CN107730439B - 一种人体图像映射方法、系统及终端设备 - Google Patents

一种人体图像映射方法、系统及终端设备 Download PDF

Info

Publication number
CN107730439B
CN107730439B CN201710804373.8A CN201710804373A CN107730439B CN 107730439 B CN107730439 B CN 107730439B CN 201710804373 A CN201710804373 A CN 201710804373A CN 107730439 B CN107730439 B CN 107730439B
Authority
CN
China
Prior art keywords
human body
image
ordinate
spatial distribution
distribution histogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710804373.8A
Other languages
English (en)
Other versions
CN107730439A (zh
Inventor
李志权
陈寒江
祁春超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Huaxun Ark Photoelectric Technology Co ltd
Shenzhen Victooth Terahertz Technololy Co Ltd
Original Assignee
China Communication Technology Co Ltd
Shenzhen CCT THZ Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Communication Technology Co Ltd, Shenzhen CCT THZ Technology Co Ltd filed Critical China Communication Technology Co Ltd
Priority to CN201710804373.8A priority Critical patent/CN107730439B/zh
Publication of CN107730439A publication Critical patent/CN107730439A/zh
Priority to PCT/CN2018/078038 priority patent/WO2019047492A1/zh
Application granted granted Critical
Publication of CN107730439B publication Critical patent/CN107730439B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/04Context-preserving transformations, e.g. by using an importance map
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及图像处理领域,提供一种人体图像映射方法、系统及终端设备,本发明通过获取人体的毫米波灰度图像,提取毫米波灰度图像中的人体轮廓图像,并根据人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图,获取人体轮廓图像中的人体的肢体位置,获取人体卡通图像中的人体的肢体位置,并构建人体轮廓图像和人体卡通图像中各肢体的位置映射关系,可以实现由人体轮廓图像到人体卡通图像的映射,保护用户隐私。

Description

一种人体图像映射方法、系统及终端设备
技术领域
本发明实施例属于图像处理技术领域,尤其涉及一种人体图像映射方法、系统及终端设备。
背景技术
随着对暴恐分子的打击力度加大以及对人们日常出现的安全考虑,安检已成为人们在公共交通出行中必须进行的检查项目。目前基于毫米波的安检设备,由于对人体的辐射伤害较小,被广泛应用于案件领域,实现对人体的安全检查。
然而,现有的毫米波成像安检设备通常都是直接获取人体的全身图像,由于人体的全身图像中包括人体的隐私部位图像,可能会导致用户的隐私被泄露,造成一定的不良影响。
发明内容
本发明实施例提供一种人体图像映射方法、系统及终端设备,旨在解决目前的现有的毫米波安检设备通常都是直接获取人体的全身图像,由于人体的全身图像中包括人体的隐私部位图像,,可能会导致用户的隐私被泄露,造成一定的不良影响的问题。
本发明实施例第一方面提供一种人体图像映射方法,所述方法包括:
获取人体的毫米波灰度图像;
提取所述毫米波灰度图像中的人体轮廓图像;
构建所述人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图;
根据所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取所述人体轮廓图像中的人体的肢体位置;
获取人体卡通图像中的人体的肢体位置;
根据所述人体轮廓图像中的人体的肢体位置和所述人体卡通图像中的人体的肢体位置,构建所述人体轮廓图像和所述人体卡通图像中各肢体的位置映射关系。
本发明第二方面提供一种人体图像映射系统,所述系统包括:
人体灰度图像获取单元,用于获取人体的毫米波灰度图像;
人体轮廓图像提取单元,用于提取所述毫米波灰度图像中的人体轮廓图像;
直方图构建单元,用于构建所述人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图;
第一肢体位置获取单元,用于根据所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取所述人体轮廓图像中的人体的肢体位置;
第二肢体位置获取单元,用于获取人体卡通图像中的人体的肢体位置;
映射单元,用于根据所述人体轮廓图像中的人体的肢体位置和所述人体卡通图像中的人体的肢体位置,构建所述人体轮廓图像和所述人体卡通图像中各肢体的位置映射关系。
本发明实施例的第三方面提供一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述方法的步骤。
本发明实施例的第四方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述方法的步骤。
本发明实施例通过获取人体的毫米波灰度图像,提取毫米波灰度图像中的人体轮廓图像,并根据人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图,获取人体轮廓图像中的人体的肢体位置,获取人体卡通图像中的人体的肢体位置,并构建人体轮廓图像和人体卡通图像中各肢体的位置映射关系,可以实现由人体轮廓图像到人体卡通图像的映射,保护用户隐私。
附图说明
图1是本发明实施例一提供的人体图像映射方法的基本流程框图;
图2是本发明实施例一提供的毫米波灰度图像;
图3是本发明实施例一提供的二值化图像;
图4是本发明实施例一提供的人体轮廓图像;
图5是本发明实施例一提供的垂直空间分布直方图;
图6是本发明实施例一提供的水平空间分布直方图;
图7是本发明实施例一提供的人体轮廓图像和人体卡通图像的映射关系示意图;
图8是本发明实施例一提供的异物检测结果示意图;
图9是本发明实施例二提供的人体图像映射方法的基本流程框图;
图10是本发明实施例四提供的人体图像映射系统的结构框图;
图11是本发明实施例五提供的第一肢体位置获取单元的结构示意图;
图12是本发明实施例七提供的终端设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含一系列步骤或单元的过程、方法或系统、产品或设备没有限定于已列出的步骤、单元或单元,而是可选地还包括没有列出的步骤、单元或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤、单元或单元。
实施例一:
如图1所示,本实施例提供一种人体图像映射方法,其包括:
步骤S110:获取人体的毫米波灰度图像。
在具体应用中,可以使人体双手上扬举过头顶或双手平举至与肩部同高的位置站立,也可以使人体双手自然下垂站立,或者采用其他符合安检标准的站姿均可,本发明实施例不对人体的站姿作特别限定,然后利用毫米波数据采集设备(例如,毫米波收发机)获取人体正面或背面的毫米波数据,并利用毫米波成像系统(例如,毫米波成像仪)将人体的毫米波数据处理为人体正面或背面的毫米波灰度图像。
如图2所示为成年男性双手上扬高举过头顶拍摄得到的人体的毫米波灰度图像。
步骤S120:提取所述毫米波灰度图像中的人体轮廓图像。
在具体应用中,所述人体轮廓图像,是指与人体的肢体轮廓形状对应的图像。
在一个实施例中,步骤S120具体包括:
步骤S121:对毫米波灰度图像I(x,y)进行灰度分割,获取毫米波灰度图像I(x,y)的二值化图像B(x,y)。图3示例性的示出二值化图像B(x,y)的示意图。
在具体应用中,步骤S121中对毫米波图像灰度I(x,y)进行灰度分割,获得对应二值化图像B(x,y)可以根据下式实现:
Figure BDA0001402343760000031
其中,x为图像列数目,y为图像行数目,X为图像最大列数目,Y为图像最大行数目,T为阈值,B(x,y)中数值为255的代表人体区域。
步骤S122:对二值化图像B(x,y)在水平方向上和垂直方向上均进行形态学操作,生成人体轮廓图像B1(x,y),该人体轮廓图像B1(x,y)如图4所示。
步骤S122中的水平方向和垂直方向分别是指,与人体身高方向垂直和平行的方向。
在具体应用中,步骤S122具体包括:
对B(x,y)图像在水平方向上和垂直方向上进行形态学膨胀操作和腐蚀操作,所述膨胀操作的核函数大小为1×3,所述腐蚀操作的核函数大小为3×1大小,所述膨胀操作和所述腐蚀操作的表达式分别为:
B1(x,y)=max(x′,y′):element(x′,y′)≠0B(x+x′,y+y′)(膨胀操作);
B1(x,y)=min(x′,y′):element(x′,y′)≠0B(x+x′,y+y′)(腐蚀操作);
其中,x′和y′表示核函数所对应的平移单位数值。
在具体应用中,在进行上述形态学操作时,可以对二值化图像B(x,y)先进行膨胀操作后进行腐蚀操作,以获得人体轮廓图像B1(x,y);也可以对二值化图像B(x,y)先进行腐蚀操作后进行膨胀操作,获得人体轮廓图像B1(x,y)。为了得到边缘平滑的人体轮廓图像,在进行形态学操作时,本发明优选为对二值化图像B(x,y)先进行膨胀操作后进行腐蚀操作,获得边缘平滑的人体轮廓图像B1(x,y)。
步骤S130:构建所述人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图。
本实施例中的空间分布直方图,是指按空间位置统计人体轮廓图像的灰度值信息所得到的直方图。垂直空间分布直方图具体是指:以从左到右(从左到右即为,当人体站立水平面上,从人体左侧到右侧且平行于水平面的方向)的空间位置为横坐标,人体轮廓图像的灰度值在单位空间位置长度内出现的频率为纵坐标的直方图。同理,水平空间分布直方图具体是指:以从上到下(从上到小即为,当人体站立在水平面上,从人体头顶到脚底且垂直于水平面的方向)的空间位置为纵坐标,人体轮廓图像的灰度值在单位空间位置长度内出现的频率为横坐标的直方图。
在具体应用中,所述垂直空间分布直方图H如图5所示,步骤S130中,构建人体轮廓图像B1(x,y)在垂直方向上的垂直空间分布直方图H,具体可以通过如下公式实现:
Figure BDA0001402343760000041
对垂直空间分布直方图H进行平滑处理,平滑尺度设定为3的公式如下:
Figure BDA0001402343760000042
在具体应用中,所述水平空间分布直方图V如图6所示,步骤S130中,构建人体轮廓图像B1(x,y)在水平方向上的水平空间分布直方图V,具体可以通过如下公式实现:
Figure BDA0001402343760000043
对垂直空间分布直方图V进行平滑处理,平滑尺度设定为3的公式如下:
Figure BDA0001402343760000044
步骤S140:根据所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取所述人体轮廓图像中的人体的肢体位置。
在具体应用中,所述人体比例模型根据人体的肢体结构、肢体之间的大小比例和肢体形状等特点构造。
在具体应用中,所述肢体位置具体包括人体的头部、肩部、胸部、腹部、裆部、四肢(双手、双脚)和膝关节位置,在特殊情况下,对于肢体残疾人士,肢体位置对应缺失某一部分数据。
步骤S150:获取人体卡通图像中的人体的肢体位置。
在具体应用中,人体卡通图像可以是事先通过计算机模拟出来的仿人形图像,该图像中的各肢体的位置坐标均是可以事先设定的,也就是说人体卡通图像中的人体的肢体位置均是可以由工作人员事先设定的已知数据,在需要使用该已知数据时,只需要直接调用事先设定并存储的人体卡通图像中的人体的肢体位置的数据即可。在其他应用中,人体卡通图像中的人体的肢体位置也可以通过与获取人体轮廓图像中的人体的肢体位置相同的方式获得,具体的,可以通过下列步骤来实现:
提取人体卡通图像中的人体轮廓图像;
构建所述人体卡通图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图;
根据预设人体比例模型以及所述人体卡通图像的垂直空间分布直方图和水平空间分布直方图,获取所述人体卡通图像中的人体的肢体位置。
步骤S160:根据所述人体轮廓图像中的人体的肢体位置和所述人体卡通图像中的人体的肢体位置,构建所述人体轮廓图像和所述人体卡通图像中各肢体的位置映射关系。
在本实施例中,各肢体的位置映射关系即是指各肢体的位置坐标的映射关系。例如,假设人体轮廓图像中的头部位置坐标为(A,B),人体卡通图像中的头部位置坐标为(a,b),则头部的位置映射关系即为坐标(A,B)到(a,b)的映射。应当理解的是,上述举例中的头部位置坐标仅仅只是示例性的,由于在实际应用中,每个肢体在图像中都是以二维平面图像的形式显示的,因此每个肢体对应的位置坐标可以不止一个,在某些情况下可以将肢体图像的几何中心的位置坐标作为该肢体的位置坐标,也可以在肢体图上选取二个或以上的坐标点,将选取的坐标点的位置坐标作为该肢体的位置坐标。
在一个实施例中,步骤S160之前包括:
将所述人体轮廓图像划分为预设数量的第一图像区域;
将所述人体卡通图像划分为预设数量的第二图像区域;
建立所述第一图像区域和所述第二图像区域之间的位置映射关系。
在具体应用中,在建立两个图像中各肢体的精确位置坐标的映射关系之前,可以通过相同的图像区域划分方式,将两个图像划分为数量相等的图像区域,通过建立两个图像中的图像区域之间的映射关系,可以粗略的实现两个图像中肢体位置的对应。在一个实施例中,若要进一步的实现肢体位置的精确对应,则可以在图像区域的映射关系的基础上,通过步骤S160进一步的将各肢体的位置坐标对应起来。在其他实施例中,还可以通过进一步对两个图像进行精细划分,来实现更为精确的位置对应,具体的可以通过增加第一图像区域和第二图像区域的数量来实现。
如图7所示,示例性的示出了将人体轮廓图像和人体卡通图像均划分为9个图像区域时的示意图,图中标号相同的图像区域具有映射关系。图7中还示例性的示出了两个位置坐标相对应的坐标点,分别表示为点A和点a,图中示出了两个坐标点与其各自所在图像区域5的边界之间的距离,以及图像区域5在两个图像中的边长分别为X0和Y0、X1和Y1,假设A的坐标为(x0,y0),a的坐标为(x1,y1),则由于X0和Y0、X1和Y1以及A的坐标为(x0,y0)均是已知的,可以求得x1=X1*x0/X0,y1=Y1*x0/Y0,从而得到a点相对于A点的坐标,即可得到两个坐标点之间的映射关系;同理,可以求得人体轮廓图像和人体卡通图像中任意两点之间的映射关系。
在一个实施例,所述人体图像映射方法还包括:
步骤S170:根据预设异物特征识别模型,识别所述人体轮廓图像中的异物。
在具体应用中,所述异物可以是金属类的枪支、刀具、金块等金属类异物,也可以是化学药剂、象牙、玉石等非金属类异物。
在一实施例中,步骤S170包括:
根据所述人体轮廓图像中灰度值大于预设灰度阈值且轮廓分明的区域,确定金属类异物的位置;
根据所述人体轮廓图像中纹理复杂、轮廓分明的几何图形区域,确定非金属类异物的位置;
根据所述毫米波灰度图像中,靠近所述人体轮廓图像边缘的轮廓分明的区域,确定所述人体轮廓图像边缘的异物的位置。
通过上述异物识别方法可大大提高异物检测的准确性且可识别金属类异物和非金属类异物。
步骤S180:根据所述人体轮廓图像中的人体的肢体位置,标识所述异物在所述人体轮廓图像上的位置。
在具体应用中,标识所述异物在所述人体轮廓图像上的位置,具体是指在各肢体所对应的人体轮廓图像位置上,标识出异物,例如当异物在人体腹部,则在人体轮廓图像的腹部所在位置标识出该异物。
步骤S190:根据所述位置映射关系,标识所述异物在所述人体卡通图像上的位置并生成异物检测结果。
在具体应用中,步骤S190和步骤S180的标识异物的方法相同,所不同的仅仅只是将人体轮廓图像替换为人体卡通图像。
如图8所示,即为检测到异物在人体腹部和左腿的大腿正前方时,直接在人体轮廓图像中的腹部位置和大腿正前方的位置处用明显的矩形框标识出异物的位置。
在具体应用中,所述异物检测结果可以以文字、图像、语音、表格等形式呈现,例如,当人体胸部有异物,可用文字呈现“胸部”或更具体的“胸部有金属类异物”。
本实施例通过获取人体的毫米波灰度图像,提取毫米波灰度图像中的人体轮廓图像,并根据人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图,获取人体轮廓图像中的人体的肢体位置,获取人体卡通图像中的人体的肢体位置,并构建人体轮廓图像和人体卡通图像中各肢体的位置映射关系,可以实现由人体轮廓图像到人体卡通图像的映射,保护用户隐私。
实施例二:
如图9所示,本实施例是对实施例一中步骤S140的进一步细化,在本实施例中,步骤S140包括:
步骤S141:对所述垂直空间分布直方图进行局部最大值检测,获取人体的垂直中线横坐标。
在一个实施例中,步骤S141具体包括:
步骤S1411:提取垂直分布直方图H的上半部分,作为子垂直分布直方图H1
在具体应用中,子垂直分布直方图H1为垂直分布直方图H的上半部分,即按照50%*H的方式提取,本实施例还可以按照其他比例提取垂直分布直方图H的上半部分,本实施例中并不对该提取比例作限定。
步骤S1412:获取子垂直分布直方图H1的最大值。该最大值的获取公式如下:
xmid=maxiHi,min(x)≤i≤max(x);
其中,xmid所在列即为所述垂直中线横坐标所在的位置,如图4所示中所示的穿过人体头部、胸部、腹部、裆部的垂直于多条水平线的那条线即为偶数垂直中线。
在具体应用中,根据所述垂直分布直方图获得所述垂直中线横坐标也可以采用其他方法实现,在此不予示例。
步骤S142:对所述水平空间分布直方图进行局部最小值检测,获取人体的手顶纵坐标、头顶纵坐标和脚底纵坐标。
在一个实施例中,步骤S142具体包括:
步骤S1421:对所述水平空间分布直方图的第一区域进行局部最小值检测,根据检测到的局部最小值所在行,确定人体的手顶纵坐标。
在具体应用中,步骤S1421具体为:
对所述水平空间分布直方图的第一区域进行局部最小值检测,检测到的局部最小值即为人体的手顶纵坐标yhand;其中,所述第一区域为闭区间[垂直中线横坐标xmid-第一设定值,垂直中线横坐标xmid+第二设定值]。
在具体应用中,第一设定值和第二设定值可以相同、也可以不相同且可根据用户的实际需要设定。例如,将所述第一区域的大小定义为101像素,第一设定值和第二设定值相同,则第一局部区域为[xmid-50,xmid+50]。
步骤S1422:获取所述水平空间分布直方图的第二区域的每一行中像素值为第一预设像素阈值的像素点个数,根据所述像素点个数小于第一预设阈值的行,确定人体的头顶纵坐标。
在具体应用中,步骤S1422具体为:
在所述水平空间分布直方图的第二区域内,获取所述第二区域内每一行中像素值为第一预设像素阈值的像素点个数,将像素点个数小于第一预设阈值的那一行的所在的坐标确定为人体的头顶纵坐标yhead,其中,所述第二区域为闭区间[垂直中线横坐标xmid-第三设定值,垂直中线横坐标xmid+第四设定值]。
在具体应用中,第三设定值和第四设定值可以相同、也可以不相同且可根据用户的实际需要设定。例如,将所述第二区域的大小定义为31像素,第三设定值和第四设定值相同,则第二局部区域为[xmid-15,xmid+15]。
步骤S1423:获取所述水平空间分布直方图的第三区域的每一行中像素值为第二预设像素阈值的像素点个数,根据所述像素点个数小于第二预设阈值的行,确定人体的脚底纵坐标。
在具体应用中,步骤S1423具体为:
在所述水平空间分布直方图的第三区域内,获取所述第三区域内每一行中像素值为第二预设像素阈值的像素点个数,将像素点个数小于第二预设阈值的那一行的所在的坐标确定为人体的脚底纵坐标yfoot,其中,所述第三区域为闭区间[所述水平空间分布直方图的底部,与所述水平空间分布直方图的底部之间的距离为第五设定值的位置]。
在具体应用中,所述第五设定值可以根据实际需要设置。例如,将所述第三区域的大小定义为60像素,则所述水平空间分布直方图底部到距离该底部60像素的位置之间的区域。在具体应中,所述第二预设像素阈值可以设置为255,在获得每一行中像素值小于255的像素点个数时,可以在所述第三区域内从上到下检测每一行图像的中像素值为255的像素点,并统计每一行中像素值为255像素点个数,所述像素点个数小于预设阈值的行,即为所述脚底纵坐标yfoot所在的位置。
步骤S143:根据所述头顶纵坐标和所述脚底纵坐标,获取人体的身高。
在一个实施例中,步骤S143中获取人体的身高height的公式为:
height=|yfoot-yhead|。
步骤S144:根据所述头顶纵坐标或所述脚底纵坐标以及所述垂直中线横坐标、所述身高、所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取与人体的各肢体对应的肢体轮廓图像。
在一个实施例中,步骤S144包括:
步骤S1441:根据所述头顶纵坐标或所述脚底纵坐标中的任一个以及所述垂直中线横坐标、所述身高、所述水平空间分布直方图和预设人体比例模型,获得人体的肩部纵坐标和相对于所述垂直中线横坐标的人体的头部的宽度;
步骤S1442:根据所述身高、所述人体部位比例概率模型和所述垂直空间分布直方图,获取所述头部的精确宽度,并获取头部轮廓图像;
步骤S1443:根据所述人体轮廓图像中肩部以上的图像信息,去除所述头部轮廓图像,获得人体的左右双臂轮廓图像。
在具体应用中,可对所述左右双臂轮廓图像进行边缘检测操作,以获得人体的左右双臂的边缘轮廓,根据人体的双臂的形状特点和轮廓的曲率变化规律,可以获得左右双臂的手肘部位的坐标,对所述左右手肘部位的拐点位置进行切割,可以分别获得左右双臂的大臂轮廓图像和小臂轮廓图像。
在具体应用中,可根据所述头顶纵坐标或所述脚底纵坐标以及所述身高、所述水平空间分布直方图和预设人体比例模型,获得人体的肩部坐标。
步骤S1441具体包括:
步骤S1441-1:根据所述头顶纵坐标yhead或所述脚底纵坐标yfoot以及所述身高height、所述预设人体比例模型中的人体的身高和胸部的比值HEIGHT_CHEST_RATIO,获得人体的肩部第一纵坐标yshoulder。当采用所述头顶纵坐标yhead计算时,所述肩部第一纵坐标yshoulder的表达式如下:
yshoulder=height*HEIGHT_CHEST_RATIO+yhead
其中,HEIGHT_CHEST_RATIO是基于N幅人体毫米波灰度图像中人体的身高和人体的肩部水平位置的测量值得到的平均值,本实施例中,优选HEIGHT_CHEST_RATIO为0.2。所述肩部第一纵坐标yshoulder即为所求的所述肩部纵坐标的接近值。
在具体应用中,还可以采用所述脚底纵坐标yfoot计算,以确定人体的肩部第一纵坐标,本实施例不对此进行限定。
步骤S1441-2:根据所述水平空间分布直方图,获得所述肩部第一纵坐标附近的峰值区域,将峰值区域对应的纵坐标确定为肩部第二纵坐标,其中,所述峰值区域与所述胸部第一纵坐标的距离小于第一预设距离阈值。
步骤S1441-3:根据人体肩部的成像特点,在肩部纵坐标位置附近的水平空间分布直方图会有一个峰值区域,其所对应的纵坐标为y′shoulder,即人体肩部第二纵坐标。
步骤S1441-4:根据所述肩部第一纵坐标和所述肩部第二纵坐标获得所述肩部纵坐标
Figure BDA0001402343760000091
的表达式如下:
Figure BDA0001402343760000092
步骤S1443包括:
S1443-1:根据人体左右手臂的灰度图像呈现不连续斑块状且人体组织成像面积较大的特点,获取成像面积较大的斑块区域的作为双臂轮廓图像所在区域;
S1443-2:计算所述斑块区域中第一成像面积和第二成像面积相对于所述斑块区域面积的比值,若所述比值在预设区间内,则所述第一成像面积和所述第二成像面积作为所述双臂轮廓图像,若所述比值不在预设区间内,则表示所述第一成像面积包含所述双臂轮廓图像,根据所述第一成像面积拟合的外接多边形的曲率变化进行切分,获得所述大臂轮廓图像和所述小臂轮廓图像。
在具体应用中,所述预设区间优选为[1,10]。
在一个实施例中,步骤S144还包括:
S1444:获取人体的胸部纵坐标。
步骤S1444包括:
步骤S1444-1:根据所述头顶纵坐标yhead或人体脚底纵坐标yfoot以及所述身高height、所述预设人体比例模型中的身高和胸部的比值HEIGHT_CHEST_RATIO,获得人体胸部第一纵坐标ychest。当采用所述头顶纵坐标yhead计算时,所述胸部第一纵坐标的表达式如下:
ychest=height*HEIGHT_CHEST_RATIO+yhead
其中,HEIGHT_CHEST_RATIO是基于N幅人体的毫米波灰度图像中人体的身高和人体的胸部水平位置的测量值得到的平均值,本实施例中优选为0.8。胸部第一纵坐标ychest即为所述胸部纵坐标的接近值。
具体应用中,还可以采用所述脚底纵坐标yfoot计算,以确定所述胸部第一纵坐标,本实施例不对此进行限定。
步骤S1444-2:根据所述水平空间分布直方图,获得所述胸部第一纵坐标附近的峰值区域,将峰值区域对应的纵坐标确定为胸部第二纵坐标,其中,所述峰值区域与所述胸部第一纵坐标的距离小于第二预设距离阈值;
步骤S1444-3:根据人体胸部轮廓图像的成像特点,在所述胸部第一纵坐标所在位置附近的水平空间分布直方图会有一个峰值区域,其所对应的纵坐标为ychest,即为所述胸部第二纵坐标。
步骤S1444-4:根据所述胸部第一纵坐标和所述胸部第二纵坐标获得所述胸部纵坐标
Figure BDA0001402343760000101
表达式如下:
Figure BDA0001402343760000102
在一个实施例中,步骤S144还包括:
步骤S1445:获取人体的腹部纵坐标。
步骤S1445具体包括:
根据所述头顶纵坐标yhead或人体脚底纵坐标yfoot以及所述身高height、所述预设人体比例模型中的身高和腹部的比值HEIGHT_ABDOMEN_RATIO,获得人体胸部第一纵坐标yabdomen。当采用所述头顶纵坐标yhead计算时,所述腹部第一纵坐标的表达式如下:
yabdomen=height*HEIGHT_ABDOMEN_RATIO+yhead
其中,HEIGHT_ABDOMEN_RATIO是基于N幅人体毫米波灰度图像中人体的身高和人体的腹部水平位置的测量值得到的平均值,本示例中优选为0.44。人体腹部第一纵坐标yabdomen即为得到的所述腹部纵坐标的接近值。
体应用中,还可以采用所述脚底纵坐标yfoot计算,以确定所述腹部第一纵坐标,本实施例不对此进行限定。
在一个实施例中,步骤S144还包括:
步骤S1446:获取人体的裆部纵坐标。
步骤S1446具体包括:
步骤S1446-1:根据所述头顶纵坐标yhead或人体脚底纵坐标yfoot以及所述身高height、所述预设人体比例模型中的身高和裆部的比值HEIGHT_CROTCH_RATIO,获得人体裆部第一纵坐标ycrotch。当采用所述头顶纵坐标yhead计算时,所述裆部第一纵坐标ycrotch的表达式如下:
ycrotch=height*HEIGHT_CROTCH_RATIO+yhead
其中,HEIGHT_CROTCH_RATIO是基于N幅人体毫米波灰度图像中人体的身高和人体的裆部水平位置的测量值得到的平均值,本实施例中优选为0.51。所述裆部第一纵坐标ycrotch即为所述裆部纵坐标的接近值。
具体应用中,还可以采用所述脚底纵坐标yfoot计算,以确定所述裆部第一纵坐标,本实施例不对此进行限定。
步骤S1446-2:根据所述水平空间分布直方图,获得所述裆部第一纵坐标附近的谷值区域,将谷值区域对应的纵坐标确定为裆部第二纵坐标,其中,所述谷值区域与所述裆部第一纵坐标的距离小于第三预设距离阈值;
步骤S1446-3:根据人体裆部轮廓图像的成像特点,在所述裆部第一纵坐标所在位置附近的水平空间分布直方图会有一个峰值区域,其所对应的纵坐标为ychest,即为所述裆部第二纵坐标。
步骤S1446-4:根据所述裆部第一纵坐标和所述裆部第二纵坐标获得所述裆部纵坐标
Figure BDA0001402343760000111
的表达式如下:
Figure BDA0001402343760000112
在一实施例中,步骤S144还包括:
步骤S1447:获取人体的膝盖纵坐标。
步骤S1447具体包括:
步骤S1447-1:根据所述头顶纵坐标yhead或人体脚底纵坐标yfoot以及所述身高height、所述预设人体比例模型中的身高和膝盖的比值HEIGHT_KNEE_RATIO,获得人体膝盖第一纵坐标yknee。当采用所述头顶纵坐标yhead计算时,所述裆部第一纵坐标yknee的表达式如下:
yknee=height*HEIGHT_KNEE_RATIO+yhead
其中,HEIGHT_KNEE_RATIO是基于N幅人体毫米波灰度图像中人体的身高和人体的膝盖水平位置的测量值得到的平均值,本实施中优选为0.78。所述膝盖第一纵坐标即为所述膝盖纵坐标的接近值。
具体应用中,还可以采用所述脚底纵坐标yfoot计算,以确定所述膝盖第一纵坐标,本实施例不对此进行限定。
步骤S1447-2:根据所述水平空间分布直方图,获得所述膝盖第一纵坐标附近的峰值区域,将峰值区域对应的纵坐标确定为膝盖第二纵坐标,其中,所述峰值区域与所述膝盖第一纵坐标的距离小于第四预设距离阈值;
步骤S1447-3:根据人体膝盖轮廓图像的成像特点,在所述膝盖第一纵坐标所在位置附近的水平空间分布直方图会有一个峰值区域,其所对应的纵坐标为y′knee,即为所述裆部第二纵坐标。
步骤S1447-4:根据所述裆部第一纵坐标和所述裆部第二纵坐标获得所述裆部纵坐标
Figure BDA0001402343760000121
的表达式如下:
Figure BDA0001402343760000122
步骤S1447-5:根据所述膝盖纵坐标,对裆部以下的人体轮廓图像进行分割,获得人体的双腿轮廓图像。
实施例三:
本实施例在实施例二的基础上是对实施例一中步骤S170和S180的进一步细化,在本实施例中,步骤S170包括:
步骤S171:对所述肢体轮廓图像进行灰度梯度特征提取、边缘特征提取、平均灰度方差计算和边缘平滑度计算。
步骤S172:根据所述灰度梯度特征、所述边缘特征、所述平均灰度方差和所述边缘平滑度,判断所述肢体轮廓图像中是否有异物。
在一个实施例中,步骤S172包括:
判断所述肢体轮廓图像的当前LBP特征值是否在预设LBP特征阈值区间内,所述LBP特征阈值区间为[LBP特征阈值最小值
Figure BDA0001402343760000123
LBP特征阈值最大值
Figure BDA0001402343760000124
];
若是,则判定所述肢体轮廓图像中无异物,否则,判定所述肢体轮廓图像中有异物。
根据上述方法,依次判断各肢体所对应的肢体轮廓图像中是否有异物。
在另一实施例中,步骤S172包括:
判断所述肢体轮廓图像的当前轮廓曲率特征值是否在预设轮廓曲率特征阈值区间内,所述轮廓曲率特征阈值区间为[轮廓曲率特征阈值最小值
Figure BDA0001402343760000125
轮廓曲率特征阈值最大值
Figure BDA0001402343760000126
];
若是,则判定所述肢体轮廓图像中无异物,否则,判定所述肢体轮廓图像中有异物。
在本实施例中,步骤S180包括:
步骤S181:在所述肢体轮廓图像中标识出所述异物的位置;
步骤S182:根据所述异物在所述肢体轮廓图像中的位置,生成异物检测结果。
实施例四:
如图10所示,本实施例提供的人体图像映射系统,其包括:
人体灰度图像获取单元110,用于获取人体的毫米波灰度图像;
人体轮廓图像提取单元120,用于提取所述毫米波灰度图像中的人体轮廓图像;
直方图构建单元130,用于构建所述人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图;
第一肢体位置获取单元140,用于根据所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取所述人体轮廓图像中的人体的肢体位置;
第二肢体位置获取单元150,用于获取人体卡通图像中的人体的肢体位置;
映射单元160,用于根据所述人体轮廓图像中的人体的肢体位置和所述人体卡通图像中的人体的肢体位置,构建所述人体轮廓图像和所述人体卡通图像中各肢体的位置映射关系。
在具体应用中,人体灰度图像获取单元110具体可以包括毫米波数据采集设备(例如,毫米波收发机)和毫米波成像系统(例如,毫米波成像仪)。
在一个实施例中,人体轮廓图像提取单元120具体用于:
对毫米波灰度图像I(x,y)进行灰度分割,获取毫米波灰度图像I(x,y)的二值化图像B(x,y);
对二值化图像B(x,y)在水平方向上和垂直方向上均进行形态学操作,生成人体轮廓图像B1(x,y)。
在具体应用中,人体轮廓图像提取单元120具体还用于:
对B(x,y)图像在水平方向上和垂直方向上进行形态学膨胀操作和腐蚀操作。
在一个实施例中所述系统还包括:
异物识别单元,用于根据预设异物特征识别模型,识别所述人体轮廓图像中的异物;
第一异物标识单元,用于根据所述人体轮廓图像中的人体的肢体位置,标识所述异物在所述人体轮廓图像上的位置;
第二异物标识单元,用于根据所述位置映射关系,标识所述异物在所述人体卡通图像上的位置并生成异物检测结果。
在一实施例中,异物识别单元包括:
金属类异物识别单元,用于根据所述人体轮廓图像中灰度值大于预设灰度阈值且轮廓分明的区域,确定金属类异物的位置;
非金属类异物识别单元,用于根据所述人体轮廓图像中纹理复杂、轮廓分明的几何图形区域,确定非金属类异物的位置;
边缘异物识别单元,用于根据所述毫米波灰度图像中,靠近所述人体轮廓图像边缘的轮廓分明的区域,确定所述人体轮廓图像边缘的异物的位置。
本发明实施例通过获取人体的毫米波灰度图像,提取毫米波灰度图像中的人体轮廓图像,并根据人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图,获取人体的肢体位置,根据预设异物特征识别模型,识别所述人体轮廓图像中的异物,标识出异物在人体轮廓图像上的位置并生成异物检测结果,可大大提高异物检测的准确性且可识别金属类异物和非金属类异物。
实施例五:
如图11所示,本实施例是对实施例四中第一肢体位置获取单元140的进一步细化,该第一肢体位置获取单元140包括:
垂直中线坐标获取单元141,用于对所述垂直空间分布直方图进行局部最大值检测,获取人体的垂直中线横坐标;
手顶、头顶、脚底坐标获取单元142,用于对所述水平空间分布直方图进行局部最小值检测,获取人体的手顶纵坐标、头顶纵坐标和脚底纵坐标;
身高获取单元143,用于根据所述头顶纵坐标和所述脚底纵坐标,获取人体的身高;
肢体轮廓图像获取单元144,用于根据所述头顶纵坐标或所述脚底纵坐标中的任一个以及所述垂直中线横坐标、所述身高、所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取与人体的各肢体对应的肢体轮廓图像。
在一个实施例中,垂直中线坐标获取单元141具体用于:
提取所述垂直分布直方图的上半部分,作为子垂直分布直方图。
获取所述子垂直分布直方图的最大值。
在一个实施例中,手顶、头顶、脚底坐标获取单元142具体包括:
手顶坐标获取单元,用于对所述水平空间分布直方图的第一区域进行局部最小值检测,根据检测到的局部最小值所在的行,确定人体的手顶纵坐标;
头顶坐标获取单元,用于获取所述水平空间分布直方图的第二区域的每一行中像素值为第一预设像素阈值的像素点个数,根据所述像素点个数小于第一预设阈值的行,确定人体的头顶纵坐标;
脚底坐标获取单元,用于获取所述水平空间分布直方图的第三区域的每一行中像素值为第二预设像素阈值的像素点个数,根据所述像素点个数小于第二预设阈值的行,确定人体的脚底纵坐标。
在具体应用中,手顶坐标获取单元,具体用于:
对所述水平空间分布直方图的第一区域进行局部最小值检测,检测到的局部最小值即为人体的手顶纵坐标yhand;其中,所述第一区域为闭区间[垂直中线横坐标xmid-第一设定值,垂直中线横坐标xmid+第二设定值]。
在具体应用中,头顶坐标获取单元,具体用于:
在所述水平空间分布直方图的第二区域内,获取所述第二区域内每一行中像素值为第一预设像素阈值的像素点个数,将像素点个数小于第一预设阈值的那一行的所在的坐标确定为人体的头顶纵坐标yhead,其中,所述第二区域为闭区间[垂直中线横坐标xmid-第三设定值,垂直中线横坐标xmid+第四设定值]。
在具体应用中,脚底坐标获取单元,具体用于:
在所述水平空间分布直方图的第三区域内,获取所述第三区域内每一行中像素值为第二预设像素阈值的像素点个数,将像素点个数小于第二预设阈值的那一行的所在的坐标确定为人体的脚底纵坐标yfoot,其中,所述第三区域为闭区间[所述水平空间分布直方图的底部,与所述水平空间分布直方图的底部之间的距离为第五设定值的位置]。
在一个实施例中,肢体轮廓图像获取单元144包括:
肩部坐标和头部宽度获取单元,用于根据所述头顶纵坐标或所述脚底纵坐标中的任一个以及所述垂直中线横坐标、所述身高、所述水平空间分布直方图和预设人体比例模型,获得人体的肩部纵坐标和相对于所述垂直中线横坐标的人体的头部的宽度;
头部轮廓图像获取单元,用于根据所述身高、所述人体部位比例概率模型和所述垂直空间分布直方图,获取所述头部的精确宽度,并获取头部轮廓图像;
左右双臂轮廓图像获取单元,用于根据所述人体轮廓图像中肩部以上的图像信息,去除所述头部轮廓图像,获得人体的左右双臂轮廓图像;
胸部坐标获取单元,用于根据所述头顶纵坐标或人体脚底纵坐标以及所述身高、所述预设人体比例模型中的身高和胸部的比值,获得人体胸部第一纵坐标作为人体的胸部纵坐标的接近值;
胸部坐标获取单元,用于根据所述头顶纵坐标或人体脚底纵坐标以及所述身高、所述预设人体比例模型中的身高和腹部的比值,获得人体胸部第一纵坐标作为人体的腹部纵坐标的接近值;
裆部坐标获取单元,用于根据所述头顶纵坐标或人体脚底纵坐标以及所述身高、所述预设人体比例模型中的身高和裆部的比值,获得人体裆部第一纵坐标作为人体的裆部纵坐标的接近值。
膝盖坐标获取单元,用于根据所述头顶纵坐标或人体脚底纵坐标以及所述身高、所述预设人体比例模型中的身高和膝盖的比值,获得人体膝盖第一纵坐标作为人体的膝盖纵坐标的接近值。
实施例六:
本实施例是在实施例五的基础上对异物标识单元和异物识别单元的进一步细化。
在本实施例中,异物标识单元具体用于:
对所述肢体轮廓图像进行灰度梯度特征提取、边缘特征提取、平均灰度方差计算和边缘平滑度计算。
根据所述灰度梯度特征、所述边缘特征、所述平均灰度方差和所述边缘平滑度,判断所述肢体轮廓图像中是否有异物。
在一个实施例中,判断所述肢体轮廓图像中是否有异物,具体包括:
判断所述肢体轮廓图像的当前LBP特征值是否在预设LBP特征阈值区间内,所述LBP特征阈值区间为[LBP特征阈值最小值,LBP特征阈值最大值];
若是,则判定所述肢体轮廓图像中无异物,否则,判定所述肢体轮廓图像中有异物。
根据上述方法,依次判断各肢体所对应的肢体轮廓图像中是否有异物。
在另一实施例中,判断所述肢体轮廓图像中是否有异物,具体包括:
判断所述肢体轮廓图像的当前轮廓曲率特征值是否在预设轮廓曲率特征阈值区间内,所述轮廓曲率特征阈值区间为[轮廓曲率特征阈值最小值,轮廓曲率特征阈值最大值];
若是,则判定所述肢体轮廓图像中无异物,否则,判定所述肢体轮廓图像中有异物。
在本实施例中,异物识别单元具体用于:
在所述肢体轮廓图像中标识出所述异物的位置;
根据所述异物在所述肢体轮廓图像中的位置,生成异物检测结果。
实施例七:
如图12所示,本发明一实施例提供的一种终端设备200,其包括:处理器210、存储器220以及存储在存储器220中并可在处理器210上运行的计算机程序,例如上述实施例一至三中的软件方法程序。处理器210执行计算机程序时实现上述各个人体图像映射方法实施例中的步骤,例如图1所示的步骤S110至S160。或者,处理器210执行计算机程序时实现上述各装置实施例中各单元的功能,例如图10所示单元110至160的功能。
示例性的,计算机程序可以被分割成一个或多个单元,一个或者多个单元被存储在存储器220中,并由处理器210执行,以完成本发明。一个或多个单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序在终端设备200中的执行过程。例如,计算机程序可以被分割成人体灰度图像获取单元,人体轮廓图像提取单元,直方图构建单元,第一肢体位置获取单元和第二肢体位置获取单元,映射单元,各模块具体功能如下:
人体灰度图像获取单元,用于获取人体的毫米波灰度图像;
人体轮廓图像提取单元,用于提取所述毫米波灰度图像中的人体轮廓图像;
直方图构建单元,用于构建所述人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图;
第一肢体位置获取单元,用于根据所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取所述人体轮廓图像中的人体的肢体位置;
第二肢体位置获取单元,用于获取人体卡通图像中的人体的肢体位置;
映射单元,用于根据所述人体轮廓图像中的人体的肢体位置和所述人体卡通图像中的人体的肢体位置,构建所述人体轮廓图像和所述人体卡通图像中各肢体的位置映射关系。
终端设备200可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。终端设备200可包括,但不仅限于,处理器210、存储器220。本领域技术人员可以理解,图12仅仅是终端设备200的示例,并不构成对终端设备200的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如终端设备200还可以包括输入输出设备、网络接入设备、总线等。
所称处理器210可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器210、数字信号处理器210(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器210可以是微处理器210或者该处理器210也可以是任何常规的处理器210等。
存储器220可以是终端设备200的内部存储单元,例如终端设备200的硬盘或内存。存储器220也可以是终端设备200的外部存储设备,例如终端设备200上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(FlashCard)等。进一步地,存储器220还可以既包括终端设备200的内部存储单元也包括外部存储设备。存储器22061用于存储计算机程序以及终端设备200所需的其他程序和数据。存储器220还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端设备200和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备200实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器210执行时,可实现上述各个方法实施例的步骤。。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器220、只读存储器220(ROM,Read-Only Memory)、随机存取存储器220(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

1.一种人体图像映射方法,其特征在于,所述方法包括:
获取人体的毫米波灰度图像;
提取所述毫米波灰度图像中的人体轮廓图像;
构建所述人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图;
根据所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取所述人体轮廓图像中的人体的肢体位置;
获取人体卡通图像中的人体的肢体位置;所述人体卡通图像为事先模拟出来的仿人形图像,所述图像中的各肢体的位置坐标为事先设定的;
将所述人体轮廓图像划分为预设数量的第一图像区域;将所述人体卡通图像划分为预设数量的第二图像区域;建立所述第一图像区域和所述第二图像区域之间的位置映射关系;
根据所述人体轮廓图像中的人体的肢体位置和所述人体卡通图像中的人体的肢体位置,构建所述人体轮廓图像和所述人体卡通图像中各肢体的位置映射关系,具体为:A和a分别为第一图像区域以及第二图像区域的坐标点,A的坐标为(x0,y0),a的坐标为(x1,y1),x1=X1*x0/X0,y1=Y1*x0/Y0,其中,X0和Y0为A所在第一图像区域的边长、X1和Y1为a所在第二图像区域的边长。
2.如权利要求1所述的人体图像映射方法,其特征在于,根据所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取所述人体轮廓图像中的人体的肢体位置,包括:
对所述垂直空间分布直方图进行局部最大值检测,获取人体的垂直中线横坐标;
对所述水平空间分布直方图进行局部最小值检测,获取人体的手顶纵坐标、头顶纵坐标和脚底纵坐标;
根据所述头顶纵坐标和所述脚底纵坐标,获取人体的身高;
根据所述头顶纵坐标或所述脚底纵坐标中的任一个以及所述垂直中线横坐标、所述身高、所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取与人体的各肢体对应的肢体轮廓图像。
3.如权利要求2所述的人体图像映射方法,其特征在于,对所述水平空间分布直方图进行局部最小值检测,获取人体的手顶纵坐标、头顶纵坐标和脚底纵坐标,包括:
对所述水平空间分布直方图的第一区域进行局部最小值检测,根据检测到的局部最小值所在的行,确定人体的手顶纵坐标;
获取所述水平空间分布直方图的第二区域的每一行中像素值为第一预设像素阈值的像素点个数,根据所述像素点个数小于第一预设阈值的行,确定人体的头顶纵坐标;
获取所述水平空间分布直方图的第三区域的每一行中像素值为第二预设像素阈值的像素点个数,根据所述像素点个数小于第二预设阈值的行,确定人体的脚底纵坐标。
4.如权利要求1所述的人体图像映射方法,其特征在于,所述方法还包括:
根据预设异物特征识别模型,识别所述人体轮廓图像中的异物;
根据所述人体轮廓图像中的人体的肢体位置,标识所述异物在所述人体轮廓图像上的位置;
根据所述位置映射关系,标识所述异物在所述人体卡通图像上的位置并生成异物检测结果。
5.一种人体图像映射系统,其特征在于,所述系统包括:
人体灰度图像获取单元,用于获取人体的毫米波灰度图像;
人体轮廓图像提取单元,用于提取所述毫米波灰度图像中的人体轮廓图像;
直方图构建单元,用于构建所述人体轮廓图像在垂直方向上的垂直空间分布直方图和在水平方向上的水平空间分布直方图;
第一肢体位置获取单元,用于根据所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取所述人体轮廓图像中的人体的肢体位置;
第二肢体位置获取单元,用于获取人体卡通图像中的人体的肢体位置;所述人体卡通图像为事先模拟出来的仿人形图像,所述图像中的各肢体的位置坐标为事先设定的;
映射单元,用于将所述人体轮廓图像划分为预设数量的第一图像区域;将所述人体卡通图像划分为预设数量的第二图像区域;建立所述第一图像区域和所述第二图像区域之间的位置映射关系;根据所述人体轮廓图像中的人体的肢体位置和所述人体卡通图像中的人体的肢体位置,构建所述人体轮廓图像和所述人体卡通图像中各肢体的位置映射关系,具体为:A和a分别为第一图像区域以及第二图像区域的坐标点,A的坐标为(x0,y0),a的坐标为(x1,y1),x1=X1*x0/X0,y1=Y1*x0/Y0,其中,X0和Y0为A所在第一图像区域的边长、X1和Y1为a所在第二图像区域的边长。
6.如权利要求5所述的人体图像映射系统,其特征在于,所述肢体位置获取单元包括:
垂直中线坐标获取单元,用于对所述垂直空间分布直方图进行局部最大值检测,获取人体的垂直中线横坐标;
手顶、头顶、脚底坐标获取单元,用于对所述水平空间分布直方图进行局部最小值检测,获取人体的手顶纵坐标、头顶纵坐标和脚底纵坐标;
身高获取单元,用于根据所述头顶纵坐标和所述脚底纵坐标,获取人体的身高;
肢体轮廓图像获取单元,用于根据所述头顶纵坐标或所述脚底纵坐标中的任一个以及所述垂直中线横坐标、所述身高、所述垂直空间分布直方图、所述水平空间分布直方图和预设人体比例模型,获取与人体的各肢体对应的肢体轮廓图像。
7.如权利要求6所述的人体图像映射系统,其特征在于,所述手顶、头顶、脚底坐标获取单元包括:
手顶坐标获取单元,用于对所述水平空间分布直方图的第一区域进行局部最小值检测,根据检测到的局部最小值所在的行,确定人体的手顶纵坐标;
头顶坐标获取单元,用于获取所述水平空间分布直方图的第二区域的每一行中像素值为第一预设像素阈值的像素点个数,根据所述像素点个数小于第一预设阈值的行,确定人体的头顶纵坐标;
脚底坐标获取单元,用于获取所述水平空间分布直方图的第三区域的每一行中像素值为第二预设像素阈值的像素点个数,根据所述像素点个数小于第二预设阈值的行,确定人体的脚底纵坐标。
8.如权利要求5所述的人体图像映射系统,其特征在于,所述系统还包括:
异物识别单元,用于根据预设异物特征识别模型,识别所述人体轮廓图像中的异物;
第一异物标识单元,用于根据所述人体轮廓图像中的人体的肢体位置,标识所述异物在所述人体轮廓图像上的位置;
第二异物标识单元,用于根据所述位置映射关系,标识所述异物在所述人体卡通图像上的位置并生成异物检测结果。
9.一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至4任一项所述方法的步骤。
10.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至4任一项所述方法的步骤。
CN201710804373.8A 2017-09-08 2017-09-08 一种人体图像映射方法、系统及终端设备 Expired - Fee Related CN107730439B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710804373.8A CN107730439B (zh) 2017-09-08 2017-09-08 一种人体图像映射方法、系统及终端设备
PCT/CN2018/078038 WO2019047492A1 (zh) 2017-09-08 2018-03-05 一种人体图像映射方法、系统及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710804373.8A CN107730439B (zh) 2017-09-08 2017-09-08 一种人体图像映射方法、系统及终端设备

Publications (2)

Publication Number Publication Date
CN107730439A CN107730439A (zh) 2018-02-23
CN107730439B true CN107730439B (zh) 2021-02-05

Family

ID=61205888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710804373.8A Expired - Fee Related CN107730439B (zh) 2017-09-08 2017-09-08 一种人体图像映射方法、系统及终端设备

Country Status (2)

Country Link
CN (1) CN107730439B (zh)
WO (1) WO2019047492A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107730439B (zh) * 2017-09-08 2021-02-05 深圳市无牙太赫兹科技有限公司 一种人体图像映射方法、系统及终端设备
CN109543582A (zh) * 2018-11-15 2019-03-29 杭州芯影科技有限公司 基于毫米波图像的人体异物检测方法
WO2020195272A1 (ja) 2019-03-28 2020-10-01 Necソリューションイノベータ株式会社 部位検出装置、部位検出方法、及びコンピュータ読み取り可能な記録媒体
CN110334571B (zh) * 2019-04-03 2022-12-20 复旦大学 一种基于卷积神经网络的毫米波图像人体隐私保护方法
CN111833420B (zh) * 2020-07-07 2023-06-30 北京奇艺世纪科技有限公司 基于真人的图画自动生成方法、装置、系统及存储介质
CN111950491B (zh) * 2020-08-19 2024-04-02 成都飞英思特科技有限公司 一种人员密度的监控方法、装置及计算机可读存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961912B2 (en) * 2004-10-14 2011-06-14 Stevick Glen R Method and apparatus for dynamic space-time imaging system
US20140300502A9 (en) * 2007-12-18 2014-10-09 Brijot Imaging Systems, Inc. Millimeter Wave Energy Sensing Wand and Method
CN102608673A (zh) * 2012-02-29 2012-07-25 北京无线电计量测试研究所 人体安检系统可疑物品图像显示方法
CN102708560B (zh) * 2012-02-29 2015-11-18 北京无线电计量测试研究所 一种基于毫米波成像的隐私保护方法
CN104345351A (zh) * 2013-07-23 2015-02-11 清华大学 人体安全检查的隐私保护方法和人体安全检查系统
DE102013225283B4 (de) * 2013-12-09 2023-04-27 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Verfahren und Vorrichtung zum Erfassen einer Rundumansicht
CN106127732B (zh) * 2016-06-13 2019-01-01 深圳市太赫兹科技创新研究院 微波图像中人体性别检测方法和装置
CN106372583B (zh) * 2016-08-25 2018-09-14 华讯方舟科技有限公司 一种基于毫米波图像的人体异物检测方法及系统
CN106443815B (zh) * 2016-09-05 2019-01-25 华讯方舟科技有限公司 一种太赫兹安检方法及系统
CN107730439B (zh) * 2017-09-08 2021-02-05 深圳市无牙太赫兹科技有限公司 一种人体图像映射方法、系统及终端设备

Also Published As

Publication number Publication date
WO2019047492A1 (zh) 2019-03-14
CN107730439A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN107730439B (zh) 一种人体图像映射方法、系统及终端设备
CN105956582B (zh) 一种基于三维数据的人脸识别系统
CN106372583A (zh) 一种基于毫米波图像的人体异物检测方法及系统
WO2018035814A1 (zh) 一种基于毫米波图像的人体异物检测方法及系统
Amer et al. Edge detection methods
CN109446895B (zh) 一种基于人体头部特征的行人识别方法
US10884116B2 (en) Human-body foreign-matter detection method and system based on millimetre-wave image
CN110728196A (zh) 一种人脸识别的方法、装置及终端设备
CN106485695A (zh) 基于统计形状模型的医学图像Graph Cut分割方法
Thalji et al. Iris Recognition using robust algorithm for eyelid, eyelash and shadow avoiding
WO2017215393A1 (zh) 微波图像中人体性别检测方法和装置
AU2020100301A4 (en) Method and system for recognizing and tracing river crab based on computer implemented image recognition
CN108108740B (zh) 一种主动毫米波人体图像性别识别方法
Sagar et al. Color channel based segmentation of skin lesion from clinical images for the detection of melanoma
Zhang et al. Remote sensing image segmentation based on an improved 2-D gradient histogram and MMAD model
CN110516661B (zh) 应用于虹膜识别的美瞳检测方法及装置
CN109509194B (zh) 一种复杂背景下正面人体图像分割方法及装置
Yi et al. Illumination normalization of face image based on illuminant direction estimation and improved retinex
Yasmin et al. Robust segmentation algorithm using LOG edge detector for effective border detection of noisy skin lesions
CN104200460B (zh) 基于图像特征和互信息的图像配准方法
CN108288024A (zh) 人脸识别方法及装置
Saha et al. An approach to detect the region of interest of expressive face images
Liu et al. Automated binocular vision measurement of food dimensions and volume for dietary evaluation
CN112348767A (zh) 基于物体边缘检测和特征匹配的木材计数模型
Smacki et al. Lip print pattern extraction using top-hat transform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right
PP01 Preservation of patent right

Effective date of registration: 20210630

Granted publication date: 20210205

PD01 Discharge of preservation of patent

Date of cancellation: 20230421

Granted publication date: 20210205

PD01 Discharge of preservation of patent
TR01 Transfer of patent right

Effective date of registration: 20230712

Address after: 518000 404, building 37, chentian Industrial Zone, chentian community, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen Huaxun ark Photoelectric Technology Co.,Ltd.

Patentee after: SHENZHEN VICTOOTH TERAHERTZ TECHNOLOGY Co.,Ltd.

Address before: 518000 East, 2nd floor, building 37, chentian Industrial Zone, Baotian 1st Road, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN VICTOOTH TERAHERTZ TECHNOLOGY Co.,Ltd.

Patentee before: CHINA COMMUNICATION TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210205

CF01 Termination of patent right due to non-payment of annual fee