CN107699609A - 基于dna和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法 - Google Patents

基于dna和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法 Download PDF

Info

Publication number
CN107699609A
CN107699609A CN201710899165.0A CN201710899165A CN107699609A CN 107699609 A CN107699609 A CN 107699609A CN 201710899165 A CN201710899165 A CN 201710899165A CN 107699609 A CN107699609 A CN 107699609A
Authority
CN
China
Prior art keywords
dna
nanoparticles
counterfeiting
nano
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710899165.0A
Other languages
English (en)
Inventor
张毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710899165.0A priority Critical patent/CN107699609A/zh
Publication of CN107699609A publication Critical patent/CN107699609A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medical Informatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开一种基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,包括以下步骤:a)将纳米材料分散在溶剂中,加入TMAPS反应1‑24小时,得到表面带正电荷的纳米颗粒;b)加入DNA反应1‑24小时,得到DNA修饰的纳米颗粒,所示DNA为长于20个碱基对的DNA基因片断;c)加入TMAPS和TEOS反应1‑21天,在DNA修饰的纳米颗粒表面形成SiO2壳层,得到SiO2包埋的纳米颗粒;d)将APTES铆接到携带基因信息的纳米颗粒的表面上,得到基因示踪与防伪纳米颗粒。本发明操作温度低,产物能够在室温至175℃稳定存在,还可以分散在水相或油相中,具有基因检测灵敏度高、无污染、稳定性好、测量精度高、可大范围同时多点连续监测等优点,可以广泛应用于防伪与示踪等领域。

Description

基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法
技术领域
本发明涉及到一种新型复合纳米DNA材料的制备方法,特别涉及一种基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法。
背景技术
DNA是一类携带大量信息的关键生物高分子材料,天然DNA决定了物种的多样性,而人工合成DNA在种类上则具有无限的可能。作为一种关键的生物分子,DNA已经被广泛应用到不同的领域,在现代科学与技术中的地位极为重要。其中,基于DNA携带的大量信息而设计的新型材料则具有不可比拟的排它性或独一无二性。例如:
(1)在商品防伪保护领域,利用特定DNA片段具有特定编码结构的原理,使防伪标识含有某个确定的DNA,并且能于常态下长久保存。由于用于防伪的DNA序列是随机组合而成的,具有唯一性和无法复制的特点。同时DNA可以与油墨、化妆品、酒水、颜料等各类媒介和材料相结合,几乎可以应用于各行各业。在食品药品行业,DNA分子的生物属性决定了其无毒无害,可放心食用。未来有望代替传统的防伪标签和激光防伪方式。
(2)在环境监测方面,传统物理视频监控技术无法定量跟踪、监测污染物对农田、江、河、湖、海等特定区域的影响。采用DNA示踪技术,通过在各个排污源标记相应的DNA示踪剂,通过在上述特定区域采样分析,精确测定样品中各类DNA标记物的含量,可精确获得各个污染源的排污情况以及对特定区域及特定作物的影响,可大大提高检测的针对性和精确度。
(3)在石油开采领域,注水开发是国内外的主要生产方式,而示踪剂技术则在油田注水开发中已经得到了较好的应用和发展。通过油田示踪技术可以提供各油层信息,从而采取相应措施,可以显著提升实际采油效率,已逐步成为油田二次采油和三次采油的重要手段而被广泛应用。
目前的示踪技术仍然主要以氟代苯甲酸为示踪剂,通过质谱分析检侧分子分布达到感知地下地层结构的目的。该技术存在成本高、用量大、影响矿下环境、检测误差大、可调控信息有限等缺点。
发明内容
为解决现有技术的不足,本发明旨在提供一种基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,基于DNA的纳米示踪和防伪技术则具有无污染、稳定性好、测量精度高、可大范围同时多点连续监测等优点,将具有广泛的应用前景。
为达到上述目的,本发明采用的技术方案如下:
本发明公开的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,包括以下步骤:
a)将纳米材料分散在溶剂中,加入TMAPS反应1-24小时,得到表面带正电荷的纳米颗粒;
b)加入DNA反应1-24小时,得到DNA修饰的纳米颗粒,所示DNA为长于20个碱基对的DNA基因片断;
c)加入TMAPS和TEOS反应1-21天,在DNA修饰的纳米颗粒表面形成SiO2壳层,得到SiO2包埋的纳米颗粒;
d)将APTES铆接到SiO2包埋的纳米颗粒的表面上,得到基因示踪与防伪纳米颗粒。
优选的,所述的纳米材料为氧化物、硫化物、碳酸盐或硅酸盐的纳米颗粒。
优选的,所述纳米材料为Fe3O4、C、Cr2O3、Fe2O3、CaCO3、TiO2、ZnO、CdS、ZnS、MoS2或WS2
进一步的,所述的纳米材料的尺寸在10-5000nm之间,为球、棒、片、线或无定形的颗粒。
进一步的,所述b)步骤中,DNA占DNA修饰的纳米颗粒质量百分含量的0.1%-1.0%之间。
优选的,所述溶剂为水、醇或任意比例的水醇混合溶液。
优选的,所述a)步骤中,加入的TMAPS为50%的TMAPS甲醇溶液。
进一步的,所述a)步骤后,将表面带正电荷的纳米颗粒用乙醇洗涤,再分散在水中进行b)步骤。
进一步的,所述b)步骤后,将DNA修饰的纳米颗粒洗涤后,再分散到95%乙醇中进行c)步骤。
优选的,在d)步骤后还包括以下步骤:
e)加入氟化铵水溶液,溶解所述基因示踪与防伪纳米颗粒,重新释放DNA,通过基因测序和q-PCR跟踪检测实现示踪与防伪。
其中,
TMAPS为三甲氧基硅-三甲基乙基溴化铵;
TEOS为四甲氧基硅烷;
APTES为三甲氧基-乙基胺硅烷。
本发明的制备原理:
利用纳米粒子为载体,采用相反电荷吸附方法将DNA修饰到纳米粒子的表面上,然后进一步利用SiO2和高分子材料将DNA包埋在纳米粒子中,制成基因示踪与防伪材料。
本发明具有以下有益效果:
1.本发明具有无污染、稳定性好、测量精度高、可大范围同时多点连续监测等优点;
2.DNA测量精度高:利用Q-PCR可以方便快速检测水中的微量DNA;
3.可以大范围多点检测:由于DNA具有多种可以调控的序列,在应用上不会相互干扰,可以满足大范围多点监控;
4.DNA稳定性好:DNA在包埋在纳米颗粒表面上以后,可以在室温至175℃长时间稳定存在;
5.唯一性和无法复制性:由于每一种DNA都具有唯一性,可以极大提高对特定产品,如:艺术品、烟、酒等的防伪能力。
附图说明
图1是以Fe3O4为纳米材料制备的基因示踪与防伪纳米颗粒的扫描电子显微镜(SEM)照片。
图2是以Cr2O3为纳米材料制备的基因示踪与防伪纳米颗粒的透射电子显微镜(TEM)照片。
图3是以CaCO3为纳米材料制备的基因示踪与防伪纳米颗粒的扫描电子显微镜(SEM)照片。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
实施例1
1)将2g Fe3O4纳米颗粒分散到500mL醇-水比例为5:1的混合溶剂中;
2)搅拌条件下加入50%TMAPS(甲醇中)10mL,反应8小时后用乙醇洗3次;
3)将得到的纳米颗粒再分散到水中,加入特定序列的DNA,该DNA为长于20个碱基对的DNA基因片断,搅拌反应8小时,分离、洗涤得到表面DNA修饰的纳米颗粒;
4)将载有DNA的纳米颗粒分散到95%乙醇中;
5)加入TMAPS和TOES在纳米颗粒表面生成SiO2层,保护DNA。SiO2层的厚度可以通过改变TMAPS和TEOS的量调控。
得到的基因示踪与防伪纳米颗粒如图1所示。
实施例2
1)将2g的Cr2O3纳米颗粒分散到500mL醇-水比例为5:1的混合溶剂中;
2)搅拌条件下加入50%TMAPS(甲醇中)10mL,反应8小时后用乙醇洗3次;
3)将得到的纳米颗粒再分散到水中,加入特定序列的DNA,该DNA为长于20个碱基对的DNA基因片断,搅拌反应8小时,分离、洗涤得到表面DNA修饰的纳米颗粒;
4)将载有DNA的纳米颗粒分散到95%乙醇中;
5)加入TMAPS和TOES在纳米颗粒表面生成SiO2层,保护DNA。SiO2层的厚度可以通过改变TMAPS和TEOS的量调控。
得到的基因示踪与防伪纳米颗粒如图2所示。
实施例3
1)将2g的CaCO3纳米颗粒分散到500mL醇-水比例为5:1的混合溶剂中;
2)搅拌条件下加入50%TMAPS(甲醇中)10mL,反应8小时后用乙醇洗3次;
3)将得到的纳米颗粒再分散到水中,加入特定序列的DNA,该DNA为长于20个碱基对的DNA基因片断,搅拌反应8小时,分离、洗涤得到表面DNA修饰的纳米颗粒;
4)将载有DNA的纳米颗粒分散到95%乙醇中;
5)加入TMAPS和TOES在纳米颗粒表面生成SiO2层,保护DNA。SiO2层的厚度可以通过改变TMAPS和TEOS的量调控。
得到的基因示踪与防伪纳米颗粒如图3所示。
当然,还可以用C、Fe2O3、TiO2、ZnO、CdS、ZnS、MoS2、WS2等的纳米颗粒替代实施例1中的Fe3O4,后续操作与实施例1相同,也能够得到基因示踪与防伪纳米颗粒。
在实现示踪与防伪功能时,加入氟化铵水溶液,溶解上述基因示踪与防伪纳米颗粒,重新释放DNA,通过基因测序和q-PCR跟踪检测实现示踪与防伪。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

1.基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于,包括以下步骤:
a)将纳米材料分散在溶剂中,加入TMAPS反应1-24小时,得到表面带正电荷的纳米颗粒;
b)加入DNA反应1-24小时,得到DNA修饰的纳米颗粒,所示DNA为长于20个碱基对的DNA基因片断;
c)加入TMAPS和TEOS反应1-21天,在DNA修饰的纳米颗粒表面形成SiO2壳层,得到SiO2包埋的纳米颗粒;
d)将APTES铆接到SiO2包埋的纳米颗粒的表面上,得到基因示踪与防伪纳米颗粒。
2.根据权利要求1所述的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于:所述的纳米材料为氧化物、硫化物、碳酸盐或硅酸盐的纳米颗粒。
3.根据权利要求2所述的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于:所述纳米材料为Fe3O4、C、Cr2O3、Fe2O3、CaCO3、TiO2、ZnO、CdS、ZnS、MoS2或WS2
4.根据权利要求3所述的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于:所述的纳米材料的尺寸在10-5000nm之间,为球、棒、片、线或无定形的颗粒。
5.根据权利要求1所述的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于:所述b)步骤中,DNA占DNA修饰的纳米颗粒质量百分含量的0.1%-1.0%之间。
6.根据权利要求1所述的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于:所述溶剂为水、醇或任意比例的水醇混合溶液。
7.根据权利要求1所述的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于:所述a)步骤中,加入的TMAPS为50%的TMAPS甲醇溶液。
8.根据权利要求1所述的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于:所述a)步骤后,将表面带正电荷的纳米颗粒用乙醇洗涤,再分散在水中进行b)步骤。
9.根据权利要求1所述的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于:所述b)步骤后,将DNA修饰的纳米颗粒洗涤后,再分散到95%乙醇中进行c)步骤。
10.根据权利要求1-9任意一项所述的基于DNA和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法,其特征在于,在d)步骤后还包括以下步骤:
e)加入氟化铵水溶液,溶解所述基因示踪与防伪纳米颗粒,重新释放DNA,通过基因测序和q-PCR跟踪检测实现示踪与防伪。
CN201710899165.0A 2017-09-28 2017-09-28 基于dna和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法 Pending CN107699609A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710899165.0A CN107699609A (zh) 2017-09-28 2017-09-28 基于dna和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710899165.0A CN107699609A (zh) 2017-09-28 2017-09-28 基于dna和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法

Publications (1)

Publication Number Publication Date
CN107699609A true CN107699609A (zh) 2018-02-16

Family

ID=61174637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710899165.0A Pending CN107699609A (zh) 2017-09-28 2017-09-28 基于dna和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN107699609A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108148890A (zh) * 2018-03-14 2018-06-12 江西省农业科学院畜牧兽医研究所 鸭新城疫、鸭瘟和鸭坦布苏病毒病的多重pcr检测引物
CN109295166A (zh) * 2018-10-18 2019-02-01 吉林大学 一种利用dna特异性互补的防伪方法及应用
CN110189146A (zh) * 2019-05-28 2019-08-30 何震 一种基于区块链的艺术品身份标识系统
EP3594290A1 (en) * 2018-07-13 2020-01-15 Haelixa GmbH Marked items and verification methods
CN113759076A (zh) * 2020-06-02 2021-12-07 财团法人工业技术研究院 示踪粒子及其应用方法与制备方法
EP4379063A1 (en) * 2022-11-29 2024-06-05 Institut national de recherche pour l'agriculture, l'alimentation et l'environnement Method of marking a material for authentification and/or traceability purposes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969338A (zh) * 2016-05-16 2016-09-28 曲阜师范大学 一种SiO2–DNA纳米材料及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969338A (zh) * 2016-05-16 2016-09-28 曲阜师范大学 一种SiO2–DNA纳米材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAK-SUNG JUNG, ET AL.: "Quantitative Analysis and Efficient SurfaceModification of Silica Nanoparticles", 《JOURNAL OF NANOMATERIALS》 *
YURAN ZHANG: "DNA-Encapsulated Silica Nanoparticle Tracers for Fractured Reservoir Characterization", 《STANFORD UNIVERSITY》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108148890A (zh) * 2018-03-14 2018-06-12 江西省农业科学院畜牧兽医研究所 鸭新城疫、鸭瘟和鸭坦布苏病毒病的多重pcr检测引物
EP3594290A1 (en) * 2018-07-13 2020-01-15 Haelixa GmbH Marked items and verification methods
WO2020011807A1 (en) 2018-07-13 2020-01-16 Haelixa Gmbh Marked items and verification methods
CN112673067A (zh) * 2018-07-13 2021-04-16 哈利萨有限公司 标记物品和验证方法
CN109295166A (zh) * 2018-10-18 2019-02-01 吉林大学 一种利用dna特异性互补的防伪方法及应用
CN110189146A (zh) * 2019-05-28 2019-08-30 何震 一种基于区块链的艺术品身份标识系统
CN113759076A (zh) * 2020-06-02 2021-12-07 财团法人工业技术研究院 示踪粒子及其应用方法与制备方法
EP4379063A1 (en) * 2022-11-29 2024-06-05 Institut national de recherche pour l'agriculture, l'alimentation et l'environnement Method of marking a material for authentification and/or traceability purposes
WO2024115283A1 (en) * 2022-11-29 2024-06-06 Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement Method for marking a material for authentication and/or traceability of said material

Similar Documents

Publication Publication Date Title
CN107699609A (zh) 基于dna和纳米颗粒的基因示踪与防伪纳米颗粒的制备方法
Arduini et al. How cutting-edge technologies impact the design of electrochemical (bio) sensors for environmental analysis. A review
Yin et al. Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions
Wu et al. Colorimetric sensors for chemical and biological sensing applications
Ding et al. A novel modified electrode for detection of the food colorant sunset yellow based on nanohybrid of MnO2 nanorods-decorated electrochemically reduced graphene oxide
Bao et al. Graphene oxide‐templated polyaniline microsheets toward simultaneous electrochemical determination of AA/DA/UA
Jiang et al. Synthesis of nitrogen-doped lignin/DES carbon quantum dots as a fluorescent probe for the detection of Fe3+ ions
Gong et al. Application of nanotechnology in analysis and removal of heavy metals in food and water resources
Shen et al. Electrochemical detection of bisphenol A at graphene/melamine nanoparticle-modified glassy carbon electrode
Xu et al. Simple and efficient synthesis of gold nanoclusters and their performance as solid contact of ion selective electrode
Qin et al. Ethanol sensors based on porous In2O3 nanosheet-assembled micro-flowers
CN101738423A (zh) 一种分子印迹聚合物/碳纳米管/基底电极修饰电极及其应用
Pardeshi et al. Advances in fabrication of molecularly imprinted electrochemical sensors for detection of contaminants and toxicants
Liang et al. MOFs-based Fe@ YAU-101/GCE electrochemical sensor platform for highly selective detecting trace multiplex heavy metal ions
Leśniewski Hybrid organic–inorganic silica based particles for latent fingermarks development: A review
Tahir et al. Cuprous oxide nanoparticles: Synthesis, characterization, and their application for enhancing the humidity-sensing properties of poly (dioctylfluorene)
Tao et al. High sensitivity chipless RFID humidity sensor tags are based on SnO2/G nanomaterials
Chen et al. Preparation of highly dispersed reduced graphene oxide modified with carboxymethyl chitosan for highly sensitive detection of trace Cu (II) in water
CN104483362A (zh) 捕获探针与信号探针修饰的电极及其制备方法和应用
Sereshti et al. Sulfide-doped magnetic carbon nanotubes developed as adsorbent for uptake of tetracycline and cefixime from wastewater
Wang et al. L-Aspartic acid capped CdS quantum dots as a high performance fluorescence assay for sliver ions (I) detection
Kim et al. Removal of methyl red from aqueous solution using polyethyleneimine crosslinked alginate beads with waste foundry dust as a magnetic material
Chen et al. Development of Screen-Printable Nafion Dispersion for Electrochemical Sensor
CN103014145A (zh) 纳米金颗粒在dna折纸芯片上的可控分布方法
Shen et al. In situ synthesis of a Bi2Te3-nanosheet/reduced-graphene-oxide nanocomposite for non-enzymatic electrochemical dopamine sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216

RJ01 Rejection of invention patent application after publication