CN107740036A - 一种提升防腐能力的不锈钢表面处理方法 - Google Patents

一种提升防腐能力的不锈钢表面处理方法 Download PDF

Info

Publication number
CN107740036A
CN107740036A CN201710897605.9A CN201710897605A CN107740036A CN 107740036 A CN107740036 A CN 107740036A CN 201710897605 A CN201710897605 A CN 201710897605A CN 107740036 A CN107740036 A CN 107740036A
Authority
CN
China
Prior art keywords
stainless steel
lifting
sample
antiseptic power
aluminium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710897605.9A
Other languages
English (en)
Inventor
张晴晴
罗锋
魏贤文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast Xuzhou Steel And Iron Industry Co Ltd
Original Assignee
Southeast Xuzhou Steel And Iron Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast Xuzhou Steel And Iron Industry Co Ltd filed Critical Southeast Xuzhou Steel And Iron Industry Co Ltd
Priority to CN201710897605.9A priority Critical patent/CN107740036A/zh
Publication of CN107740036A publication Critical patent/CN107740036A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

本发明公开了一种提升防腐能力的不锈钢表面处理方法,包括如下步骤:截取尺寸15*15*10mm的钢材试样作为基材,选用氮化铝AlN作为源极材料;将钢材试样经过多道次砂纸打磨、机械抛光后,再依次清洗、烘干后;用双层辉光等离子渗金属真空炉进行渗铝处理,用不锈钢圆筒作为辅助阴极,将基材和氮化铝AlN置于辅助阴极内,开始表面处理,处理后试样随炉冷却至室温。本发明操作简单,实施过程环保无污染,提升了渗层和基体间的结合力;选用氮化铝AlN作为源极材料,在反应时可以生成N2,避免发生其他氧化反应,提升了钢材表层的洁净度;随时间进行在不锈钢表面可以形成防腐氧化铝表面层,表面形成氧化膜后,可以有效阻止氧原子的进一步渗入,整体表面性能稳定。

Description

一种提升防腐能力的不锈钢表面处理方法
技术领域
本发明涉及一种提升防腐能力的不锈钢表面处理方法,属于金属加工领域。
背景技术
不锈钢由于其优异的性能,已经在生产生活的各个方面得到了广泛应用。可以通过多种方法获得不锈钢成品。在粉末冶金中,不锈钢粉末通过高温烧结致密化而最终得到产品,其中真空烧结就是一个很常用的方法。但是在真空烧结中,不锈钢中防锈的Cr元素会挥发,从而影响不锈钢产品的性能。因此,可以考虑在不锈钢表面施加防护涂层用来增加其耐腐蚀性,然而,实践证明防护涂层与不锈钢基体之间很容易脱裂,因而如何提升不锈钢表面的耐腐蚀能力是当务之急。
发明内容
针对上述现有技术存在的问题,本发明的目的是提供一种提升防腐能力的不锈钢表面处理方法,可以稳定提升处理后钢材的表面耐腐蚀性能。
为实现上述目的,本发明采用的技术方案是:一种提升防腐能力的不锈钢表面处理方法,包括如下步骤:
(1)截取尺寸15*15*10mm的钢材试样作为基材,选用氮化铝AlN作为源极材料;
(2)将钢材试样经过多道次砂纸打磨、打磨后用0.5μm的金刚石喷雾抛光剂进行机械抛光,再依次在丙酮、酒精、去离子水中超声清洗10min,烘干后,封装待用;
(3)用双层辉光等离子渗金属真空炉进行渗铝处理,用不锈钢圆筒作为辅助阴极,将基材和氮化铝AlN置于辅助阴极内;
(4)开始表面处理:工艺参数为频率55-60Hz,极间距10-15mm,保温温度800-900℃,保温时间2-3h,源极电压400-600V,阴极电压300-400V,处理后试样随炉冷却至室温。
作为本发明优选的技术方案,所述钢材试样为304不锈钢。
作为本发明优选的技术方案,所述步骤(4)的工艺参数为频率55Hz,极间距15mm,保温温度800℃,保温时间2h。
作为本发明优选的技术方案,所述步骤(4)的源极电压600V,阴极电压400V。
本发明操作简单,实施过程环保无污染,工艺易于控制,渗层质量好,表面主要成分为NiAl和Ni3Al,提升了渗层和基体间的结合力;选用氮化铝AlN作为源极材料,在反应时可以生成N2,起到保护气的作用,避免发生其他氧化反应,提升了钢材表层的洁净度;随时间进行在不锈钢表面可以形成较完整致密的防腐氧化铝表面层,从而可以有效抗腐蚀。表面形成氧化膜后,可以有效阻止氧原子的进一步渗入,整体表面性能稳定。
具体实施方式
下面结合实施例对本发明作进一步详细说明。
实施例1
提升防腐能力的不锈钢表面处理方法包括如下步骤:
(1)截取尺寸15*15*10mm的钢材试样作为基材,选用氮化铝AlN作为源极材料;
(2)将钢材试样经过多道次砂纸打磨、打磨后用0.5μm的金刚石喷雾抛光剂进行机械抛光,再依次在丙酮、酒精、去离子水中超声清洗10min,烘干后,封装待用;
(3)用双层辉光等离子渗金属真空炉进行渗铝处理,用不锈钢圆筒作为辅助阴极,将基材和氮化铝AlN置于辅助阴极内;
(4)开始表面处理:工艺参数为频率55Hz,极间距15mm,保温温度800℃,保温时间2h,源极电压400V,阴极电压300V,处理后试样随炉冷却至室温。
采用X射线衍射仪分析渗铝层相结构,用能谱仪分析试样表面及截面元素分布,采用电子天平(精度为0.1mg)测定渗铝钢的氧化增重量。
检测结果显示,渗层与基体形成了良好的冶金结合,表面Al的质量分数为23.31%;物相分析显示,渗层的主要相成分为NiAl和Ni3Al,铝在Fe基体中的溶解度很小,且铝和镍的亲和力比铝和铁的亲和力大,因此优先形成镍铝合金,镍铝合金提升了渗层和基体间的结合力。
在600℃对试样进行氧化2h,氧化后EDS分析后,可以看出表面层主要是Al、O元素,且表面Al与O的原子比约为0.641,接近Al2O3中原子的理论比,由此可以推测,试样经氧化处理后的表面主要成分为Al2O3。这从另一个方面反映出,本发明可在不锈钢表面形成较完整致密的铝表面层,从而可以有效抗腐蚀。
将试样在600℃进一步氧化4h、6h,发现增重现象不明显,说明表面形成氧化膜后,可以有效阻止氧原子的进一步渗入,整体表面性能稳定。
实施例2
提升防腐能力的不锈钢表面处理方法包括如下步骤:
(1)截取尺寸15*15*10mm的钢材试样作为基材,选用氮化铝AlN作为源极材料;
(2)将钢材试样经过多道次砂纸打磨、打磨后用0.5μm的金刚石喷雾抛光剂进行机械抛光,再依次在丙酮、酒精、去离子水中超声清洗10min,烘干后,封装待用;
(3)用双层辉光等离子渗金属真空炉进行渗铝处理,用不锈钢圆筒作为辅助阴极,将基材和氮化铝AlN置于辅助阴极内;
(4)开始表面处理:工艺参数为频率60Hz,极间距10mm,保温温度900℃,保温时间3h,源极电压400V,阴极电压400V,处理后试样随炉冷却至室温。
经测量,其性能与实施例1的样品性能一致。
实施例3
提升防腐能力的不锈钢表面处理方法包括如下步骤:
(1)截取尺寸15*15*10mm的钢材试样作为基材,选用氮化铝AlN作为源极材料;
(2)将钢材试样经过多道次砂纸打磨、打磨后用0.5μm的金刚石喷雾抛光剂进行机械抛光,再依次在丙酮、酒精、去离子水中超声清洗10min,烘干后,封装待用;
(3)用双层辉光等离子渗金属真空炉进行渗铝处理,用不锈钢圆筒作为辅助阴极,将基材和氮化铝AlN置于辅助阴极内;
(4)开始表面处理:工艺参数为频率55Hz,极间距15mm,保温温度800℃,保温时间2h,源极电压600V,阴极电压400V,处理后试样随炉冷却至室温。
经测量,其性能与实施例1的样品性能一致。

Claims (4)

1.一种提升防腐能力的不锈钢表面处理方法,其特征在于,包括如下步骤:
(1)截取尺寸15*15*10mm的钢材试样作为基材,选用氮化铝AlN作为源极材料;
(2)将钢材试样经过多道次砂纸打磨、打磨后用0.5μm的金刚石喷雾抛光剂进行机械抛光,再依次在丙酮、酒精、去离子水中超声清洗10min,烘干后,封装待用;
(3)用双层辉光等离子渗金属真空炉进行渗铝处理,用不锈钢圆筒作为辅助阴极,将基材和氮化铝AlN置于辅助阴极内;
(4)开始表面处理:工艺参数为频率55-60Hz,极间距10-15mm,保温温度800-900℃,保温时间2-3h,源极电压400-600V,阴极电压300-400V,处理后试样随炉冷却至室温。
2.根据权利要求1所述的一种提升防腐能力的不锈钢表面处理方法,其特征在于,所述钢材试样为304不锈钢。
3.根据权利要求1所述的一种提升防腐能力的不锈钢表面处理方法,其特征在于,所述步骤(4)的工艺参数为频率55Hz,极间距15mm,保温温度800℃,保温时间2h。
4.根据权利要求1所述的一种提升防腐能力的不锈钢表面处理方法,其特征在于,所述步骤(4)的源极电压600V,阴极电压400V。
CN201710897605.9A 2017-09-28 2017-09-28 一种提升防腐能力的不锈钢表面处理方法 Pending CN107740036A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710897605.9A CN107740036A (zh) 2017-09-28 2017-09-28 一种提升防腐能力的不锈钢表面处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710897605.9A CN107740036A (zh) 2017-09-28 2017-09-28 一种提升防腐能力的不锈钢表面处理方法

Publications (1)

Publication Number Publication Date
CN107740036A true CN107740036A (zh) 2018-02-27

Family

ID=61236381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710897605.9A Pending CN107740036A (zh) 2017-09-28 2017-09-28 一种提升防腐能力的不锈钢表面处理方法

Country Status (1)

Country Link
CN (1) CN107740036A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740035A (zh) * 2017-09-30 2018-02-27 铜山县利国钢铁有限公司 一种带有防腐渗层的钢件
CN111020474A (zh) * 2019-12-18 2020-04-17 武汉纺织大学 一种对45钢表面等离子复合渗层无损化耐磨处理的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074476A (zh) * 2007-06-11 2007-11-21 南京航空航天大学 钢铁材料表面制备Fe-Al金属间化合物层的方法
US20120244385A1 (en) * 2011-03-24 2012-09-27 Hon Hai Precision Industry Co., Ltd. Metal housing and surface treating method thereof
CN102936716A (zh) * 2012-11-06 2013-02-20 高金菊 一种在tc4钛合金表面制备钴基合金层的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074476A (zh) * 2007-06-11 2007-11-21 南京航空航天大学 钢铁材料表面制备Fe-Al金属间化合物层的方法
US20120244385A1 (en) * 2011-03-24 2012-09-27 Hon Hai Precision Industry Co., Ltd. Metal housing and surface treating method thereof
CN102936716A (zh) * 2012-11-06 2013-02-20 高金菊 一种在tc4钛合金表面制备钴基合金层的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
常华: ""316L不锈钢表面氧化铝梯度涂层制备工艺及机理研究"", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅰ辑》 *
顾雪冬等: ""45钢表面双层辉光等离子渗铝"", 《金属热处理》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740035A (zh) * 2017-09-30 2018-02-27 铜山县利国钢铁有限公司 一种带有防腐渗层的钢件
CN111020474A (zh) * 2019-12-18 2020-04-17 武汉纺织大学 一种对45钢表面等离子复合渗层无损化耐磨处理的方法

Similar Documents

Publication Publication Date Title
Wu et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high entropy alloy coating: The role of Mo
Feng et al. Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding
Wu et al. Effects of additives on corrosion and wear resistance of micro-arc oxidation coatings on TiAl alloy
Duan et al. Characteristics, wear and corrosion properties of borided pure titanium by pack boriding near α→ β phase transition temperature
CN110257682A (zh) 一种高熵合金材料及其涂层的制备方法
TWI502099B (zh) Alloyed molten galvanized steel sheet and manufacturing method thereof
CN108220740B (zh) 一种耐磨、耐蚀高熵合金材料及其制备方法
Wang et al. Preparation and high temperature oxidation resistance of microarc oxidation ceramic coatings formed on Ti2AlNb alloy
Kaouka et al. Electrochemical boriding of titanium alloy Ti-6Al-4V
Stoica et al. Influence of post-treatment time of trivalent chromium protection coating on aluminium alloy 2024-T3 on improved corrosion resistance
CN109913796A (zh) 一种钛合金表面的TiAlN复合涂层及其制备方法
CN107740036A (zh) 一种提升防腐能力的不锈钢表面处理方法
Liu et al. Feasibility study on preparation of coatings on Ti–6Al–4V by combined ultrasonic impact treatment and electrospark deposition
Wang et al. Wear and corrosion properties of a B–Al composite layer on pure titanium
Gerasimova et al. Wear-resistant aluminum and chromonickel coatings at the narrow mold walls in continuous-casting machines
Nowak et al. High-temperature oxidation behaviour of B2 FeAl based alloy with Cr, Zr and B additions
CN109536883B (zh) 一种提高Ti-45Al-8.5Nb合金高温抗氧化性的方法
Feng et al. Corrosion properties of ceramic coating on pure titanium by pack boronizing with Nd2O3
CN109023228A (zh) 合金化Fe3Si渗层提高2Cr13不锈钢耐磨、抗蚀综合性能的熔盐非电解制备方法
Sun et al. Effect of the deformation on nitrocarburizing microstructure of the cold deformed Ti-6Al-4V alloy
Xiao et al. Efficient prediction of corrosion behavior in ternary Ni-based alloy systems: Theoretical calculations and experimental verification
CN107699770B (zh) 一种高熵合金材料及其制备方法
CN107740035A (zh) 一种带有防腐渗层的钢件
CN103225058B (zh) 一种抗高温氧化奥氏体不锈钢及其制备方法
CN107675124A (zh) 一种钢件表面处理的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180227

RJ01 Rejection of invention patent application after publication