CN107695150A - 一种自阻电加热拉弯成形模具及其设计方法 - Google Patents

一种自阻电加热拉弯成形模具及其设计方法 Download PDF

Info

Publication number
CN107695150A
CN107695150A CN201710793489.6A CN201710793489A CN107695150A CN 107695150 A CN107695150 A CN 107695150A CN 201710793489 A CN201710793489 A CN 201710793489A CN 107695150 A CN107695150 A CN 107695150A
Authority
CN
China
Prior art keywords
electric heating
mrow
layer
metal electric
heating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710793489.6A
Other languages
English (en)
Other versions
CN107695150B (zh
Inventor
徐志远
曹敬卓
王永军
李晓治
曾元松
刘宝胜
吴为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Original Assignee
Northwestern Polytechnical University
AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, AVIC Beijing Aeronautical Manufacturing Technology Research Institute filed Critical Northwestern Polytechnical University
Priority to CN201710793489.6A priority Critical patent/CN107695150B/zh
Publication of CN107695150A publication Critical patent/CN107695150A/zh
Application granted granted Critical
Publication of CN107695150B publication Critical patent/CN107695150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/16Auxiliary equipment, e.g. for heating or cooling of bends
    • B21D7/162Heating equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/20Making tools by operations not covered by a single other subclass

Abstract

一种自阻电加热拉弯成形模具及其设计方法,自阻电加热拉弯成形模具中,拉弯模具安装在绝缘绝热垫层上,绝缘绝热垫层的下表面与模具固定台的上表面贴合。模具基体安放在绝缘绝热垫层上,并将拉弯模具与绝缘绝热垫层固定在模具固定台上;该拉弯模具的金属电加热层的两端分别通过导线与电源连通。电源系统的温度控制单元实时测量金属电加热层的温度,进而调节电源单元输入电流实现对金属电加热层温度的控制。加热导线对拉弯模具局部通电加热。本发明减少型材在与拉弯模具表面接触加热成形过程中的热量损失和氧化污染,较好地解决型材在传统拉弯成形加工工艺中所遇到回弹、起皱和外层破裂的质量问题,提高了加工工件的表面质量和生产效率。

Description

一种自阻电加热拉弯成形模具及其设计方法
技术领域
本发明涉及金属型材拉弯成形技术领域,具体是一种适合于难成形型材的自阻电加热拉弯成形模具及设计方法。
背景技术
型材拉弯成形在飞机制造中得到了非常广泛的应用,主要用于成形机身、隔框、肋条、发动机架等连接件,可以使零件获得合理的校形余量,提高零件的制造精度, 降低零件的制造成本。然而随着产品加工精度要求的日益提高,现有型材拉弯成形过 程中的回弹、起皱和外层破裂等缺陷越发凸显,限制了传统拉弯成形的应用。因此, 对型材进行加热的热拉弯成形工艺得到了应用。
中国专利CN103962425A(一种用于飞机钛合金型材的电热拉弯成形装置)公开了一种用于飞机钛合金型材的电热拉弯成形装置,由拉弯机转台、拉弯模具、保温罩、型 材加热系统组成,保温罩安装在绝缘绝热基座的上方,保温罩放下时将拉弯模具罩住, 对拉弯模具进行保温,该成形装置具有加热速度快、温度易于控制的特点。但该发明 方法的不足之处是用加热棒对拉弯模具整体进行加热,与型材接触之外的模具部分也 同时被加热,保温时环形加热丝产生的热量通过空气传到型材和模具,造成过多能量 的浪费。
美国专利US4011429(HOT STRETCH-WRAP FORMING WITH RESISTANCE HEATING)公开了一种型材电热拉弯成形装置,由拉弯机、拉弯模具和温度感应器组成,拉弯模 具与型材接触表面的后一部分制造成中空状,在其中放入加热电阻丝,在拉弯时,对 加热电阻丝通电,将拉弯模具与型材接触表面加热到预设的温度,再进行拉弯,该成 形装置具有能量利用率高,温度易于控制的特点。但该发明方法的不足之处是拉弯模 具中的中空状模具结构复杂,制造工艺难度高。
发明内容
为克服现有技术中存在的中空状模具结构复杂、制造工艺难度高,或者造成过多能量浪费的不足,本发明提出了一种自阻电加热拉弯成形模具及其设计方法。
本发明提出的自阻电加热拉弯成形模具包括拉弯模具、电源系统、绝缘绝热垫层、模具加热装置、模具固定台。
拉弯模具安装在绝缘绝热垫层上,绝缘绝热垫层的下表面与模具固定台的上表面贴合。拉弯模具的安放在绝缘绝热垫层上,并将该拉弯模具与绝缘绝热垫层固定在模 具固定台上;该拉弯模具的金属电加热层的两端分别通过加热导线与电源连通。所述 电源系统由电源单元、温度控制单元和加热导线组成。温度控制单元实时测量金属电 加热层的温度,根据温度反馈信号,调节电源单元输入电流实现对金属电加热层温度 的控制。加热导线连接固定在导线夹扣上,连接电源系统与模具加热装置,对拉弯模 具局部通电加热。
所述拉弯模具包括绝缘陶瓷层、金属电加热层、绝缘隔热陶瓷层及模具基体组成。该模具基体的一个侧表面为成型面;该成型面的曲率与待成形工件的曲率相同。所述 金属电加热层为弧形板。该金属电加热层的曲率与成型面的曲率相同。在该金属电加 热层的内表面有绝缘隔热陶瓷层,在该金属电加热层的外表面有绝缘陶瓷层;将所述 绝缘隔热陶瓷层的内表面通过粘合剂与模具基体贴合固定。
所述的绝缘隔热陶瓷层和绝缘陶瓷层均采用氧化铝陶瓷粉末热喷涂在所述金属电 加热层的内表面和外表面,喷涂厚度分别为5mm和0.5mm。
所述金属电加热层采用7Mn15Cr2Al3V2WMo合金钢板制成,厚度为10mm。
所述模具加热装置采用单面夹持结构,由加热电极片、阻热片和导线夹扣组成;导线夹扣的下表面与加热电极片的上表面贴合,加热电极片的下表面与阻热片的上表 面贴合,阻热片下表面与金属电加热层的上表面贴合。加热电极片采用纯铜材料,阻 热片采用TC4钛合金材料,导线夹扣采用纯铜材料。加热电极片、阻热片和导线夹扣 分别打磨光滑,防止在加热过程中出现氧化层。通过高强度绝缘螺栓将导线夹扣和加 热电极片连接并固紧。加热导线紧固在导线夹扣上。所述加热电极片、阻热片和金属 电加热层通过高强度绝缘螺栓连接固紧。
本发明提出的所述自阻电加热拉弯成形模具的设计方法的具体过程是:
步骤1,确定模具基体:
步骤2:确定金属电加热层的材料:
在电热拉弯时拉弯模具表面温度要达到200℃。
步骤3:确定金属电加热层的尺寸:
所述金属电加热层的尺寸包括该金属电加热层的长度L、宽度B和厚度H。
金属电加热层的长度L和宽度B根据待成形工件的技术要求确定。在确定金属电加热层的厚度H时,根据保温时电源系统提供的通电电流大小以及所用金属材料的热 电物理性能,确定金属电加热层的厚度H,以达到金属电加热层合理的电阻大小。
通过公式⑴~⑹得到金属电加热层的厚度H的表达式⑺
通过公式⑴~⑵得到金属电加热层的电阻R:
在金属电加热层的温度为T时,金属材料7Mn15Cr2Al3V2WMo的电阻率ρ为
ρ=ρ0·(1+a·T) ⑴
公式⑴中:R为金属电加热层的电阻,单位为Ω;a为此金属材料电阻率温度系 数,ρ0为此金属材料0℃时的电阻率,公式⑵中S为金属电加热层的横截面积。
电流加热功率P1
公式⑶中Q为保温时金属电加热层所产生的总热量,单位为J,t为保温时的通电时间,单位为s,I为保温时电源系统提供的通电电流,综合考虑电源成本、可操控 性等因素来选择电流的大小,单位为A。
金属电加热层黑体辐射的功率P2
P2=A1·α·T1 4
公式(4)中A1为金属电加热层的表面积,A1=2·(H·L+H·B+L·B),单位为m2,α为黑体辐射常数,α=5.67×10-8W/(m2K4),T1为金属电加热层的热力学温度,单位为K。
金属电加热层与空气的热对流功率P3
P3=h·△T·A2
公式⑸中h为空气的热对流系数,单位为W/(m2K),△T为金属电加热层与空气的温度差,单位为K,A2为金属电加热层7暴露在空气中的表面积,单位为m2
在电热拉弯的过程中,为了使拉弯模具保持在设定的拉弯成形温度,应使金属电加热层在通电保温时产生的热量与散发的热量基本保持动态平衡,从而保证金属电加 热层的温度稳定在设定的温度。
则有
P1=P2+P3
将公式⑶~⑸代入公式⑹计算出金属电加热层的厚度H的表达式⑺。
步骤4,确定绝缘层与绝缘隔热层的材料:
在确定绝缘层的材质时,因为氧化铝陶瓷材料的电阻率为10×1015Ω·cm,绝缘强度为15kv/mm,导热系数为20W/(m2K),是很好的绝缘绝热材料。同时,氧化铝陶 瓷材料的抗压强度σc=850MPa,抗压强度大,所以选用氧化铝陶瓷材料作为绝缘层和绝 缘隔热层的材料。
在验证氧化铝陶瓷材料的强度时,根据型材与绝缘层接触面间的摩擦系数,通过公式⑻~⑽确定电热拉弯成形时绝缘层表面上的最大摩擦力fmax
所述绝缘层为弧状,该绝缘层有两个周向端面,以两个端面中的一个周向端面为起始端面,当该起始端面到周向张力作用点的张角为θ时,该截面的周向张力为Fθ
Fθ=F0·e-μ·θ
公式⑻中F0为起始周向拉力,e为数学中自然对数的底数,μ为型材与绝缘层接 触面间的摩擦系数。
f为型材与绝缘层的摩擦力,作用在绝缘层上,由沿绝缘层上的方向力平衡条件,得
f=F0-Fθ
当θ=β时,f取值最大fmax
fmax=F0-F0·e-μ·β
公式⑽中β为从绝缘层起始端面到绝缘层中心线处的角度大小,
通过公式⑾确定绝缘层所受的最大切应力τ1
公式⑾中L1为绝缘层的长度,B1为绝缘层的宽度。
通过公式⑿确定绝缘层所受的压应力p:
通过公式⒀确定绝缘层所受到的最大正应力。
以垂直于绝缘层外表面的中心线作为坐标系的X轴方向,绝缘层横截面方向与坐标系的YZ平面重合。从绝缘层中心线处取出一单元体,该单元体垂直于X轴的截面上 有压应力p和切应力τ1;该单元体垂直于Y轴的截面上有切应力τ2;τ2=τ1,并且τ1的 方向与τ2的方向都垂直于所在两个平面的交线,且共同背离这一交线;该单元体垂直 于Z轴的截面上没有应力。该单元体受到的最大正应力σmax
在电热拉弯成形时,绝缘层所受的最大正应力σmax必须小于等于此时材料的许用压应力,
公式⒁中σc为所述绝缘层材料的耐压强度,n为所述绝缘层材料的安全系数。
在取绝缘层两周向端面间的夹角为型材与绝缘层接触面间的摩擦系数 μ=0.5,绝缘层长度L1=1000mm,宽度B1=100mm,n=3的条件下。已知所用氧 化铝陶瓷材料的耐压强度σc=850MPa。因为σmax远小于所用氧化铝陶瓷的许用压应力, 即绝缘陶瓷层在电热拉弯时可以安全工作。
所述步骤4中利用上述公式⑻~⒁计算在电热拉弯时,绝缘层所受的最大正应力σmax与起始周向张力F0的关系如表1所示:
表1
F0 15 25 30 40 70 120
σmax MPa 2.892 4.821 5.782 7.711 13.495 23.135
步骤5:确定绝缘层和绝缘隔热层的厚度:
所述绝热层的喷涂厚度为0.5mm;所述绝缘隔热层的喷涂厚度为5mm。
本发明针对现有技术的不足以及拉弯机的模具加热难题,提出了一种自阻电加热拉弯成形模具及其设计方法,提高型材热拉弯成形的加热效率,降低能耗。
本发明中的电加热模具,主要包括拉弯模具、电源系统、绝缘绝热垫层、模具加 热装置和模具固定台,其中,绝缘绝热垫层位于模具固定台上,拉弯模具固定在绝缘绝 热垫层上面,通过高强度绝缘螺栓固连在绝缘绝热垫层上,安装在模具固定台上。模具 加热装置与拉弯模具通过高强度绝缘螺栓连接。拉弯时,利用电源系统和模具加热装 置对拉弯模具进行局部加热和保温,拉弯结束,关闭电源系统。电源系统位于整个模 具的外围。
所述拉弯模具主要由绝缘陶瓷层、金属电加热层、绝缘隔热陶瓷层以及模具基体组成。绝缘陶瓷层贴合在金属电加热层靠近型材的一面,绝缘隔热陶瓷层贴合在金属 电加热层靠近模具基体的一面,绝缘隔热陶瓷层的内表面和模具基体贴合固定。拉弯 模具所用的螺栓采用高强度绝缘螺栓。
所述模具加热装置是由加热电极片、阻热片和导线夹扣组成。导线夹扣底面贴合加热电极片,加热电极片底面贴合阻热片,阻热片底面与金属电加热层伸出部分贴合。 导线夹扣通过高强度绝缘螺栓与加热电极片连接、紧固。加热电极片、阻热片通过高 强度绝缘螺栓与金属电加热层连接、紧固。
所述电源系统由电源单元、温度控制单元和加热导线组成。加热导线连接固定在导线夹扣上,用于将电源单元连接到模具加热装置上,对金属电加热层进行加热和保 温。
所述绝缘绝热垫层安放在拉弯模具与模具固定台之间,分别与拉弯模具和模具固定台的底面贴合固定。
所述绝缘陶瓷层采用氧化铝陶瓷材料。
所述绝缘隔热陶瓷层采用氧化铝陶瓷材料。
所述金属电加热层采用7Mn15Cr2Al3V2WMo合金钢材料。
所述绝缘绝热垫层采用耐高温高强度石棉板。
本发明的工作流程为:
首先将拉弯模具安装在已经放置了绝缘绝热垫层的模具固定台上,绝缘绝热垫层使拉弯模具与模具固定台之间绝缘绝热,保证设备安全。
接通模具加热装置的电源,对拉弯模具的金属电加热层进行加热,直至金属电加热层温度达到设定的热拉弯成形温度值。
然后,启动拉弯机进行热拉弯成形,使预热后的型材发生弯曲并包覆模具,直到贴合模具表面。
最后,拉弯结束,切断电源系统,待零件冷却后,拆卸零件。
本发明通过对拉弯模具中的金属电加热层直接进行通电加热,加热到设定的温度之后进行型材热拉弯成形,由于拉弯模具与型材接触部分已经预加热到设定的温度, 与型材之间的温度差相对较小,减少型材在与拉弯模具表面接触加热成形过程中的热 量损失和氧化污染,较好地解决型材在传统拉弯成形加工工艺中所遇到回弹、起皱和外 层破裂的质量问题,提高了加工工件的表面质量和生产效率。
本发明装置对金属电加热层直接进行通电加热,利用了绝缘隔热陶瓷层,避免通电电流对模具基体的加热,同时减少了热量对模具基体的传导,使金属电加热层较快 的达到设定的温度。绝缘陶瓷层使拉弯模具与型材之间绝缘,保证拉弯设备的安全。 本发明中的加热方法直接对拉弯模具中的金属电加热层部分进行加热,使金属电加热 层较快的达到设定的温度,经计算,本发明相比于对模具整体加热,在保温时能够减 少60%~90%的电源输出功率,能够很好解决在对电热拉弯成形模具加热时,加热速度 慢,能量利用率低等问题;并且本发明方便实用、结构简单、易于加工制造、绝缘绝 热效果良好。
附图说明
图1是本发明的结构示意图。
图2是拉弯模具的俯视图。
图3是拉弯模具的局部剖视图。
图4是模具加热装置的局部剖视图
图5是导线夹扣与加热导线的结构示意图。
图6是金属电加热层的结构尺寸示意图。
图7是确定的模具参数的示意图。
图8是模具的受力示意图。
图中:
1.拉弯模具;2.电源系统;3.绝缘绝热垫层;4.模具加热装置;5.模具固定台; 6.绝缘陶瓷层;7.金属电加热层;8.绝缘隔热陶瓷层;9.模具基体;10.加热电极片; 11.阻热片;12.高强度绝缘螺栓;13.螺母;14.绝缘垫圈;15.导线夹扣。
具体实施方式
本实施例是一种适合于型材的电热拉弯机的局部电加热模具,包括拉弯模具1、电源系统2、绝缘绝热垫层3、模具加热装置4、模具固定台5。
拉弯模具1安装在绝缘绝热垫层3上,绝缘绝热垫层3的下表面与模具固定台5 的上表面贴合。拉弯模具1安放在绝缘绝热垫层3上,并通过高强度绝缘螺栓12将该 拉弯模具与绝缘绝热垫层固定在模具固定台5上;该拉弯模具的金属电加热层7的两 端分别通过加热导线与电源连通。拉弯模具1上的所用螺栓采用镍基高温合金螺栓, 绝缘绝热垫层3采用耐高温高强度石棉板。
所述拉弯模具1包括绝缘陶瓷层6、金属电加热层7、绝缘隔热陶瓷层8及模具基 体9组成。该模具基体9的一个侧表面为成型面;该成型面的曲率与待成形工件的曲 率相同。
所述金属电加热层7为采用7Mn15Cr2Al3V2WMo合金钢板制成的弧形板,其厚度为10mm。该金属电加热层的曲率与成型面的曲率相同。在该金属电加热层的内表面有绝 缘隔热陶瓷层8,在该金属电加热层的外表面有绝缘陶瓷层6;所述的绝缘隔热陶瓷层 8采用氧化铝陶瓷材料制成,粉末状的氧化铝陶瓷材料通过热喷涂技术结合在所述金 属电加热层的内表面,喷涂厚度为5mm;所述的绝缘陶瓷层6亦采用氧化铝陶瓷材料 制成,粉末状的氧化铝陶瓷材料通过热喷涂技术结合在所述金属电加热层的外表面, 喷涂厚度为0.5mm。将所述绝缘隔热陶瓷层8的内表面通过粘合剂与模具基体9贴合 固定。
所述模具加热装置4采用单面夹持结构,装置是由加热电极片10、阻热片11和 导线夹扣15组成。导线夹扣15的下表面与加热电极片10的上表面贴合,加热电极片 10的下表面与阻热片11的上表面贴合,阻热片11的下表面与金属电加热层7的上表 面贴合。加热电极片10采用纯铜材料,阻热片11采用TC4钛合金材料,导线夹扣15 采用纯铜材料。加热电极片10、阻热片11和导线夹扣15分别打磨光滑,防止在加热 过程中出现氧化层。导线夹扣15的铜片上有1个同心通孔,高强度绝缘螺栓12装入 所述通孔,将导线夹扣15和加热电极片10连接并通过螺母13和绝缘垫圈14固紧。 加热导线连接、紧固在导线夹扣15上。在所述加热电极片10,阻热片11和金属电加 热层7上分别均布有4个同心通孔,4个高强度绝缘螺栓12分别装入所述通孔内,将 加热电极片10、阻热片11和金属电加热层7连接并通过螺母13和绝缘垫圈14固紧。 图5是导线夹扣15与加热导线的结构示意图,其中的一排小圆圈代表加热导线是由一 根根导线聚合连接成的。
所述电源系统2由电源单元、温度控制单元和加热导线组成。温度控制单元实时测量金属电加热层7的温度,根据温度反馈信号,调节电源单元输入电流实现对金属 电加热层7温度的控制。加热导线连接固定在导线夹扣15上,连接电源系统2与模具 加热装置4,对拉弯模具1局部通电加热。
本实施例直接对拉弯模具中的金属电加热层部分进行加热,使金属电加热层较快的达到设定的温度,经计算,本实施例相比于对模具整体加热,在保温时能够减少60% 的电源输出功率。
本实施例还提出了一种所述拉弯模具的设计方法,具体过程是:
步骤1,确定模具基体9。
所述模具基体采用现有技术。根据成型要求,选取与待成形工件的曲率相同的模具基体。
步骤2:确定金属电加热层7的材料。
在电热拉弯时拉弯模具表面温度要达到200℃。在本实施例中,金属电加热层的材料为7Mn15Cr2Al3V2WMo合金钢,该合金钢在200℃时的电阻率约为 1.05×10-6Ω·m,σb=1470MPa,σs=1225MPa,具有高强度,耐高温的性质。所以 采用7Mn15Cr2Al3V2WMo合金钢作为金属电加热层材料。
步骤3:确定金属电加热层的尺寸。
所述金属电加热层的尺寸包括该金属电加热层7的长度L、宽度B和厚度H。
金属电加热层7的长度L和宽度B根据待成形工件的技术要求确定。在确定金属 电加热层的厚度H时,根据保温时电源系统提供的通电电流大小以及所用金属材料的 热电物理性能,确定金属电加热层的厚度H,以达到金属电加热层合理的电阻大小。
通过公式⑴~⑹得到金属电加热层的厚度H的表达式⑺
通过公式⑴~⑵得到金属电加热层7的电阻R:
在金属电加热层7的温度为T时,金属材料7Mn15Cr2Al3V2WMo的电阻率ρ为
ρ=ρ0·(1+a·T) ⑴
公式⑴中:R为金属电加热层7的电阻,单位为Ω;a为此金属材料电阻率温度 系数,ρ0为此金属材料0℃时的电阻率,公式⑵中S为金属电加热层7的横截面积。
电流加热功率P1
公式⑶中Q为保温时金属电加热层7所产生的总热量,单位为J,t为保温时的通 电时间,单位为s,I为保温时电源系统提供的通电电流,综合考虑电源成本、可操 控性等因素来选择电流的大小,单位为A,R为金属电加热层7的电阻,单位为Ω。
金属电加热层7黑体辐射的功率P2
P2=A1·α·T1 4
公式(4)中A1为金属电加热层7的表面积,
A1=2·(H·L+H·B+L·B),单位为m2,α为黑体辐射常数, α=5.67×10-8W/(m2K4),T1为金属电加热层的热力学温度,单位为K。
金属电加热层7与空气的热对流功率P3
P3=h·△T·A2
公式⑸中h为空气的热对流系数,单位为W/(m2K),△T为金属电加热层7与空气 的温度差,单位为K,A2为金属电加热层7暴露在空气中的表面积,单位为m2
在电热拉弯的过程中,为了使拉弯模具保持在设定的拉弯成形温度,应使金属电加热层7在通电保温时产生的热量与散发的热量基本保持动态平衡,从而保证金属电 加热层7的温度稳定在设定的温度。
则有
P1=P2+P3
将公式⑶~⑸代入公式⑹计算出金属电加热层的厚度H的表达式⑺。
在本实施例中设计金属电加热层的厚度H为10mm。
步骤4,确定绝缘层与绝缘隔热层的材料。
在确定绝缘层的材质时,因为氧化铝陶瓷材料的电阻率为10×1015Ω·cm,绝缘强度为15kv/mm,导热系数为20W/(m·K),是很好的绝缘绝热材料。同时,氧化铝陶 瓷材料的抗压强度σc=850MPa,抗压强度大,所以选用氧化铝陶瓷材料作为绝缘层和绝 缘隔热层的材料。
在验证氧化铝陶瓷材料的强度时,根据型材与绝缘层接触面间的摩擦系数,通过公式⑻~⑽确定电热拉弯成形时绝缘层表面上的最大摩擦力fmax
所述绝缘层为弧状,该绝缘层有两个周向端面,以两个端面中的一个周向端面为起始端面,当该起始端面到周向张力作用点的张角为θ时,该截面的周向张力为Fθ
Fθ=F0·e-μ·θ
公式⑻中F0为起始周向拉力,e为数学中自然对数的底数,μ为型材与绝缘层接 触面间的摩擦系数。
f为型材与绝缘层的摩擦力,作用在绝缘层上,由沿绝缘层上的方向力平衡条件,得
f=F0-Fθ
当θ=β时,f取值最大fmax
fmax=F0-F0·e-μ·β
公式⑽中β为从绝缘层起始端面到绝缘层中心线处的角度大小,
通过公式⑾确定绝缘层所受的最大切应力τ1
公式⑾中L1为绝缘层的长度,B1为绝缘层的宽度。
通过公式⑿确定绝缘层所受的压应力p:
通过公式⒀确定绝缘层所受到的最大正应力。
以垂直于绝缘层外表面的中心线作为坐标系的X轴方向,绝缘层横截面方向与坐标系的YZ平面重合。从绝缘层中心线处取出一单元体,该单元体垂直于X轴的截面上 有压应力p和切应力τ1;该单元体垂直于Y轴的截面上有切应力τ2;τ2=τ1,并且τ1的 方向与τ2的方向都垂直于所在两个平面的交线,且共同背离这一交线;该单元体垂直 于Z轴的截面上没有应力。该单元体受到的最大正应力σmax
在电热拉弯成形时,绝缘层6所受的最大正应力σmax必须小于等于此时材料的许用压应力,
公式⒁中σc为所述绝缘层材料的耐压强度,n为所述绝缘层材料的安全系数。
在取绝缘层两周向端面间的夹角为型材与绝缘层接触面间的摩擦系数 μ=0.5,绝缘层6长度L1=1000mm,宽度B1=100mm,n=3的条件下。利用上述 公式⑻~⒁可以计算出在电热拉弯时,绝缘层所受的最大正应力σmax与起始周向张力 F0的关系,如表1所示。
表1
F0 15 25 30 40 70 120
σmax MPa 2.892 4.821 5.782 7.711 13.495 23.135
已知所用氧化铝陶瓷材料的耐压强度σc=850MPa。因为σmax远小于所用氧化铝陶瓷的许用压应力,即绝缘陶瓷层6在电热拉弯时能够安全工作。
步骤5:确定绝缘层和绝缘隔热层的厚度。
在绝缘层和绝缘隔热层采用所述的氧化铝陶瓷材料后,采用热喷涂技术将粉末状的氧化铝陶瓷材料分别喷涂到金属电加热层7的外表面和内表面。因为绝缘陶瓷层在 功能上只要求型材与拉弯模具间的绝缘,并且厚度越小其表面温度越快接近金属电热 层的温度,所以绝热层的喷涂厚度为0.5mm;绝缘隔热层在功能上要求金属电加热层 与模具基体间的绝缘,并且要减少热量向模具基体的传递,所以绝缘隔热层的喷涂厚 度为5mm。
本发明的工作步骤为:
第一步,设备安装:用高强度绝缘螺栓将拉弯模具安装在已经放置了绝缘绝热垫层的模具固定台上,绝缘绝热垫层使拉弯模具与模具固定台之间绝缘绝热,保证设备 安全。
第二步,通电加热:接通模具加热装置的电源,对拉弯模具的金属电加热层进行加热,直至金属电加热层温度达到设定的热拉弯成形温度值。
第三步,拉弯成形:启动拉弯机进行热拉弯成形,使预热后的型材发生弯曲并包覆模具,直到贴合模具表面成形出所需的形状。在整个拉弯过程中,控制金属电加热 层的温度,使其保持在设定的温度。
第四步,拆卸零件:拉弯结束,切断电源系统,停止供电,待零件冷却后,拆卸 零件。

Claims (7)

1.一种自阻电加热拉弯成形模具,其特征在于,包括拉弯模具、电源系统、绝缘绝热垫层、模具加热装置、模具固定台;
拉弯模具安装在绝缘绝热垫层上,绝缘绝热垫层的下表面与模具固定台的上表面贴合;拉弯模具安放在绝缘绝热垫层上,并将该拉弯模具与绝缘绝热垫层固定在模具固定台上;该拉弯模具的金属电加热层的两端分别通过加热导线与电源连通;所述电源系统由电源单元、温度控制单元和加热导线组成;温度控制单元实时测量金属电加热层的温度,根据温度反馈信号,调节电源单元输入电流实现对金属电加热层温度的控制;加热导线连接固定在导线夹扣上,连接电源系统与模具加热装置,对拉弯模具局部通电加热。
2.如权利要求1所述自阻电加热拉弯成形模具,其特征在于,所述拉弯模具包括绝缘陶瓷层、金属电加热层、绝缘隔热陶瓷层及模具基体组成;该模具基体的一个侧表面为成型面;该成型面的曲率与待成形工件的曲率相同;所述金属电加热层为弧形板;该金属电加热层的曲率与成型面的曲率相同;在该金属电加热层的内表面有绝缘隔热陶瓷层,在该金属电加热层的外表面有绝缘陶瓷层;将所述绝缘隔热陶瓷层的内表面通过粘合剂与模具基体贴合固定。
3.如权利要求2所述自阻电加热拉弯成形模具,其特征在于,所述的绝缘隔热陶瓷层和绝缘陶瓷层均采用氧化铝陶瓷粉末热喷涂在所述金属电加热层的内表面,喷涂厚度分别为5mm和0.5mm。
4.如权利要求2所述自阻电加热拉弯成形模具,其特征在于,所述金属电加热层采用7Mn15Cr2Al3V2WMo合金钢板制成,厚度为10mm。
5.如权利要求1所述自阻电加热拉弯成形模具,其特征在于,所述模具加热装置采用单面夹持结构,由加热电极片、阻热片和导线夹扣组成;导线夹扣的下表面与加热电极片的上表面贴合,加热电极片的下表面与阻热片的上表面贴合,阻热片下表面与金属电加热层的上表面贴合;加热电极片采用纯铜材料,阻热片采用TC4钛合金材料,导线夹扣采用纯铜材料;加热电极片、阻热片和导线夹扣分别打磨光滑,防止在加热过程中出现氧化层;通过高强度绝缘螺栓将导线夹扣和加热电极片连接并固紧;加热导线紧固在导线夹扣上;所述加热电极片、阻热片和金属电加热层通过高强度绝缘螺栓连接固紧。
6.一种设计权利要求1所述自阻电加热拉弯成形模具的方法,其特征在于,具体过程是:
步骤1,确定模具基体:
步骤2:确定金属电加热层的材料:
在电热拉弯时拉弯模具表面温度要达到200℃;
步骤3:确定金属电加热层的尺寸:
所述金属电加热层的尺寸包括该金属电加热层的长度L、宽度B和厚度H;
金属电加热层的长度L和宽度B根据待成形工件的技术要求确定;在确定金属电加热层的厚度H时,根据保温时电源系统提供的通电电流大小以及所用金属材料的热电物理性能,确定金属电加热层的厚度H,以达到金属电加热层合理的电阻大小;
通过公式⑴~⑹得到金属电加热层的厚度H的表达式⑺
通过公式⑴~⑵得到金属电加热层的电阻R:
在金属电加热层的温度为T时,金属材料7Mn15Cr2Al3V2WMo的电阻率ρ为
ρ=ρ0·(1+a·T) ⑴
<mrow> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>&amp;CenterDot;</mo> <mi>L</mi> </mrow> <mi>S</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>&amp;CenterDot;</mo> <mi>L</mi> </mrow> <mrow> <mi>H</mi> <mo>&amp;CenterDot;</mo> <mi>B</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
公式⑴中:R为金属电加热层的电阻,单位为Ω;a为此金属材料电阻率温度系数,ρ0为此金属材料0℃时的电阻率,公式⑵中S为金属电加热层的横截面积;
电流加热功率P1
<mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mi>Q</mi> <mi>t</mi> </mfrac> <mo>=</mo> <msup> <mi>I</mi> <mn>2</mn> </msup> <mo>&amp;CenterDot;</mo> <mi>R</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
公式⑶中Q为保温时金属电加热层所产生的总热量,单位为J,t为保温时的通电时间,单位为s,I为保温时电源系统提供的通电电流,综合考虑电源成本、可操控性等因素来选择电流的大小,单位为A;
金属电加热层黑体辐射的功率P2
P2=A1·α·T1 4
公式⑷中A1为金属电加热层的表面积,A1=2·(H·L+H·B+L·B),单位为m2,α为黑体辐射常数,α=5.67×10-8W/(m2K4),T1为金属电加热层的热力学温度,单位为K;
金属电加热层与空气的热对流功率P3
P3=h·△T·A2
公式⑸中h为空气的热对流系数,单位为W/(m2K),△T为金属电加热层与空气的温度差,单位为K,A2为金属电加热层7暴露在空气中的表面积,A2=2·H·B+H·L,单位为m2
在电热拉弯的过程中,为了使拉弯模具保持在设定的拉弯成形温度,应使金属电加热层在通电保温时产生的热量与散发的热量基本保持动态平衡,从而保证金属电加热层的温度稳定在设定的温度;
则有
P1=P2+P3
将公式⑶~⑸代入公式⑹计算出金属电加热层的厚度H的表达式⑺;
<mrow> <mi>H</mi> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>P</mi> <mn>3</mn> </msub> <mo>)</mo> <mo>&amp;CenterDot;</mo> <mi>B</mi> </mrow> <mrow> <msup> <mi>I</mi> <mn>2</mn> </msup> <mo>&amp;CenterDot;</mo> <mi>&amp;rho;</mi> <mo>&amp;CenterDot;</mo> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
步骤4,确定绝缘层与绝缘隔热层的材料:
在确定绝缘层的材质时,因为氧化铝陶瓷材料的电阻率为10×1015Ω·cm,绝缘强度为15kv/mm,导热系数为20W/(m·K),是很好的绝缘绝热材料;同时,氧化铝陶瓷材料的抗压强度σc=850MPa,抗压强度大,所以选用氧化铝陶瓷材料作为绝缘层和绝缘隔热层的材料;
在验证氧化铝陶瓷材料的强度时,根据型材与绝缘层接触面间的摩擦系数,通过公式⑻~⑽确定电热拉弯成形时绝缘层表面上的最大摩擦力fmax
所述绝缘层为弧状,该绝缘层有两个周向端面,以两个端面中的一个周向端面为起始端面,当该起始端面到周向张力作用点的张角为θ时,该截面的周向张力为Fθ
Fθ=F0·e-μ·θ
公式⑻中F0为起始周向拉力,e为数学中自然对数的底数,μ为型材与绝缘层接触面间的摩擦系数;
f为型材与绝缘层的摩擦力,作用在绝缘层上,由沿绝缘层上的方向力平衡条件,得
f=F0-Fθ
当θ=β时,f取值最大fmax
fmax=F0-F0·e-μ·β
公式⑽中β为从绝缘层起始端面到绝缘层中心线处的角度大小,
通过公式⑾确定绝缘层所受的最大切应力τ1
<mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>f</mi> <mi>max</mi> </msub> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
公式⑾中L1为绝缘层的长度,B1为绝缘层的宽度;
通过公式⑿确定绝缘层所受的压应力p:
<mrow> <mi>p</mi> <mo>=</mo> <mfrac> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mi>&amp;mu;</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
通过公式⒀确定绝缘层所受到的最大正应力;
以垂直于绝缘层外表面的中心线作为坐标系的X轴方向,绝缘层横截面方向与坐标系的YZ平面重合;从绝缘层中心线处取出一单元体,该单元体垂直于X轴的截面上有压应力p和切应力τ1;该单元体垂直于Y轴的截面上有切应力τ2;τ2=τ1,并且τ1的方向与τ2的方向都垂直于所在两个平面的交线,且共同背离这一交线;该单元体垂直于Z轴的截面上没有应力;该单元体受到的最大正应力σmax
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>max</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>p</mi> <mo>+</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>p</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </msqrt> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
在电热拉弯成形时,绝缘层所受的最大正应力σmax必须小于等于此时材料的许用压应力,
公式⒁中σc为所述绝缘层材料的耐压强度,n为所述绝缘层材料的安全系数;
在取绝缘层两周向端面间的夹角为型材与绝缘层接触面间的摩擦系数μ=0.5,绝缘层长度L1=1000mm,宽度B1=100mm,n=3的条件下;已知所用氧化铝陶瓷材料的耐压强度σc=850MPa;因为σmax远小于所用氧化铝陶瓷的许用压应力,即绝缘陶瓷层在电热拉弯时可以安全工作;
步骤5:确定绝缘层和绝缘隔热层的厚度:
所述绝热层的喷涂厚度为0.5mm;所述绝缘隔热层的喷涂厚度为5mm。
7.如权利要求6所述自阻电加热拉弯成形模具的设计方法,其特征在于,步骤4中利用上述公式⑻~⒁计算在电热拉弯时,绝缘层所受的最大正应力σmax与起始周向张力F0的关系如表1所示:
表1
CN201710793489.6A 2017-09-06 2017-09-06 一种自阻电加热拉弯成形模具及其设计方法 Active CN107695150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710793489.6A CN107695150B (zh) 2017-09-06 2017-09-06 一种自阻电加热拉弯成形模具及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710793489.6A CN107695150B (zh) 2017-09-06 2017-09-06 一种自阻电加热拉弯成形模具及其设计方法

Publications (2)

Publication Number Publication Date
CN107695150A true CN107695150A (zh) 2018-02-16
CN107695150B CN107695150B (zh) 2020-01-14

Family

ID=61172105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710793489.6A Active CN107695150B (zh) 2017-09-06 2017-09-06 一种自阻电加热拉弯成形模具及其设计方法

Country Status (1)

Country Link
CN (1) CN107695150B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110624966A (zh) * 2019-10-08 2019-12-31 江西洪都航空工业集团有限责任公司 一种2000系铝合金蒙皮分段拉形成型方法
CN110666040A (zh) * 2019-09-17 2020-01-10 中国航空制造技术研究院 一种热拉弯模具及钛合金型材的拉弯成形方法
CN110788217A (zh) * 2019-09-18 2020-02-14 北京航空航天大学 一种用于型材热拉弯的框板式模具
CN111331014A (zh) * 2020-04-10 2020-06-26 西北工业大学 飞机型材自阻电加热增量式自由弯曲成形夹具及成形方法
CN111644498A (zh) * 2020-06-12 2020-09-11 中国航空制造技术研究院 钛合金型材电热拉弯过程的控制方法及拉弯成形装置
CN113560381A (zh) * 2021-07-27 2021-10-29 北京航空航天大学 一种大截面钛合金型材高温蠕变成形工装及其使用方法
CN114558921A (zh) * 2022-03-01 2022-05-31 中国航空制造技术研究院 电热拉弯模具及电热拉弯成形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011429A (en) * 1975-10-20 1977-03-08 Northrop Corporation Hot stretch-wrap forming with resistance heating
CN102500675A (zh) * 2011-10-13 2012-06-20 北京航空航天大学 一种钛合金薄壁零件热成形工装及加工方法
CN102814368A (zh) * 2012-08-23 2012-12-12 北京航空航天大学 一种型材热拉弯蠕变复合成形工装系统及其使用方法
KR20130069201A (ko) * 2011-12-16 2013-06-26 주식회사 성우하이텍 핫 스탬핑용 예열 장치
CN104259272A (zh) * 2014-08-11 2015-01-07 西北工业大学 一种用于飞机型材的感应加热拉弯成形装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011429A (en) * 1975-10-20 1977-03-08 Northrop Corporation Hot stretch-wrap forming with resistance heating
CN102500675A (zh) * 2011-10-13 2012-06-20 北京航空航天大学 一种钛合金薄壁零件热成形工装及加工方法
KR20130069201A (ko) * 2011-12-16 2013-06-26 주식회사 성우하이텍 핫 스탬핑용 예열 장치
CN102814368A (zh) * 2012-08-23 2012-12-12 北京航空航天大学 一种型材热拉弯蠕变复合成形工装系统及其使用方法
CN104259272A (zh) * 2014-08-11 2015-01-07 西北工业大学 一种用于飞机型材的感应加热拉弯成形装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110666040A (zh) * 2019-09-17 2020-01-10 中国航空制造技术研究院 一种热拉弯模具及钛合金型材的拉弯成形方法
CN110788217A (zh) * 2019-09-18 2020-02-14 北京航空航天大学 一种用于型材热拉弯的框板式模具
CN110624966A (zh) * 2019-10-08 2019-12-31 江西洪都航空工业集团有限责任公司 一种2000系铝合金蒙皮分段拉形成型方法
CN111331014A (zh) * 2020-04-10 2020-06-26 西北工业大学 飞机型材自阻电加热增量式自由弯曲成形夹具及成形方法
CN111331014B (zh) * 2020-04-10 2021-11-30 西北工业大学 飞机型材自阻电加热增量式自由弯曲成形夹具及成形方法
CN111644498A (zh) * 2020-06-12 2020-09-11 中国航空制造技术研究院 钛合金型材电热拉弯过程的控制方法及拉弯成形装置
CN111644498B (zh) * 2020-06-12 2021-09-10 中国航空制造技术研究院 钛合金型材电热拉弯过程的控制方法及拉弯成形装置
CN113560381A (zh) * 2021-07-27 2021-10-29 北京航空航天大学 一种大截面钛合金型材高温蠕变成形工装及其使用方法
CN113560381B (zh) * 2021-07-27 2022-03-29 北京航空航天大学 一种大截面钛合金型材高温蠕变成形工装及其使用方法
CN114558921A (zh) * 2022-03-01 2022-05-31 中国航空制造技术研究院 电热拉弯模具及电热拉弯成形方法

Also Published As

Publication number Publication date
CN107695150B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
CN107695150A (zh) 一种自阻电加热拉弯成形模具及其设计方法
CN104797015B (zh) 一种热敏陶瓷发热器的发热芯
CN109005607B (zh) 一种石墨烯电热膜及其制备方法和应用以及含有石墨烯电热膜的设备
CN111511049A (zh) 一种发热板及其制造方法
CN208680816U (zh) 一种预热及缓冷温度可调的薄板焊接实验装置
CN102740514A (zh) 云母板涂层电发热装置及其制造方法
CN103633003B (zh) 一种静电卡盘
CN203526814U (zh) 一种管道野外焊接施工便携控温式陶瓷加热带
CN205408186U (zh) 一种金属柔性发热膜
CN110328247A (zh) 轧制中对金属复合板补温的装置及补温方法
CN116590506A (zh) 一种钛合金材料薄壁构件电磁间接快速加热装置及方法
CN206993432U (zh) 一种发热片
CN202364399U (zh) 可包覆加热的履带式陶瓷加热器
CN213485187U (zh) 一种金属纤维材料导电加热器
CN201690627U (zh) 一种电热板
CN204018171U (zh) 用于坩埚喷涂的坩埚加热板
CN203471253U (zh) 加热式螺栓拆卸装置
CN206678252U (zh) 一种应用于硫化机的双层加热板
CN112272421A (zh) 一种金属纤维材料导电加热器及其应用
KR102344469B1 (ko) 비철소재 부재의 용접방법
CN202445835U (zh) 一种加热底盘和电热水壶
CN110798917B (zh) 一种用于电炉的发热板及其制备方法
JP2010277809A (ja) 加熱ヒータおよびそれを備えた装置
US20140238975A1 (en) Monolithic thermal heating block made from refractory phosphate cement
CN107030945A (zh) 一种加热板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant