CN107715889A - 一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法 - Google Patents

一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法 Download PDF

Info

Publication number
CN107715889A
CN107715889A CN201710816624.4A CN201710816624A CN107715889A CN 107715889 A CN107715889 A CN 107715889A CN 201710816624 A CN201710816624 A CN 201710816624A CN 107715889 A CN107715889 A CN 107715889A
Authority
CN
China
Prior art keywords
zno
magnetic
nano composite
composite photocatalyst
photocatalyst material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710816624.4A
Other languages
English (en)
Inventor
王艳芬
孙兆奇
张苗
高娟
金丽萍
王行之
王壮
房璐璐
何刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201710816624.4A priority Critical patent/CN107715889A/zh
Publication of CN107715889A publication Critical patent/CN107715889A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化材料领域,具体涉及一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法,所述光催化材料由直径为600‑800nm的圆盘状Fe3O4、尺寸为150‑250nm的不规则片状Fe3O4以及修饰所述圆盘状Fe3O4、不规则片状Fe3O4的长度为200‑1000nm的棒状ZnO组装而成。本发明的有益效果是按照本发明方法制备的磁性Fe3O4/ZnO纳米复合光催化材料,是由棒状纳米ZnO修饰圆盘状或不规则片状Fe3O4组装而成,其开阔的表面结构和多的孔隙,有利于有机污染物的扩散和光反应中羟基自由基的运输,进而提高其光生量子效率和光催化效率。

Description

一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法
技术领域
本发明属于光催化材料领域,具体涉及一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法。
背景技术
近年来,纳米半导体材料因其独特的物理化学性质、经济节能且无二次污染,成为本世纪极具应用前景且能解决环境和全球能源供给问题的研究热点,在光催化降解有机有机废水、太阳能电池及气体传感器等领域具有广泛的应用前景。纳米氧化锌作为一种重要的n型半导体材料,由于其高激子束缚能、高光敏性、价格低廉、性能稳定且无毒等特点,被视为TiO2在光催化领域某些方面理想的替代材料。然而,目前所获得的ZnO纳米粉体直接用于有毒有害废水的光催化降解反应时,大多是直接分散在悬浮体系中,存在着易凝聚和难回收等缺点,容易造成资源浪费和新的更难于处理的二次污染。
研究表明,将半导体纳米颗粒制备成负载型光催化剂,可以极大提高其分离和回收率。纳米Fe3O4作为一种廉价的铁氧材料,不仅具有大的比表面积和多的表面活性中心,而且由于优异的磁性质使得Fe3O4负载的光催化半导体材料(如ZnO),很容易在外磁场的作用下实现催化剂的分离,为解决光催化剂难回收问题提供了一种重要的研究思路。例如:CN103194222A公布的Fe3O4/ZnO复合纳米颗粒是采用ZnAc2和LiOH作为前驱体直接在Fe3O4纳米微球表面进行包裹生长ZnO外壳获得的核壳结构微球。CN105214090A利用二甘醇、二乙醇胺与Fe2+和Fe3+进行络合后与碱溶液发生共沉淀反应获得Fe3O4纳米球,然后通过将Fe3O4纳米球与二甘醇、二乙醇胺的Zn2+络合溶液混合液继续与碱溶液发生共沉淀制备Fe3O4/ZnO核壳纳米球。目前,虽然已经有相关报道来制备Fe3O4/ZnO复合光催化材料,但是往往形貌单一,光催化活性不高,或者实验步骤繁琐,条件苛刻,使其实际的生产和应用受到很大限制。因此,如何采用简单有效的制备方法获得新貌新颖、易于回收且光催化性能优异的磁性Fe3O4/ZnO纳米复合光催化材料是仍需解决的关键课题。
发明内容
为了解决上述问题,本发明的目的是提供一种磁性Fe3O4/ZnO纳米复合光催化材料,具有优异的光催化性能,同时制备方法简单有效。
本发明提供了如下的技术方案:
一种磁性Fe3O4/ZnO纳米复合光催化材料,所述光催化材料由直径为600-800nm的圆盘状Fe3O4、尺寸为150-250nm的不规则片状Fe3O4以及修饰所述圆盘状Fe3O4、不规则片状Fe3O4的长度为200-1000nm的棒状ZnO组装而成。
优选的,所述纳米复合光催化材料中Fe3O4与ZnO的摩尔比为1:3。
本发明还提供了一种磁性Fe3O4/ZnO纳米复合光催化材料的制备方法,包括如下步骤:
S1、采用水热法制备圆盘状Fe3O4和片状Fe3O4微粒:
S11、将Fe(NO3)3·9H2O溶于乙二醇中,在磁力搅拌的条件下将氢氧化钠加入到上述乙二醇溶液中,得到先驱溶液,常温下继续搅拌10-20min,接着将先驱溶液倒入聚四氟乙烯反应釜中,在180-200℃下反应12h,将产物自然冷却到室温,倒入烧杯中利用磁铁使沉淀物快速沉降,取出沉淀物并使用无水乙醇和去离子水依次清洗2-3次,在50-60℃真空下干燥15-20h,得到黑色产物Fe3O4
S2、采用低温液相法在圆盘状Fe3O4和片状Fe3O4微粒表面生长棒状的ZnO:
S21、将S1中得到的黑色产物Fe3O4在磁力搅拌的条件下均匀分散到去离子水中,接着依次加入氯化锌和氢氧化钠,常温下继续搅拌5-10min,在密闭条件下80-100℃反应12h,待反应装置冷却到室温,利用磁铁将沉淀物快速沉降分离并使用无水乙醇和去离子水依次清洗2-3次,在60-80℃真空下干燥15-20h,即获得磁性Fe3O4/ZnO纳米复合光催化材料。
优选的,步骤S11中,Fe(NO3)3·9H2O与氢氧化钠的摩尔比为1:5,Fe(NO3)3·9H2O的物质的量与乙二醇的体积比为1.0mmol:(9mL-10mL)。
优选的,步骤S21中,氯化锌与氢氧化钠的摩尔比为1:5,氯化锌的物质的量与去离子水的体积比为1.0mmol:(15mL-20mL),Fe3O4与氯化锌的摩尔比为1:(1-3)。
优选的,步骤S11中,所述反应釜为聚四氟乙烯反应釜。
本发明的有益效果是:
1、本发明方法采用水热法和低温液相法相结合的方法合成磁性Fe3O4/ZnO纳米复合光催化材料,不仅制备路线简单,而且不涉及昂贵设备和表面活性剂,成本低廉,产物纯度较高,产量较高,适合批量生产。
2、本发明方法制备的磁性Fe3O4/ZnO纳米复合光催化材料,是由棒状纳米ZnO修饰圆盘状或不规则片状Fe3O4组装而成,圆盘状或不规则片状Fe3O4具有开阔的表面结构和分级多孔的新颖结构,有利于有机污染物的扩散和光反应中羟基自由基的运输,进而提高其光生量子效率和光催化效率。
3、本发明方法制备的磁性Fe3O4/ZnO纳米复合光催化材料,保持了Fe3O4的超顺磁特性,可以利用其稳定的磁性实现复合催化剂在磁场作用下的快速沉降回收,可多次重复使用,降低使用成本,延长使用寿命。
4、采用本发明方法制备的磁性Fe3O4/ZnO纳米复合光催化材料,在亚甲基蓝的有机染料废水处理中具有良好的光催化降解效果,显示了潜在的应用前景。
附图说明
图1为本发明实施例1制备的(a)Fe3O4和(b)Fe3O4/ZnO纳米复合光催化材料的XRD图谱;
图2为本发明制备的光催化材料的SEM图片:(a)Fe3O4,(b-d)分别为实施例1、实施例2和实施例3制备的Fe3O4/ZnO纳米复合光催化材料;
图3为本发明实施例1制备的(a)Fe3O4/ZnO纳米复合光催化材料和(b)Fe3O4的热重曲线;
图4为本发明实施例1制备的(a)Fe3O4和(b)Fe3O4/ZnO的室温磁滞回线谱图;
图5为本发明实施例1制备的(a)Fe3O4/ZnO纳米复合光催化材料和(b)单一相ZnO的磁性分离测试图;
图6为本发明实施例1-3所制备的三种不同摩尔比的Fe3O4/ZnO纳米复合光催化材料作为光催化剂在紫外光下降解亚甲基蓝溶液的降解率曲线图。
具体实施方式
下面结合具体实施例对本发明做具体说明。
实施例1
S1、采用水热法制备圆盘状Fe3O4和片状Fe3O4微粒:
S11、称取4mmol的Fe(NO3)3·9H2O溶于40mL乙二醇中,在磁力搅拌的条件下将20mmol氢氧化钠加入上述乙二醇中,得到先驱溶液,常温下继续搅拌20min,接着将先驱溶液倒入60mL聚四氟乙烯反应釜中,在200℃下反应12h,将产物自然冷却到室温,倒入烧杯中利用磁铁使沉淀物快速沉降,取出沉淀物并使用无水乙醇和去离子水依次清洗3次,在60℃真空下干燥20h,得到黑色产物Fe3O4
S2、采用低温液相法在圆盘状Fe3O4和片状Fe3O4微粒表面生长棒状的ZnO:
S21、称取2mmolFe3O4产物在磁力搅拌的条件下均匀分散到40mL去离子水中,接着依次加入2mmol氯化锌和10mmol氢氧化钠,常温下继续搅拌5min,在密闭条件下80℃反应12h,待反应装置冷却到室温,利用磁铁将沉淀物快速沉降分离并使用无水乙醇和去离子水依次清洗3次,在60℃真空下干燥20h,即获得Fe3O4与ZnO摩尔比为1:1的磁性Fe3O4/ZnO纳米复合光催化材料。
实施例2:
S1、采用水热法制备圆盘状Fe3O4和片状Fe3O4微粒:
S11、称取4mmol的Fe(NO3)3·9H2O溶于36mL乙二醇中,在磁力搅拌的条件下将20mmol氢氧化钠加入到上述乙二醇中,得到先驱溶液,常温下继续搅拌10min;接着将先驱溶液倒入60mL聚四氟乙烯反应釜中,在180℃下反应12h,将产物自然冷却到室温,倒入烧杯中利用磁铁使沉淀物快速沉降,取出沉淀物并使用无水乙醇和去离子水依次清洗3次,在50℃真空下干燥15h,得到黑色产物Fe3O4
S2、采用低温液相法在圆盘状Fe3O4和片状Fe3O4微粒表面生长棒状的ZnO:
S21、称取2mmolFe3O4产物在磁力搅拌的条件下均匀分散到60mL去离子水中,接着依次加入4mmol氯化锌和20mmol氢氧化钠,常温下继续搅拌5min,在密闭条件下80℃反应12h,待反应装置冷却到室温,利用磁铁将沉淀物快速沉降分离并使用无水乙醇和去离子水依次清洗3次,在80℃真空下干燥15h,即获得Fe3O4与ZnO摩尔比为1:2的磁性Fe3O4/ZnO纳米复合光催化材料。
实施例3:
S1、采用水热法制备圆盘状Fe3O4和片状Fe3O4微粒:
S11、称取4mmol的Fe(NO3)3·9H2O溶于40mL乙二醇中,在磁力搅拌的条件下将20mmol氢氧化钠加入上述乙二醇中,得到先驱溶液,常温下继续搅拌20min,接着将先驱溶液倒入60mL聚四氟乙烯反应釜中,在200℃下反应12h,将产物自然冷却到室温,倒入烧杯中利用磁铁使沉淀物快速沉降,取出沉淀物并使用无水乙醇和去离子水依次清洗3次,在60℃真空下干燥20h,得到黑色产物Fe3O4
S2、采用低温液相法在圆盘状Fe3O4和片状Fe3O4微粒表面生长棒状的ZnO:
S21、称取2mmolFe3O4产物在磁力搅拌的条件下均匀分散到90mL去离子水中,接着依次加入6mmol氯化锌和30mmol氢氧化钠,常温下继续搅拌10min,在密闭条件下100℃反应12h,待反应装置冷却到室温,利用磁铁将沉淀物快速沉降分离并使用无水乙醇和去离子水依次清洗3次,在60℃真空下干燥20h,即获得Fe3O4与ZnO摩尔比为1:3的磁性Fe3O4/ZnO纳米复合光催化材料。
结果与讨论
将上述实施例中获得的产物进行表征,采用X-射线粉末衍射仪(XRD)测试产物的晶体结构;采用扫描电子显微镜(SEM)观察产物的微观形貌;采用热重分析仪对产物进行热重分析;采用磁强计对产物进行磁性分析;将超声处理过的磁性Fe3O4/ZnO纳米复合光催化剂溶液放置在磁铁上,放置3分钟观察效果来分析其沉降效果;采用紫外光(300W氙灯,距离悬浮液20cm)照射有机染料亚甲基蓝(60mL,5×10-5mol/L)来评价磁性Fe3O4/ZnO纳米复合光催化材料(100mg)的光催化降解性能。
图1给出了上述实例1中所制备的Fe3O4前驱物和Fe3O4/ZnO复合纳米光催化材料的XRD图谱。从图1中可以看出,图1b中除了包含图1a中的衍射峰外,还出现了另一套衍射峰:在2θ=31.75°,34.39°,36.2°,47.58°,56.°6,62.85°,68.0°,69.13°的峰分别对应ZnO的(100),(002),(101),(102),(110),(103),(112)和(201)的晶面衍射,可以归为六方纤锌矿结构ZnO(JCPDS No.36-1451)。该结果证实了产物是结晶良好的Fe3O4和ZnO组成的两相复合物。
图2给出了上述实施例所制备的光催化材料的SEM图片,其中,(a)为Fe3O4,(b-d)分别为实施例1、实施例2和实施例3制备的Fe3O4/ZnO纳米复合光催化材料,Fe3O4与ZnO的摩尔比例分别为1:1,1:2,1:3。研究发现,Fe3O4是由尺寸均匀的圆盘状和不规则的片状颗粒聚集而成,圆盘状Fe3O4的直径为600-800nm,不规则片状Fe3O4颗粒的尺寸为150-250nm。通过与单一相Fe3O4形貌对比,可以看出随着二者摩尔比例的增加,圆盘状或碎片状Fe3O4表面负载生长的棒状ZnO(图2b、c、d中椭圆中所示)逐渐增多,尺寸从200nm逐步增大到1000nm,并且分散较均匀。同时,棒状ZnO修饰纳米Fe3O4形成了稳定的复合物,拥有较开阔的结构和大的比表面积,利于产物光反应中羟基自由基的运输和有机污染物的扩散。
图3给出了上述实施例1所制备的Fe3O4/ZnO纳米复合光催化材料和Fe3O4的热重曲线。从图3中可以看出,Fe3O4/ZnO复合物有两个失重台阶,第一个失重台阶大约起始在100℃,终止在300℃,这可能是样品中含有水分、无水乙醇、乙二醇和CO2的失重。第二个失重台阶温度大约在450℃,终止于650℃,剩余物质为Fe3O4/ZnO复合物。
图4给出了上述实施例1所制备的Fe3O4/ZnO纳米复合光催化材料和Fe3O4的室温磁滞回线谱图。结果表明,Fe3O4和Fe3O4/ZnO的磁饱和强度分别为89.52emu/g和44.77emu/g。与Fe3O4相比,ZnO的加入虽然使得Fe3O4/ZnO的磁饱和强度有所下降,但是并没有改变其超顺磁性,仍属于超顺磁性物质。
图5给出了上述实例1中所制备的Fe3O4/ZnO纳米复合光催化材料和单一相的ZnO的磁性分离测试图。其中图5a是Fe3O4/ZnO纳米复合光催化材料的磁性分离测试图,图5b是单一相的ZnO的磁性分离测试图,结果表明,均匀分散在去离子水中的Fe3O4/ZnO溶液,在磁铁上放置三分钟后,产物基本完全沉降,而ZnO的水溶液仍然浑浊,烧杯底部只有少量沉淀物,这表明了Fe3O4/ZnO具有很好的磁分离能力,易分离可重复利用。
图6给出了上述实施例1-3所制备的三种不同摩尔比的Fe3O4/ZnO纳米复合光催化材料作为光催化剂在紫外光下降解亚甲基蓝溶液的降解曲线图,Fe3O4与ZnO的摩尔比分别为1:1,1:2,1:3。从图6中可以看出,在紫外光照射180min后,三种Fe3O4/ZnO纳米复合光催化剂对亚甲基蓝的降解率分别为93%,95%和91%,均显示了良好的光催化效果。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种磁性Fe3O4/ZnO纳米复合光催化材料,其特征在于,所述光催化材料由直径为600-800nm的圆盘状Fe3O4、尺寸为150-250nm的不规则片状Fe3O4以及修饰所述圆盘状Fe3O4、不规则片状Fe3O4的长度为200-1000nm的棒状ZnO组装而成。
2.根据权利要求1所述的一种一种磁性Fe3O4/ZnO纳米复合光催化材料,其特征在于,所述纳米复合光催化材料中Fe3O4与ZnO的摩尔比为1:3。
3.一种如权利要求1或2所述的磁性Fe3O4/ZnO纳米复合光催化材料的制备方法,其特征在于,包括如下步骤:
S1、采用水热法制备圆盘状Fe3O4和片状Fe3O4微粒:
S11、将Fe(NO3)3·9H2O溶于乙二醇中,在磁力搅拌的条件下将氢氧化钠加入到上述乙二醇溶液中,得到先驱溶液,常温下继续搅拌10-20min,接着将先驱溶液倒入反应釜中,在180-200℃下反应12h,将产物自然冷却到室温,倒入烧杯中利用磁铁使沉淀物快速沉降,取出沉淀物并使用无水乙醇和去离子水依次清洗2-3次,在50-60℃真空下干燥15-20h,得到黑色产物Fe3O4
S2、采用低温液相法在圆盘状Fe3O4和片状Fe3O4微粒表面生长棒状的ZnO:
S21、将S1中得到的黑色产物Fe3O4在磁力搅拌的条件下均匀分散到去离子水中,接着依次加入氯化锌和氢氧化钠,常温下继续搅拌5-10min,在密闭条件下80-100℃反应12h,待反应装置冷却到室温,利用磁铁将沉淀物快速沉降分离并使用无水乙醇和去离子水依次清洗2-3次,在60-80℃真空下干燥15-20h,即获得磁性Fe3O4-ZnO纳米复合光催化材料。
4.根据权利要求3所述的一种磁性Fe3O4/ZnO纳米复合光催化材料的制备方法,其特征在于,步骤S11中,Fe(NO3)3·9H2O与氢氧化钠的摩尔比为1:5,Fe(NO3)3·9H2O的物质的量与乙二醇的体积比为1.0mmol:(9mL-10mL)。
5.根据权利要求3所述的一种磁性Fe3O4/ZnO纳米复合光催化材料的制备方法,其特征在于,步骤S21中,氯化锌与氢氧化钠的摩尔比为1:5,氯化锌的物质的量与去离子水的体积比为1.0mmol:(15mL-20mL),Fe3O4与氯化锌的摩尔比为1:(1-3)。
6.根据权利要求3所述的一种磁性Fe3O4/ZnO纳米复合光催化材料的制备方法,其特征在于,步骤S11中,所述反应釜为聚四氟乙烯反应釜。
CN201710816624.4A 2017-09-12 2017-09-12 一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法 Pending CN107715889A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710816624.4A CN107715889A (zh) 2017-09-12 2017-09-12 一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710816624.4A CN107715889A (zh) 2017-09-12 2017-09-12 一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107715889A true CN107715889A (zh) 2018-02-23

Family

ID=61205951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710816624.4A Pending CN107715889A (zh) 2017-09-12 2017-09-12 一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107715889A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357144A (zh) * 2019-08-23 2019-10-22 中国科学院兰州化学物理研究所 一种类花状氧化锌/四氧化三铁吸波剂及其制备方法和吸波材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323466A (zh) * 2008-06-24 2008-12-17 杭州师范大学 纳米四氧化三铁的制备方法
CN105238349A (zh) * 2015-09-30 2016-01-13 西北大学 一种Fe3O4-ZnO纳米复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323466A (zh) * 2008-06-24 2008-12-17 杭州师范大学 纳米四氧化三铁的制备方法
CN105238349A (zh) * 2015-09-30 2016-01-13 西北大学 一种Fe3O4-ZnO纳米复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈理: "纳米ZnO复合材料的制备及其光催化性能的研究", 《中国优秀硕士全文数据库 工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357144A (zh) * 2019-08-23 2019-10-22 中国科学院兰州化学物理研究所 一种类花状氧化锌/四氧化三铁吸波剂及其制备方法和吸波材料
CN110357144B (zh) * 2019-08-23 2020-10-02 中国科学院兰州化学物理研究所 一种类花状氧化锌/四氧化三铁吸波剂及其制备方法和吸波材料

Similar Documents

Publication Publication Date Title
Chen et al. Fabrication of a magnetically separable and dual Z-scheme PANI/Ag3PO4/NiFe2O4 composite with enhanced visible-light photocatalytic activity for organic pollutant elimination
Zhou et al. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity
Che et al. Construction of SrTiO3/Bi2O3 heterojunction towards to improved separation efficiency of charge carriers and photocatalytic activity under visible light
Ao et al. Fabrication of novel p–n heterojunction BiOI/La 2 Ti 2 O 7 composite photocatalysts for enhanced photocatalytic performance under visible light irradiation
CN108479759B (zh) 一种可见光响应型镧掺杂钨酸铋催化剂及其制备方法
Wang et al. Low-temperature fabrication of Bi 25 FeO 40/rGO nanocomposites with efficient photocatalytic performance under visible light irradiation
Li et al. Novel ternary composites: Preparation, performance and application of ZnFe2O4/TiO2/polyaniline
Aksoy et al. Visible light-driven hydrogen evolution by using mesoporous carbon nitride-metal ferrite (MFe2O4/mpg-CN; M: Mn, Fe, Co and Ni) nanocomposites as catalysts
Xu et al. Construction of Ag-modified TiO 2/ZnO heterojunction nanotree arrays with superior photocatalytic and photoelectrochemical properties
Li et al. Visible light photocatalytic abatement of tetracycline over unique Z-scheme ZnS/PI composites
Chen et al. Composite magnetic photocatalyst Bi24O31Br10/NiFe2O4: hydrothermal preparation, characterization and photocatalytic mechanism
Sridevi et al. Influence of Fe doping on structural, physicochemical and biological properties of CdSe nanoparticles
Shi et al. Embedding Cu3P quantum dots onto BiOCl nanosheets as a 0D/2D S-scheme heterojunction for photocatalytic antibiotic degradation
Rana Structural, optical, electrical, and photocatalytic application of NiFe2O4@ NiO nanocomposites for methylene blue dye
Zhang et al. Fabrication of a visible-light In 2 S 3/BiPO 4 heterojunction with enhanced photocatalytic activity
Wang et al. Eco-friendly synthesis of a novel magnetic Bi4O5Br2/SrFe12O19 nanocomposite with excellent photocatalytic activity and recyclable performance
Zhong et al. Synthesis of Bi 2 WO 6/ZnFe 2 O 4 magnetic composite photocatalyst and degradation of tetracycline hydrochloride under visible light
CN113145134A (zh) 一种基于矿物复合材料的可见光催化剂及其制备方法
Zhang et al. Investigation the high photocatalytic activity of magnetically separable graphene oxide modified BiOBr nanocomposites for degradation of organic pollutants and antibiotic
CN110227515A (zh) Bi2MoO6/BiPO4p-n异质结光催化剂、制备方法及其应用
Bhat et al. Enhanced photocatalytic degradation of crystal violet dye and high-performance electrochemical supercapacitor applications of hydrothermally synthesised magnetic bifunctional nanocomposite (Fe3O4/ZnO)
Zhou et al. Fabrication of g‐C3N4/Bi4O5Br2 2D Nanosheet Photocatalyst for Removal of Organic Pollutants under Visible Light Irradiation
CN107715889A (zh) 一种磁性Fe3O4/ZnO纳米复合光催化材料及其制备方法
Liu et al. Assembling BiOBr nanoplates on MIL-125 (Ti)–NH2 via group linkage towards effective dye-contaminated water purification
CN106881118B (zh) 一种离子交换法合成异质结光催化剂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180223

RJ01 Rejection of invention patent application after publication