CN107701329A - The electricity energy storage device day operation method of cogeneration cooling heating system containing regenerative resource - Google Patents

The electricity energy storage device day operation method of cogeneration cooling heating system containing regenerative resource Download PDF

Info

Publication number
CN107701329A
CN107701329A CN201710812880.6A CN201710812880A CN107701329A CN 107701329 A CN107701329 A CN 107701329A CN 201710812880 A CN201710812880 A CN 201710812880A CN 107701329 A CN107701329 A CN 107701329A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
mtr
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710812880.6A
Other languages
Chinese (zh)
Other versions
CN107701329B (en
Inventor
贾善杰
赵正龙
安勇
梁荣
赵凌汉
邹斌
吴奎华
郑志杰
李勃
冯亮
杨波
杨慎全
庞怡君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
University of Shanghai for Science and Technology
Original Assignee
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd, University of Shanghai for Science and Technology filed Critical State Grid Corp of China SGCC
Priority to CN201710812880.6A priority Critical patent/CN107701329B/en
Publication of CN107701329A publication Critical patent/CN107701329A/en
Application granted granted Critical
Publication of CN107701329B publication Critical patent/CN107701329B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

The invention discloses a kind of heat-storing device day operation method of cogeneration cooling heating system containing regenerative resource, it can obtain being advantageous to each period charge/discharge state decision-making for improving efficiency of energy utilization by obtaining " hour economic maximum charge/discharge electricity ", based on " hour economic maximum charge/discharge electricity ", to make full use of electric stored energy capacitance to improve efficiency of energy utilization as principle, the charge/discharge electricity amount of the electric energy storage device of each period is obtained, raising receives renewable energy source capability and improves efficiency of energy utilization.

Description

The electricity energy storage device day operation method of cogeneration cooling heating system containing regenerative resource
Technical field
The invention belongs to the operation control technology in comprehensive utilization of energy field, more particularly to cogeneration cooling heating system.
Background technology
Rationally using electric energy storage device be dissolve regenerative resource important means, distributed energy resource system Electric energy storage device in (Distributed Energy System) is equally to coordinate regenerative resource and CCHP The important tool of (Combined Cooling heating and power, abbreviation CCHP) system.As shown in figure 1, it is existing A kind of cogeneration cooling heating system, including generating set, generating waste-heat retracting device, Absorption Refrigerator, electric refrigerator etc.; Also include donkey boiler in the cold and hot electric system simultaneously.Wherein cooling load is supplied by Absorption Refrigerator or electric refrigerator Should.The electricity needs of deficiency is completed by power network power purchase, and insufficient heat energy is supplied by donkey boiler.
The tradition of CCHP shown in Fig. 1 further comprises renewable energy power generation device, and renewable energy power generation can To be that wind-power electricity generation can also be photovoltaic generation.In order to promote the consumption of regenerative resource, cogeneration cooling heating system contains electricity Energy storage device.How electric energy storage device runs raising efficiency of energy utilization, and it is CCHP system to promote regenerative resource consumption The key issue of system.
The content of the invention
The purpose of the present invention is by the operation of electric energy storage device in rational management cogeneration cooling heating system, is meeting system Efficiency of energy utilization and regenerative resource digestion capability are improved while cold and hot electric load.
To achieve the above object, the present invention adopts the following technical scheme that:
A kind of electricity energy storage device day operation method of cogeneration cooling heating system containing regenerative resource, the CCHP systems that it is applied are extremely Include generating set, renewable energy power generation device, the electricity refrigeration powered by generating set and renewable energy power generation device less Unit, reclaim generating set generating waste-heat heat reclamation device, connect heat reclamation device Absorption Refrigerator, by generating set The electric energy storage device of power supply;Renewable energy power generation includes wind-power electricity generation and photovoltaic generation;
Generated electricity in CCHP systems and be with the relation of generating waste-heat recovery;
Wherein:PCHP(t) it is the production electric energy of CCHP systems, unit kWh;QCHP(t) it is the production heat energy of CCHP systems, Unit is kWh;FCHP(t) it is the gas consumption of CCHP systems, unit kWh;ηCHP,HFor CCHP system heat recovery efficiencies; ηCHP,EFor CCHP system generating efficiencies;PCHP,MAX, PCHP,MINIt is the maximum of CHP systems respectively, minimum generated energy, unit kWh; A, b, c are the coefficient of CCHP generating efficiencies;F is generating set PGU output ratio;
Cool and thermal power balancing the load is in CCHP systems:
Wherein:LC(t) it is the refrigeration duty demand of CCHP systems, unit kWh;LH(t) needed for the thermic load of CCHP systems Ask, unit kWh;LE(t) it is the electrical load requirement of CCHP systems, unit kWh;PWT(t) it is wind-power electricity generation in CCHP systems The electric energy of production, unit kWh;PPV(t) electric energy produced for the photovoltaic generation of CCHP systems, unit kWh;PGRID(t) it is The electricity of CCHP systems buying power networks, unit kWh;QEC(t) it is for the production refrigerating capacity of CCHP system electric refrigerators, unit kWh;COPECFor the Performance Coefficient of electric refrigerator;QABC(t) refrigerating capacity is produced for CCHP systems Absorption Refrigerator, unit is kWh;COPABCFor the Performance Coefficient of Absorption Refrigerator;QBL(t) it is CCHP system supplymentary boiler for producing heat energy, unit kWh; PCE(t);For CCHP system electricity energy storage device charge capacities, unit kWh;PDCE(t) discharged for CCHP system thermoelectricity energy storage device Electricity, unit kWh;β is integer variable, and 1 represents charged state, and 0 represents discharge condition;
The charge/discharge process of electric energy storage device can promote the raising of efficiency of energy utilization, and electric energy storage device is run With following limitation:1) energy storage maximum capacity ESE,MAX, hold when the energy storage electricity of electric energy storage device reaches the maximum of electric energy storage device It can not continue to fill heat during amount;2) energy storage device limits Q in period t maximum charge electricityCE,MAX, period t charge capacity can not surpass Cross the limitation of maximum charge electricity;3) electric energy storage device limits Q in period t maximum discharge electricity amountDCE,MAX, period t discharge electricity amount is not It can exceed that the maximum discharge electricity amount limitation of electric energy storage device;
The LC(t), LH(t), LE(t)、PWTAnd P (t)PV(t) it is given value, wherein t=1,2 ..., T, T are future one The maximum number of period day;
Hour, economic maximum filled heat/thermal dischargeThree kinds of situations of calculation formula point calculate according to following formula:
Condition 1:
Condition 2
Condition 3
P'(t is obtained by following formula)
P " (t) is obtained by following formula
Wherein:k′CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) waste heat recovery heat Calculation Coefficient, it is calculated according to (7);k″CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t) waste heat recovery heat Calculation system) Number;It is (L for generated energyE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) generating efficiency;It is for generated energy (LE(t)-PWT(t)-PPV(t) generating efficiency);P ' (t) is that generating waste-heat recovery heat is LH(t)+LC(t)/COPABCWhen pair The generated energy answered;P " (t) is that generating waste-heat recovery heat is LH(t) corresponding generated energy when;
When specified charge level isIt is with discharge levelWhen, the charge capacity of period t electricity energy storage device is PCE (t), discharge electricity amount PDCE(t) calculated respectively according to (11) and (12);Day charge capacity is ECE, day discharge electricity amount be EDCH;Its In,
If day rechargeable electrical energy PCELess than energy storage maximum capacity ESE,MAX, reduce charge levelIf day rechargeable electrical energy ECEMore than energy storage maximum capacity ESE,MAX, improve charge levelIf day rechargeable electrical energy ECEEqual to energy storage maximum capacity ESE,MAX, the charge levelFor same day charge level;
If day discharge electricity amount EDCELess than rechargeable electrical energy ECEIt is multiplied by energy storage efficiency ηSE, improve discharge levelIf day puts Power consumption EDCEMore than rechargeable electrical energy ECEIt is multiplied by energy storage efficiency ηSE, reduce discharge levelIf day discharge electricity amount EDCEEqual to filling Electric energy ECEIt is multiplied by energy storage efficiency ηSE, the discharge levelFor same day discharge level;Day charge capacity and day discharge electricity amount meet Following formula:
ECE·ηSE=EDCE
Beneficial effect:
The electricity energy storage device day operation strategy of cogeneration cooling heating system containing regenerative resource that the present invention provides, is improved The charge/discharge of CCHP efficiency of energy utilization judges so that energy storage improves efficiency of energy utilization.Day operation strategy then maximum limit It make use of the stored energy capacitance of electric energy storage device degree, and give specific period charge/discharge electricity amount.
Brief description of the drawings
Fig. 1 is the system schematic of cogeneration cooling heating system in the prior art;
Fig. 2 is the flow signal of the electricity energy storage device day operation method of cogeneration cooling heating system containing regenerative resource of the invention Figure.
Embodiment
Below in conjunction with the accompanying drawings 2 and the invention will be further described by embodiment, following examples be it is descriptive, It is not limited, it is impossible to which protection scope of the present invention is limited with this.
The present invention's practices in the central controller of CCHP systems, and the purpose of the central controller is to set to generate electricity The generated energy P of machineCHP(t), electric refrigerator production refrigerating capacity QEC(t), Absorption Refrigerator production refrigerating capacity QABC(t), outsourcing Power grid electric PGRID(t), donkey boiler production heat QBL(t), the charge capacity P of electric energy storage deviceCEAnd generating electricity P (t)DCE (t).Implement comprising the following steps that for " the hot energy storage device day operation strategy of cogeneration cooling heating system containing regenerative resource " of the invention.
Step 1:The parameter of equipment is obtained ahead of time:1) efficiency calculation the coefficient a, b, c of generating set.2) electric refrigerator Energy efficiency coefficient COPEC;3) the energy efficiency coefficient COP of Absorption RefrigeratorABC;4) CCHP system generators group maximum generating watt PCHP,MAX, unit kWh;5) electric energy storage device energy storage maximum capacity ESE,MAX, unit kWh, electric energy storage device period t maximum Charge capacity QCE,MAX, unit kWh;Electric energy storage device period t maximum discharge electricity amount QDCE,MAX, unit kWh.
Generated electricity in period t, CCHP systems and be with the relation of generating waste-heat recovery;
Wherein:PCHP(t):The production electric energy of CCHP systems, unit kWh;QCHP(t):The production heat energy of CCHP systems, it is single Position is kWh;FCHP(t):The gas consumption of CCHP systems, unit kWh;ηCHP,H:CCHP system heat recovery efficiencies; ηCHP,E:CCHP system generating efficiencies;PCHP,MAX, PCHP,MIN:It is the maximum of CHP systems respectively, minimum generated energy, unit kWh; A, b, c are the coefficient of CCHP generating efficiencies;F is generating set PGU output ratio;
Cool and thermal power balancing the load is in period t, CCHP systems:
Wherein:LC(t) it is the refrigeration duty demand of CCHP systems, unit kWh;LH(t) needed for the thermic load of CCHP systems Ask, unit kWh;LE(t) it is the electrical load requirement of CCHP systems, unit kWh;PWT(t) it is wind-power electricity generation in CCHP systems The electric energy of production, unit kWh;PPV(t) electric energy produced for the photovoltaic generation of CCHP systems, unit kWh;PGRID(t) it is The electricity of CCHP systems buying power networks, unit kWh;QEC(t) it is for the production refrigerating capacity of CCHP system electric refrigerators, unit kWh;COPECFor the Performance Coefficient of electric refrigerator;QABC(t) refrigerating capacity is produced for CCHP systems Absorption Refrigerator, unit is kWh;COPABCFor the Performance Coefficient of Absorption Refrigerator;QBL(t) it is CCHP system supplymentary boiler for producing heat energy, unit kWh; PCE(t);For CCHP system electricity energy storage device charge capacities, unit kWh;PDCE(t) discharged for CCHP system thermoelectricity energy storage device Electricity, unit kWh;β is integer variable, and 1 represents charged state, and 0 represents discharge condition;
Step 2:Known period t cold and hot electrical load requirement LC(t), LH(t), LE(t);Wind-power electricity generation PWT(t) sent out with photovoltaic Power consumption PPV(t), t=1,2 ..., T.Wherein, T is the maximum number of following period on the one, if according to hour time segment, It is 24 then to take T.
Step 3:Hour economic maximum charge/discharge amount is calculated according to formula (3)Hour is economical Maximum charge/discharge amountThree kinds of situations of calculation formula point are calculated by formula (3), wherein (7), (8) give (4), (5), (6) parameter needed is calculated, (4), (5), (6) are different conditions, meet that the calculation formula in situation selection (3) obtains according to it Obtain " hour economic maximum charge/discharge amount ".P ' (t), P " (t) in formula (3) are obtained by formula (9), (10) respectively.
Wherein:k′CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) waste heat recovery heat Calculation Coefficient, it is calculated according to (7);k″CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t) waste heat recovery heat Calculation system) Number, is calculated according to (8);It is (L for generated energyE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) generating efficiency;It is (L for generated energyE(t)-PWT(t)-PPV(t) generating efficiency);P ' (t) is that generating waste-heat recovery heat is LH(t)+ LC(t)/COPABCWhen corresponding generated energy, according to (9) formula calculate;P " (t) is that generating waste-heat recovery heat is LH(t) it is corresponding when Generated energy, calculated according to (10) formula.
Step 4:Charge level is set
Step 5:Period t charge capacity is tried to achieve according to formula (11).
When specified charge level isIt is with discharge levelWhen, the charge capacity P of period t electricity energy storage deviceCE(t), Discharge electricity amount PDCE(t) calculated respectively according to (11) and (13).
Step 6:A day charge capacity E is tried to achieve according to formula (12)CE
Step 7:If day rechargeable electrical energy ECELess than electric energy storage maximum capacity ESE,MAX, reduce charge levelThen turn to do Step 4;If day rechargeable electrical energy ECEMore than electric energy storage device maximum capacity ESE,MAX, improve charge levelGo to step 4;If Day rechargeable electrical energy ECEEqual to energy storage maximum capacity ESE,MAX, the charge levelFor same day charge level, 7 are gone to step;
Step 8:Discharge level is set
Step 9:Period t discharge electricity amount is tried to achieve according to formula (13).
Step 10:A day discharge electricity amount E is tried to achieve according to formula (14)DCH
Step 11:If day discharge electricity amount EDCELess than day rechargeable electrical energy ECEIt is multiplied by energy storage efficiency ηSE, improve discharge levelGo to step 8;If day discharge electricity amount EDCEMore than day rechargeable electrical energy ECEIt is multiplied by energy storage efficiency ηSE, reduce discharge levelTurn Step 8;If day discharge electricity amount EDCEEqual to rechargeable electrical energy ECEIt is multiplied by energy storage efficiency ηSE, the discharge levelFor same day discharging water It is flat, go to step 12;
Step 12:After charge capacity and discharge electricity amount that electric energy storage device is determined, and it will be instructed and sent out by communicator Go out to perform.
Step 13:Deng until next period arrive go to step 2.

Claims (5)

1. a kind of electricity energy storage device day operation method of cogeneration cooling heating system containing regenerative resource, the CCHP systems that it is applied are at least Including generating set, renewable energy power generation device, the electric refrigerating machine powered by generating set and renewable energy power generation device Group, the heat reclamation device for reclaiming generating set generating waste-heat, the Absorption Refrigerator for connecting heat reclamation device, supplied by generating set The electric energy storage device of electricity;Renewable energy power generation includes wind-power electricity generation and photovoltaic generation;
Generated electricity in period t, CCHP systems and be with the relation of generating waste-heat recovery:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mi>f</mi> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>I</mi> <mi>N</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:PCHP(t) it is the production electric energy of CCHP systems, unit kWh;QCHP(t) it is the production heat energy of CCHP systems, unit For kWh;FCHP(t) it is the gas consumption of CCHP systems, unit kWh;ηCHP,HFor CCHP system heat recovery efficiencies;ηCHP,E For CCHP system generating efficiencies;PCHP,MAX, PCHP,MINThe respectively maximum of CHP systems, minimum generated energy, unit kWh;a,b,c For the coefficient of CCHP generating efficiencies;F is generating set PGU output ratio;
Cool and thermal power balancing the load is in period t, CCHP systems:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>R</mi> <mi>I</mi> <mi>D</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>/</mo> <mi>C</mi> <mi>O</mi> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>+</mo> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;beta;</mi> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>P</mi> <mrow> <mi>D</mi> <mi>C</mi> <mi>E</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <mi>&amp;beta;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>H</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>/</mo> <mi>C</mi> <mi>O</mi> <msub> <mi>P</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>B</mi> <mi>L</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced>
Wherein:LC(t) it is the refrigeration duty demand of CCHP systems, unit kWh;LH(t) it is the thermal load demands of CCHP systems, it is single Position is kWh;LE(t) it is the electrical load requirement of CCHP systems, unit kWh;PWT(t) it is that wind-power electricity generation produces in CCHP systems Electric energy, unit kWh;PPV(t) electric energy produced for the photovoltaic generation of CCHP systems, unit kWh;PGRID(t) it is CCHP systems The electricity of power network, unit kWh are bought in unified purchase;QEC(t) it is the production refrigerating capacity of CCHP system electric refrigerators, unit kWh; COPECFor the Performance Coefficient of electric refrigerator;QABC(t) refrigerating capacity, unit kWh are produced for CCHP systems Absorption Refrigerator; COPABCFor the Performance Coefficient of Absorption Refrigerator;QBL(t) it is CCHP system supplymentary boiler for producing heat energy, unit kWh;PCE (t);For CCHP system electricity energy storage device charge capacities, unit kWh;PDCE(t) it is CCHP system thermoelectricity energy storage device electric discharge electricity Amount, unit kWh;β is integer variable, and 1 represents charged state, and 0 represents discharge condition;It is characterized in that:
The charge/discharge process of electric energy storage device can promote the raising of efficiency of energy utilization, and the operation of electric energy storage device has Following limitation:1) electric energy storage maximum capacity ESE,MAX, when the energy storage electricity of electric energy storage device reaches the maximum capacity of electric energy storage device When can not continue to fill heat;2) energy storage device limits Q in period t maximum charge electricityCE,MAX, period t charge capacity is no more than Maximum charge electricity limits;3) electric energy storage device limits Q in period t maximum discharge electricity amountDCE,MAX, period t discharge electricity amount can not Maximum discharge electricity amount more than electric energy storage device limits;
The LC(t), LH(t), LE(t)、PWTAnd P (t)PV(t) it is given value, wherein t=1,2 ..., T, T are the following period on the one Maximum number;
Hour, economic maximum filled heat/thermal dischargeThree kinds of situations of calculation formula point calculate according to following formula:
Condition 1:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&gt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> <mo>&lt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
Condition 2:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&gt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> <mo>&gt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
Condition 3:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&lt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> <mo>&lt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> <mn>2</mn> </msubsup> </mfrac> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> </mtr> </mtable> </mfenced>
P'(t is obtained by following formula)
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> </mfrac> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
P " (t) is obtained by following formula
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>2</mn> </msubsup> </mfrac> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> <msup> <mi>P</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>P</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>P</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:k′CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) waste heat recovery heat Calculation system Number, is calculated according to (7);k″CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t) waste heat recovery heat Calculation coefficient);It is (L for generated energyE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) generating efficiency;It is (L for generated energyE (t)-PWT(t)-PPV(t) generating efficiency);P ' (t) is that generating waste-heat recovery heat is LH(t)+LC(t)/COPABCWhen it is corresponding Generated energy;P " (t) is that generating waste-heat recovery heat is LH(t) corresponding generated energy when;
When specified charge level isIt is with discharge levelWhen, the charge capacity of period t electricity energy storage device is PCE(t), put Power consumption is PDCE(t), day charge capacity is ECE, day discharge electricity amount be EDCH;Wherein,
<mrow> <msub> <mi>E</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>E</mi> <mrow> <mi>D</mi> <mi>C</mi> <mi>H</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>P</mi> <mrow> <mi>D</mi> <mi>C</mi> <mi>E</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
If day rechargeable electrical energy PCELess than energy storage maximum capacity ESE,MAX, improve charge levelIf day rechargeable electrical energy ECEIt is more than Energy storage maximum capacity ESE,MAX, reduce charge levelIf day rechargeable electrical energy ECEEqual to energy storage maximum capacity ESE,MAX, the charging It is horizontalFor same day charge level;
If day discharge electricity amount EDCELess than rechargeable electrical energy ECEIt is multiplied by energy storage efficiency ηSE, improve discharge levelIf day electric discharge electricity Measure EDCEMore than rechargeable electrical energy ECEIt is multiplied by energy storage efficiency ηSE, reduce discharge levelIf day discharge electricity amount EDCEEqual to charging electricity Can ECEIt is multiplied by energy storage efficiency ηSE, the discharge levelFor same day discharge level;Under day charge capacity and day discharge electricity amount meet Formula:
ECE·ηSE=EDCE
2. day operation method as claimed in claim 1, it is characterised in that:Applied to the central controller of CCHP systems, in this The purpose of centre controller is to set the generated energy P of generatorCHP(t), electric refrigerator production refrigerating capacity QEC(t), absorption refrigeration Machine production refrigerating capacity QABC(t), outsourcing power grid electric PGRID(t), donkey boiler production heat QBL(t), the charging of electric energy storage device Electricity PCEAnd generating electricity P (t)DCE(t)。
3. day operation method as claimed in claim 1, it is characterised in that:Charge capacity and the electric discharge of electric energy storage device is determined After electricity, instruction is sent by execution by communicator.
4. day operation method as claimed in claim 1, it is characterised in that:T is the maximum number of following period on the one, if pressed According to hour time segment, then it is 24 to take T.
5. the day operation method as any one of Claims 1-4, it is characterised in that:The CCHP systems of application also include Electrical chillers and donkey boiler.
CN201710812880.6A 2017-09-11 2017-09-11 Daily operation method of electric energy storage device of combined cooling heating and power system containing renewable energy Active CN107701329B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710812880.6A CN107701329B (en) 2017-09-11 2017-09-11 Daily operation method of electric energy storage device of combined cooling heating and power system containing renewable energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710812880.6A CN107701329B (en) 2017-09-11 2017-09-11 Daily operation method of electric energy storage device of combined cooling heating and power system containing renewable energy

Publications (2)

Publication Number Publication Date
CN107701329A true CN107701329A (en) 2018-02-16
CN107701329B CN107701329B (en) 2020-08-28

Family

ID=61172318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710812880.6A Active CN107701329B (en) 2017-09-11 2017-09-11 Daily operation method of electric energy storage device of combined cooling heating and power system containing renewable energy

Country Status (1)

Country Link
CN (1) CN107701329B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201797324U (en) * 2010-07-30 2011-04-13 北京市电力公司 Intelligent microgrid
CN103453690A (en) * 2012-05-29 2013-12-18 浙江盾安人工环境股份有限公司 Energy-saving absorption heat pump unit with biomass-energy combined cooling, heating and power functions
WO2016061741A1 (en) * 2014-10-21 2016-04-28 Accenture Global Services Limited System, method, and apparatus for capacity determination for micro grid, and tangible computer readable medium
CN105576678A (en) * 2016-02-29 2016-05-11 东北大学 System and method of hybrid energy storage based on cooling, heating and power system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201797324U (en) * 2010-07-30 2011-04-13 北京市电力公司 Intelligent microgrid
CN103453690A (en) * 2012-05-29 2013-12-18 浙江盾安人工环境股份有限公司 Energy-saving absorption heat pump unit with biomass-energy combined cooling, heating and power functions
WO2016061741A1 (en) * 2014-10-21 2016-04-28 Accenture Global Services Limited System, method, and apparatus for capacity determination for micro grid, and tangible computer readable medium
CN105576678A (en) * 2016-02-29 2016-05-11 东北大学 System and method of hybrid energy storage based on cooling, heating and power system

Also Published As

Publication number Publication date
CN107701329B (en) 2020-08-28

Similar Documents

Publication Publication Date Title
CN107832979B (en) Factory comprehensive energy system economic optimization scheduling method considering energy cascade utilization
CN205356219U (en) Scene gas stores up complemental combined heat and power generation system
CN103728881B (en) A kind of optimizing operation method of many edifice control system system
CN107276126A (en) A kind of electric heating cold air based on fuel cell is provided multiple forms of energy to complement each other energy supplying system and method
WO2019205561A1 (en) Cchp micro-grid structure including compressed air energy storage and operation method therefor
CN106786793A (en) A kind of supply of cooling, heating and electrical powers type microgrid operation method based on robust optimization
CN104806454A (en) Wind power, photo-thermal and medium heat storage combined energy supply system
CN104716644A (en) Renewable energy source cooling, heating and power microgrid system and control method
CN112329259B (en) Multi-energy complementary combined cooling heating power micro-grid frame and modeling method thereof
CN202210708U (en) Power supply system
CN204458210U (en) Wind-powered electricity generation, photo-thermal and medium heat accumulation associating energy supplying system
CN106712033A (en) Wind curtailment absorption method in thermal power plant
CN108879777B (en) Multipotency coupled system
CN207570388U (en) Fused salt thermal storage and energy accumulation electricity generation system and the energy-accumulating power station for including it
CN110285700A (en) A kind of the regional complex energy resource system and method for the energy storage of air containing adiabatic compression
CN203772087U (en) Independent fused salt heat storage power plant
CN108197412B (en) Multi-energy coupling energy management system and optimization method
CN103352746B (en) Based on the rock gas cool and thermal power energy supplying device of fused salt accumulation of heat
CN205178621U (en) Power generation system provides multiple forms of energy to complement each other
CN107642772B (en) Cogeneration cooling heating system meets workload demand progress control method simultaneously
CN109376406B (en) Energy supply system superstructure model, modeling method, computer device and storage medium
CN204212934U (en) Photospot solar electric power storage electricity generating device
CN107701329A (en) The electricity energy storage device day operation method of cogeneration cooling heating system containing regenerative resource
CN104965984A (en) Calculation method for carbon dioxide emission reduction amount of natural gas distributed energy system
CN107725276B (en) A kind of day operation method of the heat-storing device of cogeneration cooling heating system containing renewable energy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant