CN107726538B - 一种智能楼宇用电调控方法 - Google Patents

一种智能楼宇用电调控方法 Download PDF

Info

Publication number
CN107726538B
CN107726538B CN201610654302.XA CN201610654302A CN107726538B CN 107726538 B CN107726538 B CN 107726538B CN 201610654302 A CN201610654302 A CN 201610654302A CN 107726538 B CN107726538 B CN 107726538B
Authority
CN
China
Prior art keywords
air conditioner
load
room
intelligent building
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610654302.XA
Other languages
English (en)
Other versions
CN107726538A (zh
Inventor
石坤
李德智
杨斌
阮文骏
刘尧
卜凡鹏
潘明明
陈宋宋
董明宇
易永仙
崔高颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201610654302.XA priority Critical patent/CN107726538B/zh
Publication of CN107726538A publication Critical patent/CN107726538A/zh
Application granted granted Critical
Publication of CN107726538B publication Critical patent/CN107726538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本发明提供一种智能楼宇用电调控方法,根据能量守恒原则建立智能楼宇主要用电设备及中央空调所属建筑物的热力学模型,并构建中央空调的电功率与制冷量之间函数拟合关系;基于轮控的方式调控中央空调下的各空调终端,求得智能楼宇对应的最大可削减负荷值;在日前电力市场中,建立基于电力公司、负荷聚合商及智能楼宇三方互动的调度框架。本发明提出的方法为负荷聚合商参与日前电力市场进行投标提供依据;在电力公司层面和负荷聚合商层面根据节能效果最大化进行优化调度,在充分挖掘智能楼宇需求响应潜力的同时保障了相关调度部门和用户的节能效果,进而保证了智能楼宇用电稳定而可靠的运行。

Description

一种智能楼宇用电调控方法
技术领域
本发明涉及智能楼宇参与电力市场的应用技术领域,具体涉及一种智能楼宇用电调控方法。
背景技术
国内夏季空调负荷比重较高,智能楼宇的中央空调用电量较大,通过合理的控制手段可以实现负荷调整,参与系统的调峰等辅助服务,是一种重要的需求响应资源。单个智能楼宇中央空调的削负荷量较少,故需要通过专业的负荷资源整合商-负荷聚合商参与电力市场。负荷聚合商不仅能够代表中小型负荷资源参与电力市场,而且能够借助于智能电网的高级测量体系对负荷进行实时测量与控制,实现资源的高效利用和经济效益的最大化。
随着《关于进一步深化电力体制改革的若干意见》的出台,中国电力市场改革日益深化,日前市场和实时市场运行机制将越来越成熟,为实现负荷侧资源的高效利用和相关企业经济效益的提高提供了一个有利契机。
发明内容
有鉴于此,本发明提供的一种智能楼宇用电调控方法,为负荷聚合商参与日前电力市场进行投标提供依据;在电力公司层面和负荷聚合商层面根据节能效果最大化进行优化调度,在充分挖掘智能楼宇需求响应潜力的同时保障了相关调度部门和用户的节能效果,进而保证了智能楼宇用电稳定而可靠的运行。
本发明的目的是通过以下技术方案实现的:
一种智能楼宇用电调控方法,所述方法基于三方互动的方式对智能楼宇用电进行调控,所述三方包括电力公司、负荷聚合商及所述智能楼宇;
所述方法包括如下步骤:
步骤1.根据能量守恒原则建立智能楼宇主要用电设备及中央空调所属建筑物的热力学模型,并构建中央空调的电功率与制冷量之间函数拟合关系;
步骤2.基于轮控的方式调控所述中央空调下的各空调终端,求得所述智能楼宇对应的最大可削减负荷值;
步骤3.在日前电力市场中,建立基于所述电力公司、负荷聚合商及智能楼宇三方互动的调度框架。
优选的,所述步骤1包括:
1-1.根据能量守恒原则建立智能楼宇主要用电设备及中央空调所属建筑物的热力学模型;
1-2.根据所述热力学模型,获取所述建筑物的房间内温度随时间的变化关系;
1-3.根据空调铭牌参数,构建中央空调的电功率与制冷量之间函数拟合关系;
1-4.计算得到的所述房间所需制冷量及电功率,根据用户对舒适度的要求设定所述房间内的温度变化范围。
优选的,所述步骤1-1包括:
a.计算得到任意时刻房间瞬时的热量集合;
b.获取房间瞬时得热量中储存于围护结构中的蓄热量;
c.计算得到房间与外界进行空气交换的新风负荷;
d.根据所述瞬时得热量散失在室内空气中的热量及能量守恒定律,制定空调房间能量关系,进而得到所述热力学模型为:
Figure BDA0001074932060000031
式(1)中,Ki表示房间第i面墙的传热系数,单位为W/m2℃;Fi out表示房间第i面墙的传热面积,单位为m2;To为室外温度,单位为℃;Ti室内温度,单位为℃;nk表示房间换气次数,单位为次/h;C=0.28J/kg℃,表示空气定压重量比热;V房间空间制冷体积,单位为m3;G表示新风量,单位为g/s;ρ=1.29kg/m3,表示空气密度;Si表示第i内墙面蓄热系数,单位为W/m2℃;Fi in表示第i面内墙面积,单位为m2;Ai表示i面墙的窗户面积,单位为m2;Cs,i表示窗玻璃遮挡系数;Cn,i表示窗内遮阳设施的遮阳系数;Djmax,i太阳辐射得热因素的最大值,单位为W/m2;Ccl,i表示窗外冷负荷系数;
Figure BDA0001074932060000032
表示集群系数;n表示房间内总人数;q表示每个人的全散热热量,单位为W;n1表示设备利用系数,且0≤n1≤1;n2表示负荷系数,且0≤n2≤1;n3表示同时使用系数,且0≤n3≤1;n4表示热能转化系数;∑Pe表示设备总的额定功率,单位为W;n5表示照明设备的同时使用系数;∑Pl表示照明装置的总功率,单位为W。
优选的,所述步骤a中的所述热量集合包括:通过房间围护结构传入的热量、通过玻璃窗直接进入的太阳辐射热量、人体散热量、通过门窗从室外渗透空气带入的热量、空调终端散热量及照明设备的散热量。
优选的,所述步骤1-2包括:
当制冷量保持不变的时候,根据式(1)可得房间内温度Ti随时间t的变化关系为:
Figure BDA0001074932060000041
式(2)中,Tin(0)为初始室内温度,单位为℃;
当空调处于关闭的状态时,根据式(1)可得房间内温度Ti随时间的变化关系为:
Figure BDA0001074932060000042
优选的,所述步骤1-3包括:
根据空调铭牌参数,构建中央空调的电功率与制冷量之间函数拟合关系为:
P=aQ3+bQ2+cQ+d (4)
式(4)中,P为制冷机电功率,单位为W;a,b,c,d为拟合系数。
优选的,所述步骤2包括:
2-1.根据已设定的所述房间内的温度变化范围,用轮控的方式调控所述中央空调下的各空调终端;
2-2.获取一个调控周期内的所述空调终端处于打开和关闭的时间、及各所述空调终端的占空比;
2-3.根据所述空调终端的占空比集合,求得所述智能楼宇对应的最大可削减负荷值;
2-4.根据所述最大可削减负荷值制定所述智能楼宇的潜力评估报告,为智能楼宇参与电力市场提供负荷削减量依据。
优选的,所述步骤2-1包括:
e.当房间内温度值超出所述温度变化范围且所述空调终端处于工作状态时,进入步骤f;
f.所述中央空调控制所述房间内的所述空调终端开启并向所述空调终端供应固定功率的制冷量,直到室内温度下降至所述温度变化范围中的最小温度值时,进入步骤g;
g.关闭所述空调终端,直到室内温度上升至所述温度变化范围中的最大温度值时,返回步骤f。
优选的,所述步骤3包括:
在日前电力市场中,建立基于所述电力公司、负荷聚合商及智能楼宇三方互动的调度框架,且所述调度框架包括电力公司层面、负荷聚合商层面及智能楼宇层面;
其中,在所述电力公司层面,所述电力公司根据各个所述负荷聚合商的投标情况,以第二日削减时段的总花费最小为目标函数制定次日调度计划,实现负荷削减量指标在各个所述负荷聚合商之间的优化分配;
在所述负荷聚合商层面,所述负荷聚合商对中央空调实施轮控技术,优化中央空调的运行占空比;
若次日所述负荷聚合商的实际削减量少于所述调度计划,则所述负荷聚合商按减少的负荷削减量支付相应欠款至所述电力公司;
若次日所述负荷聚合商的实际削减量大于所述调度计划,则所述电力公司按照所述调度计划支付欠款至所述负荷聚合商;
在所述智能楼宇层面,若次日所述负荷聚合商的实际削减量大于所述调度计划,所述智能楼宇收取所述负荷聚合商支付的调度费用。
优选的,所述电力公司的目标函数为:
Figure BDA0001074932060000051
式(5)中,p(k,t)表示第k个负荷聚合商在时段t的报价,单位为元/MW;Q(k,t)表示第k个负荷聚合商在t时段的实际负荷削减量,单位为MW;Qmax(k,t)表示第k个负荷聚合商在t时段的投标量,单位为MW;Qf(t)表示t时段电力公司需要削减的负荷量,单位为MW;N表示调度时段;M表示负荷聚合商的数量。
从上述的技术方案可以看出,本发明提供了一种智能楼宇用电调控方法,根据能量守恒原则建立智能楼宇主要用电设备及中央空调所属建筑物的热力学模型,并构建中央空调的电功率与制冷量之间函数拟合关系;基于轮控的方式调控中央空调下的各空调终端,求得智能楼宇对应的最大可削减负荷值;在日前电力市场中,建立基于电力公司、负荷聚合商及智能楼宇三方互动的调度框架。本发明提出的方法为负荷聚合商参与日前电力市场进行投标提供依据;在电力公司层面和负荷聚合商层面根据节能效果最大化进行优化调度,在充分挖掘智能楼宇需求响应潜力的同时保障了相关调度部门和用户的节能效果,进而保证了智能楼宇用电稳定而可靠的运行。
与最接近的现有技术比,本发明提供的技术方案具有以下优异效果:
1、本发明所提供的技术方案中,对智能楼宇的典型用电设备-中央空调进行了热力学建模和电气建模,并通过轮控技术手段对其进行控制,提出了空调负荷削减量的潜力评估方法,为负荷聚合商参与日前电力市场进行投标提供依据;在电力公司层面和负荷聚合商层面根据节能效益最大化进行优化调度。
2、本发明所提供的技术方案,在充分挖掘智能楼宇需求响应潜力的同时保障了相关调度部门和用户的节能效果,进而保证了智能楼宇用电稳定而可靠的运行。
3、本发明提供的技术方案,应用广泛,具有显著的社会效益和经济效益。
附图说明
图1是本发明的一种智能楼宇用电调控方法的流程图;
图2是本发明的具体应用例中的方法总流程图;
图3是本发明的具体应用例中的中央空调所属建筑物能量守恒示意图;
图4是本发明的具体应用例中的日前市场调度框架图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供一种智能楼宇用电调控方法,基于三方互动的方式对智能楼宇用电进行调控,三方包括电力公司、负荷聚合商及智能楼宇;
包括如下步骤:
步骤1.根据能量守恒原则建立智能楼宇主要用电设备及中央空调所属建筑物的热力学模型,并构建中央空调的电功率与制冷量之间函数拟合关系;
步骤2.基于轮控的方式调控中央空调下的各空调终端,求得智能楼宇对应的最大可削减负荷值;
步骤3.在日前电力市场中,建立基于电力公司、负荷聚合商及智能楼宇三方互动的调度框架。
其中,步骤1包括:
1-1.根据能量守恒原则建立智能楼宇主要用电设备及中央空调所属建筑物的热力学模型;
1-2.根据热力学模型,获取建筑物的房间内温度随时间的变化关系;
1-3.根据空调铭牌参数,构建中央空调的电功率与制冷量之间函数拟合关系;
1-4.计算得到的房间所需制冷量及电功率,根据用户对舒适度的要求设定房间内的温度变化范围。
其中,步骤1-1包括:
a.计算得到任意时刻房间瞬时的热量集合;
b.获取房间瞬时得热量中储存于围护结构中的蓄热量;
c.计算得到房间与外界进行空气交换的新风负荷;
d.根据瞬时得热量散失在室内空气中的热量及能量守恒定律,制定空调房间能量关系,进而得到热力学模型为:
Figure BDA0001074932060000081
式(1)中,Ki表示房间第i面墙的传热系数,单位为W/m2℃;Fi out表示房间第i面墙的传热面积,单位为m2;To为室外温度,单位为℃;Ti室内温度,单位为℃;nk表示房间换气次数,单位为次/h;C=0.28J/kg℃,表示空气定压重量比热;V房间空间制冷体积,单位为m3;G表示新风量,单位为g/s;ρ=1.29kg/m3,表示空气密度;Si表示第i内墙面蓄热系数,单位为W/m2℃;Fi in表示第i面内墙面积,单位为m2;Ai表示i面墙的窗户面积,单位为m2;Cs,i表示窗玻璃遮挡系数;Cn,i表示窗内遮阳设施的遮阳系数;Djmax,i太阳辐射得热因素的最大值,单位为W/m2;Ccl,i表示窗外冷负荷系数;
Figure BDA0001074932060000082
表示集群系数;n表示房间内总人数;q表示每个人的全散热热量,单位为W;n1表示设备利用系数,且0≤n1≤1;n2表示负荷系数,且0≤n2≤1;n3表示同时使用系数,且0≤n3≤1;n4表示热能转化系数;∑Pe表示设备总的额定功率,单位为W;n5表示照明设备的同时使用系数;∑Pl表示照明装置的总功率,单位为W。
其中,步骤a中的热量集合包括:通过房间围护结构传入的热量、通过玻璃窗直接进入的太阳辐射热量、人体散热量、通过门窗从室外渗透空气带入的热量、空调终端散热量及照明设备的散热量。
其中,步骤1-2包括:
当制冷量保持不变的时候,根据式(1)可得房间内温度Ti随时间t的变化关系为:
Figure BDA0001074932060000091
式(2)中,Tin(0)为初始室内温度,单位为℃;
当空调处于关闭的状态时,根据式(1)可得房间内温度Ti随时间的变化关系为:
Figure BDA0001074932060000092
其中,步骤1-3包括:
根据空调铭牌参数,构建中央空调的电功率与制冷量之间函数拟合关系为:
P=aQ3+bQ2+cQ+d (4)
式(4)中,P为制冷机电功率,单位为W;a,b,c,d为拟合系数。
其中,步骤2包括:
2-1.根据已设定的房间内的温度变化范围,用轮控的方式调控中央空调下的各空调终端;
2-2.获取一个调控周期内的空调终端处于打开和关闭的时间、及各空调终端的占空比;
2-3.根据空调终端的占空比集合,求得智能楼宇对应的最大可削减负荷值;
2-4.根据最大可削减负荷值制定智能楼宇的潜力评估报告,为智能楼宇参与电力市场提供负荷削减量依据。
其中,步骤2-1包括:
e.当房间内温度值超出温度变化范围且空调终端处于工作状态时,进入步骤f;
f.中央空调控制房间内的空调终端开启并向空调终端供应固定功率的制冷量,直到室内温度下降至温度变化范围中的最小温度值时,进入步骤g;
g.关闭空调终端,直到室内温度上升至温度变化范围中的最大温度值时,返回步骤f。
其中,步骤3包括:
在日前电力市场中,建立基于电力公司、负荷聚合商及智能楼宇三方互动的调度框架,且调度框架包括电力公司层面、负荷聚合商层面及智能楼宇层面;
其中,在电力公司层面,电力公司根据各个负荷聚合商的投标情况,以第二日削减时段的总花费最小为目标函数制定次日调度计划,实现负荷削减量指标在各个负荷聚合商之间的优化分配;
在负荷聚合商层面,负荷聚合商对中央空调实施轮控技术,优化中央空调的运行占空比;
若次日负荷聚合商的实际削减量少于调度计划,则负荷聚合商按减少的负荷削减量支付相应欠款至电力公司;
若次日负荷聚合商的实际削减量大于调度计划,则电力公司按照调度计划支付欠款至负荷聚合商;
在智能楼宇层面,若次日负荷聚合商的实际削减量大于调度计划,智能楼宇收取负荷聚合商支付的调度费用。
其中,电力公司的目标函数为:
Figure BDA0001074932060000111
式(5)中,p(k,t)表示第k个负荷聚合商在时段t的报价,单位为元/MW;Q(k,t)表示第k个负荷聚合商在t时段的实际负荷削减量,单位为MW;Qmax(k,t)表示第k个负荷聚合商在t时段的投标量,单位为MW;Qf(t)表示t时段电力公司需要削减的负荷量,单位为MW;N表示调度时段;M表示负荷聚合商的数量。
如图2所示,本发明提供一种基于电力公司-负荷聚合商-智能楼宇三方互动的智能楼宇用电调控方法的具体应用例,如下:
(1)如图3所示,根据能量守恒原则建立智能楼宇主要用电设备-中央空调的所属建筑物热力学模型为:
Figure BDA0001074932060000112
Figure BDA0001074932060000113
Figure BDA0001074932060000114
Figure BDA0001074932060000115
式中:Ki表示房间第i面墙的传热系数,W/m2℃;Fi out表示房间第i面墙的传热面积,m2;To为室外温度,℃;Ti室内温度,℃;nk表示房间换气次数,次/h;C=0.28J/kg℃,表示空气定压重量比热;V房间空间制冷体积,m3;G表示新风量,g/s;ρ=1.29kg/m3,表示空气密度;Si表示第i内墙面蓄热系数,W/m2℃;Fi in表示第i面内墙面积,m2;Ai表示i面墙的窗户面积,m2;Cs,i表示窗玻璃遮挡系数;Cn,i表示窗内遮阳设施的遮阳系数;Djmax,i太阳辐射得热因素的最大值,W/m2;Ccl,i表示窗外冷负荷系数;
Figure BDA0001074932060000121
表示集群系数;n表示房间内总人数;q表示每个人的全散热热量,W;n1表示设备利用系数(0~1);n2表示负荷系数(0~1);n3表示同时使用系数(0~1);n4表示热能转化系数;∑Pe表示设备总的额定功率,W;n5表示照明设备的同时使用系数;∑Pl表示照明装置的总功率,W。
当制冷量保持不变的时候,根据式(1)可得室内温度随时间t的变化关系为:
Figure BDA0001074932060000122
Tin(0)为初始室内温度,℃。
同理可得,当空调处于关闭的状态时,室内温度随时间的变化关系为:
Figure BDA0001074932060000123
(2)中央空调内部结构比较复杂,各个部分需要协调工作,其功率之间相互耦合,
导致制冷机的制冷量与电功率之间的关系呈非线性,根据空调铭牌参数,可以将制冷机的耗电量与制冷量的非线性关系拟合成三次多项式的形式:
P=aQ3+bQ2+cQ+d (7)
式中,P为制冷机电功率,W;a,b,c,d为拟合系数。
(3)当室内温度保持在Ti,根据式(1)可得房间所需制冷量为
Figure BDA0001074932060000124
此时,一个房间保持室内设定温度所需电功率为:
Figure BDA0001074932060000125
(4)为了在对空调进行调控的过程中不造成用户的不适感,可以根据用户对舒适度的要求设定室内温度变化范围[Tmin,Tmax]。本专利对中央空调设备终端采用轮控的控制方法。当用户空调终端处于打开的状态时,中央空调向用户提供固定功率的制冷量,室内温度下降,当室温达到Tmin时,关闭空调终端,室内温度上升,达到Tmax时,空调终端再次打开。根据式(5)(6)可得一个周期内设备终端处于打开和关闭的时间分别为:
Figure BDA0001074932060000131
Figure BDA0001074932060000132
式中:t表示控制周期,s;ton,toff为设备终端分别处于打开和关闭的时间。
此时,该房间设备终端的占空比DR为:
Figure BDA0001074932060000133
(5)中央空调不受控状态下,所有参与调控的房间室内温度均设为Ti,受控后,根据人体舒适度设定室内温度允许波动范围为[Tmin,Tmax](Ti=Tmin),在控制方式为轮控的情况下,其占空比集合为Ω,此时智能楼宇对应的最大可削减负荷为
Figure BDA0001074932060000134
式中:n为空调设备终端数量。
(6)如图4所示,在日前市场中,电力公司公布次日负荷削峰时段及削负荷量,负荷聚合商根据所辖智能楼宇数量及其潜力计算情况,向电力公司申报削负荷量和单位削减价格,电力公司以最小化花费为目标函数,制定次日调度计划,电力公司目标函数为:
Figure BDA0001074932060000141
约束条件为:
0≤Q(k,t)≤Qmax(k,t) (15)
Figure BDA0001074932060000142
式中:p(k,t)表示第k个负荷聚合商在时段t的报价,元/MW;Q(k,t)表示第k个负荷聚合商在t时段的实际负荷削减量,MW;Qmax(k,t)表示第k个负荷聚合商在t时段的投标量,MW;Qf(t)表示t时段电力公司需要削减的负荷量,MW;N表示调度时段;M表示负荷聚合商的数量。
(7)在实际调度过程中,如果负荷聚合商的实际削减量少于调度计划,需要接受惩罚,减少的负荷削减量按照价格a付钱电力公司,若实际削减量大于调度计划,则电力公司按照调度计划付钱给负荷聚合商。故负荷聚合商从电力公司处获得的收入为:
Figure BDA0001074932060000143
Figure BDA0001074932060000144
DRl∈Ωl (19)
式中:其中Pbaseline(l,t)表示负荷聚合商第l栋智能楼宇在第t个时段的基线负荷值,kW;DRl表示第l栋智能楼宇的占空比,为决策变量;Ωl表示第l栋智能楼宇的占空比集合;W表示智能楼宇数量;pc(t)表示t时段的出清价格,元/MW;H(k,t)负荷聚合商k在第t时段的实际削减量。
与此同时,负荷聚合商需要支付智能楼宇一定的调度费用:
F2=bH(k,t) (20)
负荷聚合商的优化调度目标函数为最大化收益:
maxF=F1-F2 (21)
负荷聚合商通过优化每栋智能楼宇的占空比实现经济效益最大化。
步骤(1)中中央空调热力学建模过程如下:
任意时刻房间瞬时得热量包括六个部分,其计算公式如下:
Qget=Qbody+Qglass+Qperson+Qair+Qe+Ql (1-1)
Qbody=∑KiFi out(To-Tin) (1-2)
Qglass=∑AiCs,iCn,iDjmax,iCcl,i (1-3)
Figure BDA0001074932060000151
Qair=nkVCρ(To-Tin) (1-5)
Qe=n1n2n3n4∑Pe (1-6)
Ql=n5∑Pl (1-7)
Qbody为通过房间围护结构传入的热量,W;Ki表示房间第i面墙的传热系数,W/m2℃;Fi out表示房间第i面墙的传热面积,m2;To为室外温度,℃;Tin室内温度,℃;Qglass为通过玻璃窗直接进入的太阳辐射热量,W;Ai表示i面墙的窗户面积,m2;Cs,i表示窗玻璃遮挡系数;Cn,i表示窗内遮阳设施的遮阳系数;Djmax,i太阳辐射得热因素的最大值,W/m2;Ccl,i表示窗外冷负荷系数;Qperson为人体散热量,W;
Figure BDA0001074932060000152
表示集群系数;n表示房间内总人数;q表示每个人的全散热热量,W;Qair为通过门窗从室外渗透空气带入的热量,W;nk表示房间换气次数,次/h;C=0.28J/kg℃,表示空气定压重量比热;V房间空间制冷体积,m3;ρ=1.29kg/m3,表示空气密度;Qe为设备散热量,W;n1表示设备利用系数(0~1);n2表示负荷系数(0~1);n3表示同时使用系数(0~1);n4表示热能转化系数;∑Pe表示设备总的额定功率,W;Ql-照明设备的散热量,W;n5表示照明设备的同时使用系数;∑Pl表示照明装置的总功率,W。
房间瞬时得热量有一部分储存于围护结构,其蓄热量Qs为:
Qs=∑SiFi in (1-8)
Si表示第i内墙面蓄热系数,W/m2℃;Fi in表示第i面内墙面积,m2
为了保持房间空气的清洁度与舒适度,房间需要与外界进行空气交换,房间的新风负荷Qn为:
Qn=G(hout-hin) (1-9)
其中G表示新风量,g/s;hout表示室外空气焓值,kJ/kg;hin表示室内空气焓值,kJ/kg。
经过进一步简化可得:
Qn≈1.01G(To-Tin)+38.5G (1-10)
当空调处于打开的状态时,房间的瞬时得热量除了有一部分存储于围护结构,还有一部分散失在室内空气中,空气中的热量与新风负荷所带来的热量需要空调通过电力做工移除。在时间dt内,室内温度升高dTin,根据能量守恒定律,空调房间能量关系满足如下等式:
QtdTin=Qgetdt-QsdTin+Qndt-Qdt (1-11)
其中Q为中央空调制冷功率,W。
将式(1-1)-(1-10)代入(1-11)得
Figure BDA0001074932060000171
其中:
Figure BDA0001074932060000172
Figure BDA0001074932060000173
Figure BDA0001074932060000174
解式(1-12)可得,当制冷量保持不变得时候,室内温度随时间t的变化关系为:
Figure BDA0001074932060000175
Tin(0)为初始室内温度,℃。
同理可得,当空调处于关闭的状态时,室内温度随时间的变化关系为:
Figure BDA0001074932060000176
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,而这些未脱离本发明精神和范围的任何修改或者等同替换,其均在申请待批的本发明的权利要求保护范围之内。

Claims (8)

1.一种智能楼宇用电调控方法,其特征在于,所述方法基于三方互动的方式对智能楼宇用电进行调控,所述三方包括电力公司、负荷聚合商及所述智能楼宇;
所述方法包括如下步骤:
步骤1.根据能量守恒原则建立智能楼宇主要用电设备及中央空调所属建筑物的热力学模型,并构建中央空调的电功率与制冷量之间函数拟合关系;
步骤2.基于轮控的方式调控所述中央空调下的各空调终端,求得所述智能楼宇对应的最大可削减负荷值;
步骤3.在日前电力市场中,建立基于所述电力公司、负荷聚合商及智能楼宇三方互动的调度框架;
所述步骤3包括:
在日前电力市场中,建立基于所述电力公司、负荷聚合商及智能楼宇三方互动的调度框架,且所述调度框架包括电力公司层面、负荷聚合商层面及智能楼宇层面;
其中,在所述电力公司层面,所述电力公司根据各个所述负荷聚合商的投标情况,以第二日削减时段的总花费最小为目标函数制定次日调度计划,实现负荷削减量指标在各个所述负荷聚合商之间的优化分配;
在所述负荷聚合商层面,所述负荷聚合商对中央空调实施轮控技术,优化中央空调的运行占空比;
若次日所述负荷聚合商的实际削减量少于所述调度计划,则所述负荷聚合商按减少的负荷削减量支付相应欠款至所述电力公司;
若次日所述负荷聚合商的实际削减量大于所述调度计划,则所述电力公司按照所述调度计划支付欠款至所述负荷聚合商;
在所述智能楼宇层面,若次日所述负荷聚合商的实际削减量大于所述调度计划,所述智能楼宇收取所述负荷聚合商支付的调度费用;
所述电力公司的目标函数为:
Figure FDA0002588902960000021
式(5)中,p(k,t)表示第k个负荷聚合商在时段t的报价,单位为元/MW;Q(k,t)表示第k个负荷聚合商在t时段的实际负荷削减量,单位为MW;Qmax(k,t)表示第k个负荷聚合商在t时段的投标量,单位为MW;Qf(t)表示t时段电力公司需要削减的负荷量,单位为MW;N表示调度时段;M表示负荷聚合商的数量。
2.如权利要求1所述的方法,其特征在于,所述步骤1包括:
1-1.根据能量守恒原则建立智能楼宇主要用电设备及中央空调所属建筑物的热力学模型;
1-2.根据所述热力学模型,获取所述建筑物的房间内温度随时间的变化关系;
1-3.根据空调铭牌参数,构建中央空调的电功率与制冷量之间函数拟合关系;
1-4.计算得到的所述房间所需制冷量及电功率,根据用户对舒适度的要求设定所述房间内的温度变化范围。
3.如权利要求2所述的方法,其特征在于,所述步骤1-1包括:
a.计算得到任意时刻房间瞬时的热量集合;
b.获取房间瞬时得热量中储存于围护结构中的蓄热量;
c.计算得到房间与外界进行空气交换的新风负荷;
d.根据所述瞬时得热量散失在室内空气中的热量及能量守恒定律,制定空调房间能量关系,进而得到所述热力学模型为:
Figure FDA0002588902960000031
式(1)中,Ki表示房间第i面墙的传热系数,单位为W/m2℃;Fi out表示房间第i面墙的传热面积,单位为m2;To为室外温度,单位为℃;Tin室内温度,单位为℃;nk表示房间换气次数,单位为次/h;C=0.28J/kg℃,表示空气定压重量比热;V房间空间制冷体积,单位为m3;G表示新风量,单位为g/s;ρ=1.29kg/m3,表示空气密度;Si表示第i内墙面蓄热系数,单位为W/m2℃;Fi in表示第i面内墙面积,单位为m2;Ai表示i面墙的窗户面积,单位为m2;Cs,i表示窗玻璃遮挡系数;Cn,i表示窗内遮阳设施的遮阳系数;Djmax,i太阳辐射得热因素的最大值,单位为W/m2;Ccl,i表示窗外冷负荷系数;
Figure FDA0002588902960000032
表示集群系数;n表示房间内总人数;q表示每个人的全散热热量,单位为W;n1表示设备利用系数,且0≤n1≤1;n2表示负荷系数,且0≤n2≤1;n3表示同时使用系数,且0≤n3≤1;n4表示热能转化系数;∑Pe表示设备总的额定功率,单位为W;n5表示照明设备的同时使用系数;∑Pl表示照明装置的总功率,单位为W;Q为中央空调制冷功率,单位为kW。
4.如权利要求3所述的方法,其特征在于,所述步骤a中的所述热量集合包括:通过房间围护结构传入的热量、通过玻璃窗直接进入的太阳辐射热量、人体散热量、通过门窗从室外渗透空气带入的热量、空调终端散热量及照明设备的散热量。
5.如权利要求3所述的方法,其特征在于,所述步骤1-2包括:
当制冷量保持不变的时候,根据式(1)可得房间内温度Tin随时间t的变化关系为:
Figure FDA0002588902960000041
式(2)中,Tin(0)为初始室内温度,单位为℃;
当空调处于关闭的状态时,根据式(1)可得房间内温度Ti随时间的变化关系为:
Figure FDA0002588902960000042
6.如权利要求5所述的方法,其特征在于,所述步骤1-3包括:
根据空调铭牌参数,构建中央空调的电功率与制冷量之间函数拟合关系为:
P=aQ3+bQ2+cQ+d (4)
式(4)中,P为制冷机电功率,单位为W;a,b,c,d为拟合系数。
7.如权利要求2所述的方法,其特征在于,所述步骤2包括:
2-1.根据已设定的所述房间内的温度变化范围,用轮控的方式调控所述中央空调下的各空调终端;
2-2.获取一个调控周期内的所述空调终端处于打开和关闭的时间、及各所述空调终端的占空比;
2-3.根据所述空调终端的占空比集合,求得所述智能楼宇对应的最大可削减负荷值;
2-4.根据所述最大可削减负荷值制定所述智能楼宇的潜力评估报告,为智能楼宇参与电力市场提供负荷削减量依据。
8.如权利要求7所述的方法,其特征在于,所述步骤2-1包括:
e.当房间内温度值超出所述温度变化范围且所述空调终端处于工作状态时,进入步骤f;
f.所述中央空调控制所述房间内的所述空调终端开启并向所述空调终端供应固定功率的制冷量,直到室内温度下降至所述温度变化范围中的最小温度值时,进入步骤g;
g.关闭所述空调终端,直到室内温度上升至所述温度变化范围中的最大温度值时,返回步骤f。
CN201610654302.XA 2016-08-10 2016-08-10 一种智能楼宇用电调控方法 Active CN107726538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610654302.XA CN107726538B (zh) 2016-08-10 2016-08-10 一种智能楼宇用电调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610654302.XA CN107726538B (zh) 2016-08-10 2016-08-10 一种智能楼宇用电调控方法

Publications (2)

Publication Number Publication Date
CN107726538A CN107726538A (zh) 2018-02-23
CN107726538B true CN107726538B (zh) 2020-12-22

Family

ID=61200215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610654302.XA Active CN107726538B (zh) 2016-08-10 2016-08-10 一种智能楼宇用电调控方法

Country Status (1)

Country Link
CN (1) CN107726538B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592172A (zh) * 2018-04-28 2018-09-28 国网北京市电力公司 电采暖设备的负荷处理方法和装置
CN109740899A (zh) * 2018-12-25 2019-05-10 国网浙江省电力有限公司电力科学研究院 一种考虑主动配电网的楼宇集群多阶段优化调度方法
CN109886463A (zh) * 2019-01-18 2019-06-14 杭州电子科技大学 考虑需求响应不确定性的用户侧优化控制方法
CN111271824B (zh) * 2020-02-26 2020-09-25 贵州电网有限责任公司 一种中央空调需求响应集中分散控制方法
CN111998505B (zh) * 2020-08-10 2021-07-30 武汉蜗牛智享科技有限公司 基于RSM-Kriging-GA算法的泛园区空调系统能耗优化方法及系统
CN112629072A (zh) * 2020-11-26 2021-04-09 中国农业大学 煤改电用户空气源热泵节能控制装置
CN112594873B (zh) * 2020-12-14 2022-05-24 山东建筑大学 一种楼宇中央空调需求响应控制方法及系统
CN113158450A (zh) * 2021-04-08 2021-07-23 国网河南省电力公司电力科学研究院 一种基于楼宇能量管理系统经济调度方法及系统
CN113865018A (zh) * 2021-09-24 2021-12-31 国网山东省电力公司电力科学研究院 一种水冷中央空调主机功率调控方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892231A2 (en) * 1997-07-14 1999-01-20 Smc Corporation Maintenance pre-prediction system in isothermal-liquid circulating apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8489245B2 (en) * 2009-02-06 2013-07-16 David Carrel Coordinated energy resource generation
WO2011140369A1 (en) * 2010-05-05 2011-11-10 Greensleeves, LLC Energy chassis and energy exchange device
CN104303203B (zh) * 2011-11-28 2018-04-13 艾克潘尔基公司 能源搜索引擎方法及系统
CN103257571B (zh) * 2013-04-22 2015-01-28 东南大学 基于dlc的空调负荷双层优化调度和控制策略制定方法
CN104134995B (zh) * 2014-07-08 2015-12-09 东南大学 基于储能建模的空调负荷参与系统二次调频方法
CN104214912B (zh) * 2014-09-24 2017-02-15 东南大学 一种基于温度设定值调整的聚合空调负荷调度方法
CN105004015B (zh) * 2015-08-25 2017-07-28 东南大学 一种基于需求响应的中央空调控制方法
CN105352108B (zh) * 2015-09-29 2019-03-08 中国电力科学研究院 一种基于空调用电模式的负荷优化控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892231A2 (en) * 1997-07-14 1999-01-20 Smc Corporation Maintenance pre-prediction system in isothermal-liquid circulating apparatus

Also Published As

Publication number Publication date
CN107726538A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN107726538B (zh) 一种智能楼宇用电调控方法
CN112072640B (zh) 一种虚拟电厂聚合资源的容量优化方法
CN108039710B (zh) 一种基于阶跃特性的空调负荷参与的电网日前调度方法
CN106127337B (zh) 基于变频空调虚拟机组建模的机组组合方法
Yoon et al. Dynamic demand response controller based on real-time retail price for residential buildings
Sun et al. Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls
CN110460040B (zh) 一种考虑智能建筑热平衡特性的微电网运行调度方法
CN109974218B (zh) 一种基于预测的多联机空调系统调控方法
CN110729726B (zh) 一种智慧社区能量优化调度方法和系统
CN109685396B (zh) 一种计及公共楼宇需求响应资源的配电网能量管理方法
CN109934470A (zh) 聚合大规模空调负荷的信息物理建模与控制方法
CN110533311B (zh) 基于能源路由器的智能社区协调调度系统及方法
CN108171436B (zh) 居民空调需求响应策略及其对配用电侧影响的控制方法
CN110474370B (zh) 一种空调可控负荷、光伏储能系统的协同控制系统及方法
CN112733236A (zh) 面向综合舒适度的建筑内温控负荷优化方法及系统
CN116128201A (zh) 一种基于非合作博弈的多虚拟电厂点对点能源交易方法
CN111967728B (zh) 计及用能舒适度时变性的商场楼宇调峰容量评估方法
TW201027014A (en) Method for managing air conditioning power consumption
Vasudevan et al. Price based demand response strategy considering load priorities
CN106249598B (zh) 一种基于多代理的工业大用户能效优化控制方法
CN107763799A (zh) 一种建筑空调柔性控制系统
CN109034527A (zh) 一种含中央空调及数据中心的紧急需求响应组合调控方法
CN113449900A (zh) 一种面向终端用户的综合能源优化方法及系统
CN105864963A (zh) 一种基于转化时间优先级列表的聚合空调负荷控制方法
CN107563547A (zh) 一种新型用户侧用能纵深优化综合能源管控方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant