CN107722967B - 一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法 - Google Patents

一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法 Download PDF

Info

Publication number
CN107722967B
CN107722967B CN201711045047.XA CN201711045047A CN107722967B CN 107722967 B CN107722967 B CN 107722967B CN 201711045047 A CN201711045047 A CN 201711045047A CN 107722967 B CN107722967 B CN 107722967B
Authority
CN
China
Prior art keywords
naluf
ytterbium
red fluorescence
holmium
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711045047.XA
Other languages
English (en)
Other versions
CN107722967A (zh
Inventor
高伟
董军
韩庆艳
孔祥巧
陈悠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Posts and Telecommunications
Original Assignee
Xian University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Posts and Telecommunications filed Critical Xian University of Posts and Telecommunications
Priority to CN201711045047.XA priority Critical patent/CN107722967B/zh
Publication of CN107722967A publication Critical patent/CN107722967A/zh
Application granted granted Critical
Publication of CN107722967B publication Critical patent/CN107722967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法,该方法是在镱/钬/铈共掺杂六方相氟镥化钠纳米晶体表面包覆一层镱掺杂氟镥化钠同质壳,构建的镱掺杂氟镥化钠同质壳也可有效地降低镱/钬/铈共掺杂氟镥化钠核表面缺陷所引起的无辐射跃迁几率,同时通过调控同质壳中镱离子的掺杂浓度,改变壳中镱离子与核中钬离子之间的能量传递效率,从而实现钬离子的红色荧光增强,其增强倍数最高可达到5.6倍。本发明方法得到的增强红色荧光纳米晶体易溶于水,稳定性及分散性都相对较好,可被广泛应用于红色荧光粉、防伪技术,尤其是生物成像及生物标记,可有效降低生物组织对其的吸收,提高检测的灵敏度。

Description

一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射 的方法
技术领域
本发明属于稀土掺杂的上转换氟化物材料技术领域,具体涉及一种增强NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体中红色荧光发射的方法。
背景技术
稀土掺杂的上转换氟化物材料因具有较低的声子能量、可有效降低无辐射跃迁几率、提高发光效率,已被广泛应用于荧光粉、多色显示、光学储存、激光器、太阳能电池和生物医学等领域中。稀土离子独特电子层结构赋予了其丰富能级结构其跃迁通道,从而可产生任意不同波段的荧光发射,因此,调控稀土离子的荧光发射已经成为了研究者们广泛关注的焦点,尤其是获取单带荧光发射。其中红色荧光更是备受关注,可被广泛应用于生物医学成像及生物探针等领域,被视为生物组织的“光学窗口”。因此,在掺杂稀土离子的氟化物纳米晶体中获得高强、高纯度的红光上转换发射已经成为一种新的挑战。目前已经报道了多种实现红色荧光发射的途径,例如,在铒/镱共掺杂氟钇化钠纳米晶体中共掺杂锰离子和铅离子等金属离子,实现了铒离子很强单带红光上转换发射,但结果发现随着锰离子和铅离子掺杂浓度的增加,氟钇化钠纳米晶体的晶相、尺寸、形貌均在发生改变,这也正是非稀土离子掺杂所引起不同之处。张小组通过共掺铈离子在立方相氟钇化钠(NaYF4)纳米晶体中,实现了钬离子上转换发射从绿光向红光转变(Guanying Chen,Haichun Liu,GabrielSomesfalean,Huijuan Liang and Zhiguo Zhang,Upconversion emission tuning fromgreen to red in Yb3+/Ho3+-codoped NaYF4nanocrystals by tridoping with Ce3+ions,Nanotechnology,2009,20:385704)。随后发明人所在的研究小组在Ce3+/Yb3+/Ho3+共掺杂的六方相NaY(Gd0.4)F4和立方相的NaLuF4晶体中也观测到相似的结果(Wei Gao,HairongZheng,Qingyan Han,Enjie He,Fangqi Gao,Ruibo Wang.Enhanced red upconversionluminescence by codoping Ce3+in β-NaY(Gd0.4)F4:Yb3+/Ho3+nanocrystals,Journal ofMaterials Chemistry C,2014,2(27):5327-5334;Wei Gao,Jun Dong,Jihong Liu,XuewenYan,Enhancement of red upconversion emission of cubic phase NaLuF4:Yb3+/Ho3+/Ce3+nanocrystals,Materials Research Bulletin.2016,80:256-262.)。但是发明人经多次实验发现:引入铈离子之后,尽管实现了红色荧光发射,但钬离子与铈离子之间的能量传递导致了红光发射强度明显减弱,不利于该类材料的实际应用。因此进一步增强其红色荧光的发射变得尤为重要。
发明内容
本发明所要解决的技术问题在于克服现有技术中实现稀土掺杂的上转换氟化物材料红色荧光发射存在的荧光强度减弱的问题,提供一种简单、高效实现增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法。
解决上述技术问题所采用的技术方案是:在发射红色荧光的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体表面包覆一层NaLuF4:Yb3+同质壳,形成NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4:Yb3+核壳结构纳米晶体。
上述NaLuF4:Yb3+同质壳中Yb3+离子的摩尔浓度优选为5%~20%。
上述NaLuF4:Yb3+同质壳的厚度优选10~15nm。
上述的增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法具体为:将发射红色荧光的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体加入到十八烯和油酸体积比为2~3:1的混合液中,并加入LuCl3和YbCl3,在氩气环境下150~160℃搅拌1~2小时,然后降温至80~100℃,滴加氢氧化钠的甲醇溶液和氟化铵的甲醇溶液,滴加完后,60~70℃搅拌1.5~2小时,随后升温至110~120℃,并抽走甲醇气体,再升温至300~320℃反应0.5~1小时,然后冷却至室温,用乙醇和环己烷交替洗涤反应液并离心,得到增强红色荧光的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4:Yb3+核壳结构纳米晶体。
上述方法中,NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体与氢氧化钠、氟化铵的摩尔比为1:3.5~4.5:2.0~3.0,LuCl3与YbCl3的摩尔比为80:20~95:5,LuCl3、YbCl3的总摩尔量与NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体的摩尔量之比为1:1。
本发明中发射红色荧光的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+(其中百分数为相应离子的摩尔百分比,即Lu3+:Yb3+:Ho3+:Ce3+=76:20:2:12,下同)纳米晶体根据文献“ShiFeng and Zhao Yue,Sub-10nm and monodisperseβ-NaYF4:Yb,Tm,Gd nanocrystals withintense ultraviolet upconversion luminescence,Journal of Materials ChemistryC,2014,2,2198–2203”公开的制备NaYF4:20%Yb3+/2%Ho3+纳米晶体的方法制备而成,只需将该文献中制备NaYF4:20%Yb3+/2%Ho3+纳米晶体所用的YCl3用相应配比的LuCl3和CeCl3替换,具体制备方法为:将30.0mL十八烯和12.0mL油酸加入干燥好的三口烧瓶中,随后加入0.576g LuCl3、0.154g YbCl3、0.015g HoCl3和0.019g CeCl3,在氩气环境下160℃剧烈搅拌1小时,当温度降到90℃时,将20.0mL含0.20g氢氧化钠的甲醇溶液和20.0mL含0.296g氟化铵的甲醇溶液缓慢滴加到上述溶液中,滴加完毕后,保持60℃搅拌1小时,随后升温至110℃,并通过真空泵抽走甲醇气体,再将温度快速升高到300℃反应1小时,然后冷却至室温,用乙醇和环己烷交替洗涤反应液并离心,得到发射红色荧光的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体。
与现有技术相比,本发明的有益效果如下:
1、本发明采用化学热分解的方法制备发射红色荧光的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体,并在相同制备条件下,采用逐层生长的方法在其表面包覆NaLuF4:Yb3+同质壳,构建NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4:Yb3+核壳结构,通过改变同质壳中镱离子掺杂浓度,调控壳中镱离子与核中钬离子之间能量传递效率,同时构建的镱掺杂氟镥化钠同质壳也可有效降低镱/钬/铈共掺杂氟镥化钠核的表面缺陷,从而通过两种不同的途径实现了NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体的红色荧光增强,当NaLuF4:Yb3+同质壳中掺杂的Yb3+离子摩尔浓度为10%时,其红色荧光发射强度可达到NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体的5.6倍。
2、本发明不仅可实现对NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体的有效修饰,同时可实现核壳掺杂不同离子之间相互作用关系,即有效的能量转移过程,从而使红色荧光发射增强,而且该方法实施过程较为简单,效果显著,易于推广应用。
3、本发明方法得到的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4:Yb3+核壳结构纳米晶体易溶于水,稳定性及分散性都相对较好,可被广泛应用于红色荧光粉、防伪技术,尤其是生物成像及生物标记,可有效降低生物组织对其的吸收,提高检测的灵敏度。
附图说明
图1是NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体的透射电镜图。
图2是实施例1中NaLuF4:20%Yb3+/2Ho3+/12%Ce3+@NaLuF4:10%Yb3+核壳结构纳米晶体的透射电镜图。
图3是实施例1中NaLuF4:20%Yb3+/2Ho3+/12%Ce3+@NaLuF4:10%Yb3+核壳结构纳米晶体的XRD图。
图4是实施例2中NaLuF4:20%Yb3+/2Ho3+/12%Ce3+@NaLuF4:5%Yb3+核壳结构纳米晶体的透射电镜图。
图5实施例3中NaLuF4:20%Yb3+/2Ho3+/12%Ce3+@NaLuF4:20%Yb3+核壳结构纳米晶体的透射电镜图。
图6是实施例1~3中NaLuF4:Yb3+同质壳掺杂的Yb3+离子摩尔浓度对NaLuF4:20%Yb3+/2Ho3+/12%Ce3+@NaLuF4:Yb3+核壳结构纳米晶体中红色荧光发射性能的影响。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将0.40g(2.0mmol)平均颗粒尺寸为23nm的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体(如图1所示)加入到30.0mL十八烯和12.0mL油酸加入干燥好的三口烧瓶中,随后加入0.700g(1.80mmol)LuCl3和0.077g(0.20mmol)YbCl3,在氩气环境下160℃剧烈搅拌1小时,当温度降到90℃时,将20.0mL含0.20g(5.0mmol)氢氧化钠的甲醇溶液和20.0mL含0.296g(7.8mmol)氟化铵的甲醇溶液缓慢滴加到上述溶液中,滴加完毕后,保持60℃搅拌1小时,随后升温至110℃,并通过真空泵抽走甲醇气体,再将温度快速升高到300℃反应0.5小时,然后冷却至室温,用乙醇和环己烷交替洗涤反应液并离心,得到NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4:10%Yb3+核壳结构纳米晶体。由图2可见,所得样品的平均颗粒尺寸约为35nm,NaLuF4:10%Yb3+同质壳的平均厚度约为12nm。由图3可见,其测试XRD图谱与标准卡(JCPDS.NO 27-0276)一致,从而证实所得NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4:10%Yb3+为纯六方相的晶体结构。
实施例2
将0.40g(2.0mmol)平均颗粒尺寸为23nm的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体加入到30.0mL十八烯和12.0mL油酸加入干燥好的三口烧瓶中,随后加入0.739g(1.90mmol)LuCl3和0.038g(1.0mmol)YbCl3,在氩气环境下160℃剧烈搅拌1小时,当温度降到90℃时,将20.0mL含0.20g(5.0mmol)氢氧化钠的甲醇溶液和20.0mL含0.296g(7.8mmol)氟化铵的甲醇溶液缓慢滴加到上述溶液中,滴加完毕后,保持60℃搅拌1小时,随后升温至110℃,并通过真空泵抽走甲醇气体,再将温度快速升高到300℃反应0.5小时,然后冷却至室温,用乙醇和环己烷交替洗涤反应液并离心,得到NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4:5%Yb3+核壳结构纳米晶体。由图4可见,所得样品的平均颗粒尺寸约为36nm,NaLuF4:5%Yb3+同质壳的平均厚度约为13nm。
实施例3
将0.40g(2.0mmol)平均颗粒尺寸为23nm的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体加入到30.0mL十八烯和12.0mL油酸加入干燥好的三口烧瓶中,随后加入0.623g(1.60mmol)LuCl3和0.154g(4.0mmol)YbCl3,在氩气环境下160℃剧烈搅拌1小时,当温度降到90℃时,将20.0mL含0.20g(5.0mmol)氢氧化钠的甲醇溶液和20.0mL含0.296g(7.8mmol)氟化铵的甲醇溶液缓慢滴加到上述溶液中,滴加完毕后,保持60℃搅拌1小时,随后升温至110℃,并通过真空泵抽走甲醇气体,再将温度快速升高到300℃反应0.5小时,然后冷却至室温,用乙醇和环己烷交替洗涤反应液并离心,得到NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4:20%Yb3+核壳结构纳米晶体。由图5可见,所得样品的平均颗粒尺寸约为38nm,NaLuF4:20%Yb3+同质壳的平均厚度为15nm。
为了证明本发明的有益效果,发明人采用980nm的半导体固体激光器作为激发光源,激发功率为120mW,激发光斑直径为1μm。光谱采集和记录使用焦距为0.75cm的三光栅单色仪(SP 2750i)与CCD系统(ACTON,PIXIS/00)共同完成。获取实施例1~3制备的核壳结构纳米晶体的红色荧光发射,结果见图6。由图6可见,与原始的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体相比,实施例1、2、3制备的核壳结构纳米晶体的红色荧光强度依次增强了5.6倍、1.8倍、2.3倍。

Claims (3)

1.一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法,其特征在于:该方法是在发射红色荧光的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体表面包覆一层NaLuF4:Yb3+同质壳,形成NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@ NaLuF4:Yb3+核壳结构纳米晶体,所述NaLuF4:Yb3+同质壳中Yb3+离子的掺杂摩尔浓度为5%~20%,NaLuF4:Yb3+同质壳的厚度为10~15nm。
2.根据权利要求1所述的增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法,其特征在于:将发射红色荧光的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体加入到十八烯和油酸体积比为2~3:1的混合液中,并加入LuCl3和YbCl3,在氩气环境下150~160℃搅拌1~2小时,然后降温至80~100℃,滴加氢氧化钠的甲醇溶液和氟化铵的甲醇溶液,滴加完后60~70℃搅拌1.5~2小时,随后升温至110~120℃,并抽走甲醇气体,再升温至300~320℃反应0.5~1小时,然后冷却至室温,用乙醇和环己烷交替洗涤反应液并离心,得到增强红色荧光的NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4:Yb3+核壳结构纳米晶体。
3.根据权利要求2所述的增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法,其特征在于:所述NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体与氢氧化钠、氟化铵的摩尔比为1:3.5~4.5:2.0~3.0,LuCl3与YbCl3的摩尔比为80:20~95:5,LuCl3、YbCl3的总摩尔量与NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体的摩尔量之比为1: 1。
CN201711045047.XA 2017-10-31 2017-10-31 一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法 Active CN107722967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711045047.XA CN107722967B (zh) 2017-10-31 2017-10-31 一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711045047.XA CN107722967B (zh) 2017-10-31 2017-10-31 一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法

Publications (2)

Publication Number Publication Date
CN107722967A CN107722967A (zh) 2018-02-23
CN107722967B true CN107722967B (zh) 2018-08-31

Family

ID=61203475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711045047.XA Active CN107722967B (zh) 2017-10-31 2017-10-31 一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法

Country Status (1)

Country Link
CN (1) CN107722967B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108865146A (zh) * 2018-08-17 2018-11-23 广州大学 一种发射高强度红光的上转换荧光粉、其制备方法及应用
CN112080278B (zh) * 2020-09-21 2021-11-02 东北林业大学 一种上/下转换双模式发光纳米晶及其制备方法和应用
CN112358879B (zh) * 2020-12-04 2022-07-19 武汉工程大学 一种核壳纳米复合发光材料及其制备方法
CN112724977B (zh) * 2021-01-19 2022-05-27 吉林大学 一种尺寸可调的β-Na(LuY)F4互溶体纳米晶的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618284B (zh) * 2012-03-15 2014-10-01 吉林大学 具有800nm强近红外上转换发射特性的生物荧光纳米颗粒及其应用
CN103865538A (zh) * 2014-02-23 2014-06-18 复旦大学 一种Nd3+敏化的上/下转换双模荧光纳米材料及其合成方法
CN105482819A (zh) * 2015-12-13 2016-04-13 复旦大学 红外光激发荧光寿命可调的上转换纳米晶体材料及其制备方法

Also Published As

Publication number Publication date
CN107722967A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Dai et al. Ligand-passivated Eu: Y2O3 nanocrystals as a phosphor for white light emitting diodes
CN107722967B (zh) 一种增强镱/钬/铈共掺杂氟镥化钠纳米晶体中红色荧光发射的方法
Kumar Rai et al. Photoluminescence study of Y2O3: Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications
Shang et al. Luminescence and energy transfer properties of Ca2Ba3 (PO4) 3Cl and Ca2Ba3 (PO4) 3Cl: A (A= Eu2+/Ce3+/Dy3+/Tb3+) under UV and low-voltage electron beam excitation
Lovisa et al. White photoluminescence emission from ZrO2 co-doped with Eu3+, Tb3+ and Tm3+
Raju et al. Luminescence properties of Dy3+: GdAlO3 nanopowder phosphors
Liang et al. Enhancement of upconversion luminescence of Y2O3: Er3+ nanocrystals by codoping Li+–Zn2+
Raju et al. Optical temperature sensing properties of Stokes fluorescence-based high color-purity green-emitting Sr2Gd8 (SiO4) 6O2: Er3+ phosphors
Kim et al. Li doping effects on the upconversion luminescence of Yb3+/Er3+-doped ABO4 (A= Ca, Sr; B= W, Mo) phosphors
Oliveira et al. The influence of the complexing agent on the luminescence of multicolor-emitting Y2O3: Eu3+, Er3+, Yb3+ phosphors obtained by the Pechini's method
Garcia et al. Effects of the Pechini's modified synthetic route on structural and photophysical properties of Eu3+ or Tb3+-doped LaAlO3
Katyayan et al. Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications
Zhang et al. Blue emission of ZrO2: Tm nanocrystals with different crystal structure under UV excitation
Wang et al. Effects of Er3+ concentration on UV/blue upconverted luminescence and a three-photon process in the cubic nanocrystalline Y2O3: Er3+
Zhang et al. Photoluminescence and optical temperature measurement of Mn4+/Er3+ co-activated double perovskite phosphor through site-advantageous occupation
Jung White luminescent calcium molybdate phosphor synthesized at room temperature via the Co-precipitation method used in a LED flexible composite
Chen et al. Controlled synthesis and photoluminescence properties of Bi 2 SiO 5: Eu 3+ core-shell nanospheres with an intense 5 D 0→ 7 F 4 transition
Li et al. Synthesis and luminescence properties of Ho3+/Yb3+ co-doped bismuth tungstate nanopowder
Hussain et al. Photoluminescence and cathodoluminescence properties of Sr2Gd8Si6O26: RE3+ (RE3+= Tb3+ or Sm3+) phosphors
Li et al. Electronic transition pathways in energy transfer processes for upconversion photoluminescence of Yb3+/Ho3+ co-doped NaLa (MoO4) 2 microcrystals
CN108531184A (zh) 一种多波段激发的多色复合纳米材料及其制备方法
López-Luke et al. Improving pure red upconversion emission of Co-doped Y2O3: Yb3+–Er3+ nanocrystals with a combination of sodium sulfide and surfactant Pluronic-F127
Jamalaiah et al. Structural and optical analysis of YAl3 (BO3) 4: Pr3+ phosphors for lighting applications
Hirano et al. Intense up-conversion luminescence of Er3+/Yb3+ co-doped YNbO4 through hydrothermal route
Sheng et al. Solvothermal synthesis and luminescence properties of BaCeF 5, and BaCeF 5: Tb 3+ nanocrystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant