行了大量研究,研究方向主要集中在凝固坯壳厚度的预测、坯壳安全厚度的获得以及连铸过程拉漏的机理及检测控制研究,对于具体的连铸坯壳质量控制的研究相对较少,尤其对于超大断面(320mm*410mm)连铸生产重轨钢过程中坯壳凝固控制的研究基本未见。
例如:
CN104384469A公开了一种钢连铸结晶器内初凝坯壳厚度的预测系统及方法。此发明包括:信息采集模块:用来采集浇铸钢种成分、结晶器几何尺寸、浸入式水口几何尺寸、连铸工艺条件以及沿结晶器不同位置处的初凝坯壳厚度实测值及枝晶间距实测值;所述结晶器几何尺寸,包括板坯宽度、板坯厚度、结晶器高度、铜板厚度、水槽深度、水槽厚度和镍层厚度;所述连铸工艺条件,包括弯月面位置、拉坯速度、进口水温、宽面出口水温、窄面出口水温、宽面冷却水流量和窄面冷却水流量;所述浸入式水口几何尺寸,包括浸入式水口浸入深度和浸入式水口侧孔倾角;钢种热物性参数计算模块:根据信息采集模块采集到的浇铸钢种成分和枝晶间距实测值,计算钢液凝固过程中枝晶间溶质偏析和凝固路径,进而获得钢种热物性参数并将其传至结晶器初凝坯壳生长预测模块;所述钢种热物性参数,包括固液相线温度、导热系数、密度、比热和凝固潜热;结晶器初凝坯壳生长预测模块:将结晶器内热量传输、动量传输和质量传输在内的宏观传输过程与结晶器铜板表面形核、钢液内部形核和晶粒生长在内的微观凝固组织演变行为进行耦合,并根据信息采集模块采集到的结晶器几何尺寸、浸入式水口几何尺寸和连铸工艺条件以及从钢种热物性参数计算模块接收的钢种热物性参数,预测连铸过程结晶器内部高温钢液凝固过程坯壳生长行为并将其传至结果输出模块;结果输出模块:图像化地显示预测的结晶器内部凝固组织形貌,即初凝坯壳生长过程,以及定量化地显示结晶器初凝坯壳厚度预测值,将该初凝坯壳厚度预测值与信息采集模块采集的结晶器的初凝坯壳实测值进行比较,并输出显示该比较结果。但是,对于超大断面(320mm*410mm)重轨钢坯壳质量控制装备工艺的一些关键的具体内容并未涉及。
CN103386472A公开了一种连铸结晶器出口坯壳安全厚度的获取方法。本发明包括以下步骤:测量钢材坯壳表面温度Tf、铸坯的宽度B、辊间距L、钢水静压力P;通过公式计算平板的弹性模量E;通过公式计算平板的弯曲刚度D;通过公式计算结晶器出口与足辊间的最大鼓肚形变wmax;以结晶器出口与足辊间的最大鼓肚形变wmax小于等于坯壳的临界鼓肚形变量wc为判据,确定连铸结晶器出口坯壳安全厚度S的范围;其中,α为数值因子,v为泊松比,Ts为钢材的固相线温度。而对于超大断面(320mm*410mm)重轨钢坯壳质量控制装备工艺的一些关键的具体内容并未涉及。
CN101138785公开了一种大方坯的连铸方法,该发明的技术方案是:大方坯的连铸方法,包括对坯壳的二次冷却,其中坯壳依次通过五个喷淋冷却区进行二次冷却,五个喷淋冷却区沿坯壳冷却方向冷却强度分别为151~194l/(min×m2),34~50l/(min×m2),23~35l/(min×m2),12~19l/(min×m2),8~11l/(min×m2)。本发明通过在坯壳变厚的过程中逐渐降低对坯壳的冷却强度,从而有效减少坯壳的内外温差,降低方坯的热应力,减少大方坯连铸缺陷。本发明尤其适合横断面尺寸为450mm×360mm,材质为35Mn2、37Mn2等中碳锰钢大方坯的连铸生产。但是,对于超大断面(320mm*410mm)重轨钢坯壳质量控制装备工艺的一些关键的具体内容并未涉及。
发明内容
本发明提供了一种生产的超大断面重轨钢铸坯内部质量较好,可以将铸坯中心疏松、中心偏析、中心缩孔等铸坯质量缺陷控制在较低级别的超大断面重轨钢铸坯内部质量控制方法。
本发明为解决上述问题所采用的超大断面重轨钢铸坯内部质量控制方法,超大断面重轨钢坯壳凝固控制装备的结晶器采用内壁形状为抛物线型锥度曲线的管式结晶器,且管式结晶器冷却水管路设置有两个冷却水进口和两个冷却水出口,超大断面重轨钢结晶器采用浸入式水口,所述浸入式水口采用双侧孔,且侧孔向下倾谢15°,所述浸入式水口外径为φ95mm,内径为φ45mm,所述浸入式水口插入水中的深度控制在100mm至120mm,超大断面重轨钢结晶器的电磁搅拌装置安装于其高度中间线距离结晶器上口下方620mm位置处,结晶器电磁搅拌电流强度控制范围为300A至400A,搅拌电流频率为2.4Hz,在结晶器后续凝固区间进行凝固末端压下,总压下量16~20mm;末端电磁搅拌安装于结晶器钢液面下13.5m位置处,凝固末端电磁搅拌搅拌电流强度200~350A,搅拌电流频率7.0Hz。
进一步的是,采用DN250调节阀调节结晶器冷却水的流量。
进一步的是,在结晶过程中冷却水量控制在3550L/min~3700L/min范围内,水压控制在0.80MP~0.90MP范围内。
进一步的是,浇注钢液过热度控制在15℃~30℃范围内,对于中包第一炉次,过热度控制在25℃~40℃,将拉速控制在0.65m/min~0.75m/min,以目标拉速0.68m/min进行恒速浇注。
本发明的有益效果是:采用本申请的超大断面重轨钢铸坯内部质量控制方法通过有效控制结晶器钢液流场及凝固冷却,保障铸坯在结晶器段获得高质量坯壳,在此基础上合理控制二冷制度,对铸坯外施力场,优化铸坯凝固组织、改善溶质元素偏析、提高铸坯中心致密性,最终实现超大断面重轨钢铸坯内部质量高水平控制。
具体实施方式
本申请所采用的超大断面重轨钢铸坯内部质量控制方法的结晶器采用内壁形状为抛物线型锥度曲线的管式结晶器,且管式结晶器冷却水管路设置有两个冷却水进口和两个冷却水出口,超大断面重轨钢结晶器采用浸入式水口,所述浸入式水口采用双侧孔,且侧孔向下倾谢15°,所述浸入式水口外径为φ95mm,内径为φ45mm,所述浸入式水口插入水中的深度控制在100mm至120mm,超大断面重轨钢结晶器的电磁搅拌装置安装于其高度中间线距离结晶器上口下方620mm位置处,结晶器电磁搅拌电流强度控制范围为300A至400A,搅拌电流频率为2.4Hz,在结晶器后续凝固区间进行凝固末端压下,总压下量16~20mm;末端电磁搅拌安装于结晶器钢液面下13.5m位置处,凝固末端电磁搅拌搅拌电流强度200~350A,搅拌电流频率7.0Hz。其中电磁搅拌装置高度中间线是指位于电磁搅拌装置高度的一半位置的一条虚拟的标高线。结晶器采用内壁形状为抛物线型锥度曲线可以更好的适应钢壳不同部位变化的收缩率,可以优化铸坯角部冷却,改善铸坯角部缺陷控制,可以使钢壳的凝固过程更加均匀,使钢壳的厚度一致性更高。同时本申请在管式结晶器冷却水管路设置有两个冷却水进口和两个冷却水出口可以提高传热均匀性,从而提高钢壳冷却时的质量。本申请还设计合适的结晶器浸入式水口,水口采用双侧孔,侧孔下倾15°,水口外径φ95mm,内径φ45mm,并制定与之匹配的插入深度,插入深度控制在100mm~120mm,以有效保证结晶器内钢液流场稳定,为凝固坯壳均匀稳定生长提供重要条件,同时保证结晶器液面平稳防止卷渣,促进保护渣渣厚均匀分布;匹配合适的冷却强度以在结晶器出口位置处提供足够厚度的坯壳以支撑钢液静压同时传输钢液向外扩散的热量。本申请通过设计制定结晶器电磁搅拌合理安装位置,综合搅拌强度对结晶器液位稳定性、结晶器内流场优化、铸坯偏析以及等轴晶率控制的影响确定合理结晶器电搅电流强度,实现结晶器内坯壳厚度、化学成分的均匀控制。
此外,本申请还采用DN250调节阀调节结晶器冷却水的流量。对结晶器配备恰当冷却强度,采用DN250调节阀精细调节结晶器冷却水,保证坯壳厚度。
在结晶过程中冷却水量控制在3550L/min~3700L/min范围内,水压控制在0.80MP~0.90MP范围内。为提高冷却质量,精确控制冷却效果,本申请对冷却水量和水压进行严格控制,以得到高质量的产品。
为提高钢壳产品质量,本申请对浇注钢液过热度,尤其是中包第一炉次的过热度进行精确控制。其中浇注钢液过热度控制在15℃~30℃范围内,对于中包第一炉次,过热度控制在25℃~40℃,将拉速控制在0.65m/min~0.75m/min,以目标拉速0.68m/min进行恒速浇注。
下面结合实施例对本发明的具体实施方式做进一步的描述。
实施例1
该实施例是某炼钢厂采用本装备技术发明的方法生产超大断面(320mm*410)U71Mn重轨钢连铸坯。本发明技术的具体执行为:采用抛物线型锥度曲线的管式结晶器装备;管式结晶器水路为二进二回;结晶器冷却水量3625L/min,水压0.85MPa;结晶器浸入式水口采用双侧孔,侧孔下倾15°,水口外径φ95mm,内径φ45mm,匹配插入深度控制在112mm;结晶器电搅安装于距离结晶器上口620mm位置处(以结晶器电搅高度中部为依据);结晶器电磁搅拌电流强度350A,搅拌电流频率2.4Hz。结晶器后续段,在铸坯完全凝固前进行:凝固末端压下,压下区间为2#~5#压下辊,总压下量16~17mm;凝固末端电磁搅拌安装于距结晶器钢液面下13.5m位置处,凝固末端电磁搅拌搅拌电流强度200A,搅拌电流频率7.0Hz。除采用本发明的上述关键装备技术外。其他工艺参数:浇注中包实际过热度控制范围为17℃~27℃,平均23℃;拉速0.65~0.70m/min,保持0.68m/min(恒速浇注)比例达89%。
连铸过程结晶器内钢液液面稳定,保护渣厚度分布均匀。连铸生产结束后,对U71Mn重轨钢连铸坯进行低倍检测;采用冷酸枝晶腐蚀,检测铸坯横断面坯壳厚度分布情况,结果显示,该技术发明所生产的重轨钢U71Mn连铸坯坯壳厚度沿断面周向分布均匀,整体控制在15~18mm;铸坯边角部质量良好,柱状晶区沿宽度及厚度方向发展均匀,等轴晶区对称性较好,其余低倍质量指标:中心疏松0.5级,缩孔0.5级,中心偏析0.5级,无其他缺陷。对铸坯进行偏析检测,坯壳及其附近碳元素偏析度无明显负正交替,成分均匀。
实施例2
该实施例是某炼钢厂采用本装备技术发明的方法生产超大断面(320mm*410)U75V重轨钢连铸坯。本发明技术的具体执行为:采用抛物线型锥度曲线的管式结晶器装备;管式结晶器水路为二进二回;结晶器冷却水量3550L/min,水压0.80MPa;结晶器浸入式水口采用双侧孔,侧孔下倾15°,水口外径φ95mm,内径φ45mm,匹配插入深度控制在100mm;结晶器电搅安装于距离结晶器上口620mm位置处(以结晶器电搅高度中部为依据);结晶器电磁搅拌电流强度300A,搅拌电流频率2.4Hz。结晶器后续段,在铸坯完全凝固前进行:凝固末端压下,压下区间为2#~6#压下辊,总压下量15~18mm;凝固末端电磁搅拌安装于距结晶器钢液面下13.5m位置处,凝固末端电磁搅拌搅拌电流强度300A,搅拌电流频率7.0Hz。除采用本发明的上述关键装备技术外。其他工艺参数:拉速0.67~0.72m/min,保持0.68m/min(恒速浇注)比例达92%;浇注中包实际过热度控制范围为15℃~26℃,平均22℃。
连铸过程结晶器内钢液液面稳定,保护渣厚度分布均匀。连铸生产结束后,对U75V重轨钢连铸坯进行低倍检测;采用冷酸枝晶腐蚀,检测铸坯横断面坯壳厚度分布情况,结果显示,该技术发明所生产的重轨钢U75V连铸坯坯壳厚度沿断面周向分布均匀,整体控制在17~18mm;铸坯边角部质量良好,柱状晶区沿宽度及厚度方向发展均匀,等轴晶区对称性较好,其余低倍质量指标:中心疏松0.5级,缩孔0.5级,中心偏析0.5~1.0级,无其他缺陷。对铸坯进行偏析检测,坯壳及其附近碳元素偏析度无明显负正交替,成分均匀。
实施例3
该实施例是某炼钢厂采用本装备技术发明的方法生产超大断面(320mm*410)U78CrV重轨钢连铸坯。本发明技术的具体执行为:采用抛物线型锥度曲线的管式结晶器装备;管式结晶器水路为二进二回;结晶器冷却水量3700L/min,水压0.90MPa;结晶器浸入式水口采用双侧孔,侧孔下倾15°,水口外径φ95mm,内径φ45mm,匹配插入深度控制在120mm;结晶器电搅安装于距离结晶器上口620mm位置处(以结晶器电搅高度中部为依据);结晶器电磁搅拌电流强度400A,搅拌电流频率2.4Hz。结晶器后续段,在铸坯完全凝固前进行:凝固末端压下,压下区间为2#~6#压下辊,总压下量17~20mm;凝固末端电磁搅拌安装于距结晶器钢液面下13.5m位置处,凝固末端电磁搅拌搅拌电流强度350A,搅拌电流频率7.0Hz。除采用本发明的上述关键装备技术外。其他工艺参数:拉速0.67~0.75m/min,保持0.68m/min(恒速浇注)比例达88%;浇注中包实际过热度控制范围为17℃~30℃,平均25℃。
连铸过程结晶器内钢液液面稳定,保护渣厚度分布均匀。连铸生产结束后,对U78CrV重轨钢连铸坯进行低倍检测;采用冷酸枝晶腐蚀,检测铸坯横断面坯壳厚度分布情况,结果显示,该技术发明所生产的重轨钢U78CrV连铸坯坯壳厚度沿断面周向分布均匀,整体控制在15~18mm;铸坯边角部质量良好,柱状晶区沿宽度及厚度方向发展均匀,等轴晶区对称性较好,其余低倍质量指标:中心疏松0.5~1.0级,缩孔0级,中心偏析0.5级,无其他缺陷。对铸坯进行偏析检测,坯壳及其附近碳元素偏析度无明显负正交替,成分均匀。
上述实施实例说明,通过采用本装备技术发明后,超大断面(320mm*410mm)重轨钢铸坯坯壳质量良好,坯壳厚度沿轴向均匀分布,铸坯其他质量得到有效控制,特别地铸坯柱状晶区沿宽度及厚度方向发展均匀,对称性良好,铸坯中心区域等轴晶区对称性较好,低倍质量指标控制较优,对应钢轨浅表致密层厚度均匀,其他质量性能全部合格。

Claims (4)

1.超大断面重轨钢铸坯内部质量控制方法,其特征在于:超大断面重轨钢坯壳凝固控制装备的结晶器采用内壁形状为抛物线型锥度曲线的管式结晶器,且管式结晶器冷却水管路设置有两个冷却水进口和两个冷却水出口,超大断面重轨钢结晶器采用浸入式水口,所述浸入式水口采用双侧孔,且侧孔向下倾谢15°,所述浸入式水口外径为φ95mm,内径为φ45mm,所述浸入式水口插入水中的深度控制在100mm至120mm,超大断面重轨钢结晶器的电磁搅拌装置安装于其高度中间线距离结晶器上口下方620mm位置处,结晶器电磁搅拌电流强度控制范围为300A至400A,搅拌电流频率为2.4Hz,在结晶器后续凝固区间进行凝固末端压下,总压下量16~20mm;末端电磁搅拌安装于结晶器钢液面下13.5m位置处,凝固末端电磁搅拌的搅拌电流强度200~350A,搅拌电流频率7.0Hz。
2.如权利要求1所述的超大断面重轨钢铸坯内部质量控制方法,其特征在于:采用DN250调节阀调节结晶器冷却水的流量。
3.如权利要求1所述的超大断面重轨钢铸坯内部质量控制方法,其特征在于:在结晶过程中冷却水量控制在3550L/min~3700L/min范围内,水压控制在0.80MP~0.90MP范围内。
4.如权利要求1所述的超大断面重轨钢铸坯内部质量控制方法,其特征在于:浇注钢液过热度控制在15℃~30℃范围内,对于中包第一炉次,过热度控制在25℃~40℃,将拉速控制在0.65m/min~0.75m/min,以目标拉速0.68m/min进行恒速浇注。
CN201711021410.4A 2017-10-27 2017-10-27 超大断面重轨钢铸坯内部质量控制方法 Pending CN107755656A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711021410.4A CN107755656A (zh) 2017-10-27 2017-10-27 超大断面重轨钢铸坯内部质量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711021410.4A CN107755656A (zh) 2017-10-27 2017-10-27 超大断面重轨钢铸坯内部质量控制方法

Publications (1)

Publication Number Publication Date
CN107755656A true CN107755656A (zh) 2018-03-06

Family

ID=61270206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711021410.4A Pending CN107755656A (zh) 2017-10-27 2017-10-27 超大断面重轨钢铸坯内部质量控制方法

Country Status (1)

Country Link
CN (1) CN107755656A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280733A (zh) * 2019-07-22 2019-09-27 攀钢集团攀枝花钢铁研究院有限公司 超大断面重轨钢轨头区域均质性提升控制方法
CN115026251A (zh) * 2022-06-28 2022-09-09 芜湖新兴铸管有限责任公司 提高高铝钢探伤合格率的工艺改进方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2165788A1 (en) * 2007-06-28 2010-03-24 Sumitomo Metal Industries, Ltd. Method of continuously casting small-section billet
CN105215310A (zh) * 2015-11-17 2016-01-06 攀钢集团攀枝花钢铁研究院有限公司 一种大断面重轨钢铸坯中心疏松控制的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2165788A1 (en) * 2007-06-28 2010-03-24 Sumitomo Metal Industries, Ltd. Method of continuously casting small-section billet
CN105215310A (zh) * 2015-11-17 2016-01-06 攀钢集团攀枝花钢铁研究院有限公司 一种大断面重轨钢铸坯中心疏松控制的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
时彦林,崔衡: "《连铸工培训教程》", 31 July 2013, 冶金工业出版社 *
朱苗勇: "《现代冶金工艺学——钢铁冶金卷》", 31 December 2016, 冶金工业出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280733A (zh) * 2019-07-22 2019-09-27 攀钢集团攀枝花钢铁研究院有限公司 超大断面重轨钢轨头区域均质性提升控制方法
CN115026251A (zh) * 2022-06-28 2022-09-09 芜湖新兴铸管有限责任公司 提高高铝钢探伤合格率的工艺改进方法
CN115026251B (zh) * 2022-06-28 2023-09-19 芜湖新兴铸管有限责任公司 提高38CrMoAl探伤合格率的工艺改进方法

Similar Documents

Publication Publication Date Title
CN107790666A (zh) 超大断面重轨钢连铸生产控制方法
CN107812907A (zh) 超大断面重轨钢坯壳质量控制方法
CN107552752A (zh) 超大断面重轨钢坯壳质量稳定控制方法
US20170021414A1 (en) Ultrasonic grain refining
CA2683965A1 (en) Method for continuously casting billet with small cross section
CN102380588A (zh) 中频感应定向凝固铸锭方法及其装置
CN105364042A (zh) 一种大断面重轨钢铸坯结晶组织均匀性控制的方法
CN101219464A (zh) 可控制液面流场和波动的连铸结晶器装置
CN107755656A (zh) 超大断面重轨钢铸坯内部质量控制方法
Park et al. Continuous casting of steel billet with high frequency electromagnetic field
CN107737899A (zh) 超大断面重轨钢连铸生产方法
CN103350216B (zh) 一种铸锭均质化的控制方法
CN107812905A (zh) 超大断面重轨钢坯壳质量优化控制方法
CN107737897A (zh) 超大断面重轨钢坯壳凝固控制方法
CN108746526A (zh) 大方坯重轨钢角部质量控制的连铸方法
CN112692272B (zh) 一种金属铸锭的二维浇铸成型装置及方法
CN107812906A (zh) 超大断面重轨钢结晶器流场控制方法
US3746070A (en) Method for improving continuously cast strands
Luo et al. Characteristics of solute segregation in continuous casting bloom with dynamic soft reduction and determination of soft reduction zone
CN109382490B (zh) Yq450nqr1乙字钢大方坯表面质量控制方法
KR101400041B1 (ko) 용강의 탄소증가량 예측장치 및 그 방법
Dutta et al. Continuous casting (concast)
RU2422242C2 (ru) Способ охлаждения заготовок на машинах непрерывного литья
Stulov et al. Preparation of Continuously Cast Highly-Alloyed Steel Slab Billets
KR101400047B1 (ko) 극저탄소강 주조 제어방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180306

RJ01 Rejection of invention patent application after publication