CN107688086B - 一种浅沟侵蚀输沙能力的定量表达方法 - Google Patents

一种浅沟侵蚀输沙能力的定量表达方法 Download PDF

Info

Publication number
CN107688086B
CN107688086B CN201710711495.2A CN201710711495A CN107688086B CN 107688086 B CN107688086 B CN 107688086B CN 201710711495 A CN201710711495 A CN 201710711495A CN 107688086 B CN107688086 B CN 107688086B
Authority
CN
China
Prior art keywords
shallow trench
sand
erosion
length
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710711495.2A
Other languages
English (en)
Other versions
CN107688086A (zh
Inventor
张晴雯
雷廷武
董月群
郑莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Environment and Sustainable Development in Agriculturem of CAAS
Original Assignee
Institute of Environment and Sustainable Development in Agriculturem of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Environment and Sustainable Development in Agriculturem of CAAS filed Critical Institute of Environment and Sustainable Development in Agriculturem of CAAS
Priority to CN201710711495.2A priority Critical patent/CN107688086B/zh
Publication of CN107688086A publication Critical patent/CN107688086A/zh
Application granted granted Critical
Publication of CN107688086B publication Critical patent/CN107688086B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Revetment (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及一种浅沟侵蚀输沙能力的定量表达方法,包括如下步骤:S1,测定不同水动力条件下浅沟随不同沟长对应的泥沙含量,获取浅沟侵蚀含沙量与沟长的对应关系;S2,根据S1中得到的浅沟侵蚀含沙量与沟长的对应关系,计算不同水动力条件下的浅沟侵蚀的单位时间水流的输沙量;S3,根据S2中的数据得到不同水动力条件下单位时间水流的输沙量随沟长的变化复合非线性数学关系;S4,根据S3中的输沙量随沟长的变化复合非线性数学关系,计算输沙能力。本发明的浅沟侵蚀输沙能力的定量表达方法,只需要建立浅沟输沙量和坡长的响应关系,就可以计算得到任意水动力条件下的浅沟侵蚀输沙能力。

Description

一种浅沟侵蚀输沙能力的定量表达方法
技术领域
本发明涉及土壤侵蚀与水土保持、农田面源污染控制领域,具体地说是涉及一种浅沟侵蚀输沙能力确定的系统和方法。
背景技术
浅沟是坡地侵蚀产沙的主要来源和输沙通道,发育有浅沟的坡地在降雨过程中迅速汇集径流,形成冲刷力很强的股流,侵蚀动能剧增,成为切沟侵蚀和沟头前进的动力源泉,使土地资源遭到极大的破坏。由于浅沟侵蚀对坡面总侵蚀输沙量的显著贡献,近十几年来引起了国内外对浅沟侵蚀模拟和预报研究的极大兴趣。目前可以模拟浅沟侵蚀过程的模型有WEPP(Water Erosion Prediction Project),但由于试验手段和计算方法的局限,产沙方程中输沙能力等尚不能经试验直接测定与计算,限制了模型在浅沟侵蚀预报中的应用。已开发的浅沟侵蚀模型EGEM(Ephemeral Gully Erosion Model)可用于预报浅沟年均侵蚀量,但不能反应浅沟侵蚀产沙的时空变化过程,只能预报有限空间和时间点的土壤侵蚀信息。因缺乏合理的参数计算方法,当模拟值与实测值出现差异时,很难辨别误差来自模型本身还是参数选择有误。为了实现土壤侵蚀预报完全建立在物理过程基础上,模型参数应具有明确的物理意义,并能用力学表达式描述或由试验直接测量。
输沙能力(Sediment transport capacity)的概念是在物理过程分析的基础上得来的。在浅沟产生以后水流的侵蚀、搬运和沉积作用是一个不断转化的过程,它被定义为水流可携带的最大含沙量。如果实际水流含沙量小于这个值,那么水流继续侵蚀搬运土壤颗粒;如果含沙量大于输沙能力,那么多余的泥沙就会沉积。从能量的角度而言,浅沟中的水流具有剥离土壤和搬运泥沙的能力。在浅沟产生初期径流中的泥沙含量较少,水流的剥离能力占有主导地位,随着水流不断的剥蚀土壤泥沙量逐渐增多,用于剥离的能力也逐渐转换为输送泥沙的能量,直到水流的全部能量都用于输送泥沙,即不再剥离土壤。与此同时,水流中的泥沙含量处于饱和状态并达到稳定值,出现暂时的平衡状态。平衡状态下的稳定值对应于水流的输沙能力,表征由剥离作用进入水流中的泥沙量与水流中泥沙的沉积量相对平衡、净剥离量为零的一种状态。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种浅沟侵蚀输沙能力确定的定量表达方法。
输沙能力(Sediment transport capacity)的概念是在物理过程分析的基础上得来的。在浅沟产生以后水流的侵蚀、搬运和沉积作用是一个不断转化的过程,它被定义为水流可携带的最大含沙量。如果实际水流含沙量小于这个值,那么水流继续侵蚀搬运土壤颗粒;如果含沙量大于输沙能力,那么多余的泥沙就会沉积。从能量的角度而言,浅沟中的水流具有剥离土壤和搬运泥沙的能力。在浅沟产生初期径流中的泥沙含量较少,水流的剥离能力占有主导地位,随着水流不断的剥蚀土壤泥沙量逐渐增多,用于剥离的能力也逐渐转换为输送泥沙的能量,直到水流的全部能量都用于输送泥沙,即不再剥离土壤。与此同时,水流中的泥沙含量处于饱和状态并达到稳定值,出现暂时的平衡状态。平衡状态下的稳定值对应于水流的输沙能力,表征由剥离作用进入水流中的泥沙量与水流中泥沙的沉积量相对平衡、净剥离量为零的一种状态。在以上理论分析的基础上,我们提出了一种浅沟侵蚀输沙能力确定的系统和方法。
从能量耗散率基本理论出发,在给定的坡度和流量下,浅沟侵蚀的含沙量随径流对泥沙的剥蚀速率增加而增加,直到径流所能携带的输沙量达到最大值。应用初始条件,整合关于浅沟侵蚀下坡距离的输沙量方程,我们得出了一种解决方案,以计算在浅沟侵蚀中集中水流的输沙能力。在给定稳定水流的条件下,测定多个坡段不同浅沟长度水流的泥沙含量,借助数学方法得到泥沙含量与浅沟长度的对应关系。当浅沟长度达到临界值时,浅沟水流中的泥沙含量达到稳定或不再显着增加时,理论上水流中的泥沙含量为对应于浅沟水流输沙能力的泥沙含量。在坡度较缓坡长较短的情况下,即使浅沟长度达到试验水槽的长度时,水流中的泥沙含量仍未达到稳定,可以借助数学表达式,由试验测得的泥沙含量与浅沟长度的函数关系进行拟合,用拟合函数的极限值来计算浅沟侵蚀输沙能力。该测定系统和计算方法的关键是设计侵蚀水槽并测定浅沟侵蚀不同沟长对应的泥沙含量,得到浅沟侵蚀含沙量与沟长的对应关系。
本发明解决上述技术问题的技术方案如下:
本发明提供一种浅沟侵蚀输沙能力的定量表达方法,包括如下步骤:
S1,测定不同水动力条件下浅沟随不同沟长对应的泥沙含量,获取浅沟侵蚀含沙量与沟长的对应关系;
S2,根据S1中得到的浅沟侵蚀含沙量与沟长的对应关系,计算不同水动力条件下的浅沟侵蚀的单位时间水流的输沙量;
S3,根据S2中的数据得到不同水动力条件下单位时间水流的输沙量随沟长的变化复合非线性数学关系;
S4,根据S3中的输沙量随沟长的变化复合非线性数学关系,计算输沙能力。
进一步,在步骤S1之前,制备可精确控制水动力条件的侵蚀水槽,并使用所述侵蚀水槽进行步骤S1中的测定。
进一步,所述步骤S1中浅沟侵蚀含沙量与沟长的对应关系为:在预设的水动力条件条件下,浅沟沟长距离径流入水口xm-1的含沙量为cm-1,则在浅沟沟长距离径流入水口xm的含沙量为cm,表达式为
xm=xm-1+Δx (m∈[1,12]) (1)
Figure BDA0001382796520000041
其中cm为浅沟从入水口至沟长xm处的含沙量,kg/m3;m是段数,因次;xm是浅沟从入水口至点m的沟长,m。
进一步,所述步骤S2中单位时间水流的输沙量G的计算公式为:
Figure BDA0001382796520000042
Figure BDA0001382796520000043
其中,其中G为水流中输沙量,kg/m·s;G=qc,q是单位宽度径流量,m2/s。
进一步,所述步骤S3中不同水动力条件下单位时间水流的输沙量随沟长的变化复合非线性数学关系为:
G(x)=A(1-e-βx) (5)
其中G为输沙量(kg/m·s),β为衰减系数,x是沟长(m),A是回归系数。
进一步,所述步骤S4中输沙能力的计算公式为:
Figure BDA0001382796520000044
α=Tcβ (6.1)
Tc=A (6.2)
其中,Tc输沙能力(kg m-1s-1),α为系数。
进一步,所述水动力条件包括径流量和坡度。
本发明的有益效果是:本发明的浅沟侵蚀输沙能力的定量表达方法,只需要建立浅沟输沙量和坡长的响应关系,就可以计算得到任意水动力条件下的浅沟侵蚀输沙能力;并且本发明的方法不完全基于简单的数学推导,数学式能明确表达泥沙剥蚀输移的反馈关系,为坡地剥蚀输沙的动态过程及作用机理研究提供了新手段。
附图说明
图1为本发明的浅沟侵蚀输沙能力的定量表达方法的流程示意图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
一种浅沟侵蚀输沙能力的定量表达方法,该方法包括以下步骤:
浅沟侵蚀含沙量测定
从能量耗散率基本理论出发,在给定的坡度和径流量下,浅沟侵蚀的含沙量随径流对泥沙的剥蚀速率增加而增加,直到径流所能携带的输沙量达到最大值。应用初始条件,整合关于浅沟侵蚀下坡距离的输沙量方程,我们得出了一种解决方案,以计算在浅沟侵蚀中集中水流的输沙能力。在给定稳定水流的条件下,测定多个坡段不同浅沟长度水流的泥沙含量,借助数学方法得到泥沙含量与浅沟长度的对应关系。当浅沟长度达到临界值时,浅沟水流中的泥沙含量达到稳定或不再显着增加时,理论上水流中的泥沙含量为对应于浅沟水流输沙能力的泥沙含量。在坡度较缓坡长较短的情况下,即使浅沟长度达到试验水槽的长度时,水流中的泥沙含量仍未达到稳定,可以借助数学表达式,由试验测得的泥沙含量与浅沟长度的函数关系进行拟合,用拟合函数的极限值来计算浅沟侵蚀输沙能力。该测定系统和计算方法的关键是设计侵蚀水槽并测定浅沟侵蚀不同沟长对应的泥沙含量,得到浅沟侵蚀含沙量与沟长的对应关系。
为了精确地描述浅沟侵蚀产流产沙过程及因此造成的坡面形态变化过程,必须对研究对象抽象或简化,将影响浅沟侵蚀和发育的许多复杂因素尽可能地分离出来,在可控的条件下进行专门和系统地观测。从动力学的角度影响浅沟侵蚀产沙量的动力因子主要是径流强度、坡面径流运动速度、水力比降和沟长。由于坡面径流运动速度,尤其是点速度尚难以观测,因而很难建立起径流侵蚀产沙与流速的关系,所以在设计时,主要考虑了径流量和坡度对侵蚀产沙量的影响。因此,设计了室内浅沟侵蚀模拟试验,选取了径流量和坡度为影响浅沟侵蚀发生发展的主要水动力影响因子,测定不同水动力条件下浅沟随不同沟长对应的泥沙含量,获取浅沟侵蚀含沙量与沟长的对应关系。设在某一特定坡度和径流量条件下,浅沟沟长距离径流入水口xm-1的含沙量为cm-1,则在浅沟沟长距离径流入水口xm的含沙量为cm,表达式为
xm=xm-1+Δx (m∈[1,12]) (1)
Figure BDA0001382796520000061
其中cm为浅沟从入水口至沟长xm处的含沙量,kg/m3;m是段数,因次;xm是浅沟从入水口至点m的沟长,m。
浅沟侵蚀输沙量计算
根据不同沟长所测得的含沙量结果,计算不同坡度和径流量下的浅沟侵蚀的输沙量。单位时间水流的输沙量G的公式为
Figure BDA0001382796520000062
Figure BDA0001382796520000063
其中G为水流中输沙量,kg/m·s;G=qc,q是单位宽度流量,m2/s。
用公式(4)计算在不同径流量下在不同浅沟沟长的输沙量。在浅沟沟道径流引入口处,径流中的所有能量都可用于剥蚀土壤颗粒,因此,含沙量从入水口处随着沿浅沟沟长的增加而增加,随着含沙量的增加需要分配更多的能量用于输送剥蚀土壤颗粒,从而可用于剥蚀土壤颗粒的能量相应减少,含沙量沿沟长的增加速率趋于减少。
浅沟侵蚀输沙能力计算
不同坡度及流量下输沙量随沟长的变化复合非线性数学关系:
G(x)=A(1-e-βx) (5)
其中,G为输沙量(kg/m·s),β为衰减系数,x是沟长(m),A是回归系数。
输沙能力计算
输沙量与坡长的函数所表达的物理意义为输沙量随着沟长的增加逐渐增加,但增加的幅度越来越小,逐渐趋近极限值A。β是输沙量随距离增加其增长幅度衰减的指数,A值实际上代表的是水流达到饱和时的输沙量,也就是一定坡度和径流量下水流的输沙能力:
Figure BDA0001382796520000071
α=Tcβ (6.1)
Tc=A (6.2)
其中,Tc输沙能力(kg m-1s-1),α为系数。
实施例1
在径流量为:32L min-1,坡度为:5°的条件下,测量浅沟随不同沟长对应的泥沙含量,具体数值如下表所示:
表1 浅沟随不同沟长对应的泥沙含量
Figure BDA0001382796520000072
Figure BDA0001382796520000081
由上表可推算:在坡度为5°和径流量为32L min-1的条件下,浅沟沟长距离径流入水口xm-1的含沙量为cm-1,则在浅沟沟长距离径流入水口xm的含沙量为cm,表达式为
xm=xm-1+Δx (m∈[1,12]) (1)
Figure BDA0001382796520000082
其中,cm为浅沟从入水口至沟长xm处的含沙量,kg/m3;m是段数,因次;xm是浅沟从入水口至点m的坡长,m。
根据上述的浅沟侵蚀含沙量与沟长的对应关系,浅沟侵蚀的单位时间水流的输沙量,计算公式如下:
Figure BDA0001382796520000083
Figure BDA0001382796520000084
其中,其中G为单位时间水流的输沙量,kg/m·s;G=qc,q是单位宽度流量,m2/s。得到在坡度为5°和径流量为32L min-1的条件下,不同坡段单位时间水流的输沙量见表1。
并可以推算出,单位时间水流的输沙量随沟长的变化复合非线性数学关系为:
G(x)=A(1-e-βx) (5)
其中G为输沙量(kg/m·s),β为衰减系数,x是沟长距离(m),A是回归系数,表征一定坡度和流量下水流所能携带的最大输沙量。得到在坡度为5°和径流量为32L min-1的条件下,含沙量最大值为440.12kg/m3,单位时间水流的最大输沙量为4.69kg/m·s。
输沙量与坡长的函数所表达的物理意义为输沙量随着沟长的增加逐渐增加,但增加的幅度越来越小,逐渐趋近极限值A。β是输沙量随距离增加其增长幅度衰减的指数,A值实际上代表的是水流达到饱和时的输沙量,也就是一定坡度和流量下水流的输沙能力,即:
Figure BDA0001382796520000091
α=Tcβ (6.1)
Tc=A (6.2)
其中,Tc输沙能力(kg m-1s-1),α为系数。
由此可以得出,在坡度为**和径流量为**的条件下浅沟的输沙能力Tc为:4.69(kgm-1s-1)。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种浅沟侵蚀输沙能力的定量表达方法,其特征在于,包括如下步骤:
S1,测定不同水动力条件下浅沟随不同沟长对应的泥沙含量,获取浅沟侵蚀含沙量与沟长的对应关系;
S2,根据S1中得到的浅沟侵蚀含沙量与沟长的对应关系,计算不同水动力条件下的浅沟侵蚀的单位时间水流的输沙量;
S3,根据S2中的数据得到不同水动力条件下单位时间水流的输沙量随沟长的变化复合非线性数学关系;
S4,根据S3中的输沙量随沟长的变化复合非线性数学关系,计算输沙能力;
所述步骤S1中浅沟侵蚀含沙量与沟长的对应关系为:在预设水动力条件下,浅沟沟长距离径流入水口xm-1的含沙量为cm-1,则在浅沟沟长距离径流入水口xm的含沙量为cm,表达式为
xm=xm-1+Δx (m∈[1,12]) (1)
Figure RE-FDA0002627327860000011
其中cm为浅沟从入水口至沟长xm处的含沙量,kg/m3;m是段数,因次;xm是浅沟从入水口至点m的沟长,m;Δx是浅沟从入水口至点m和浅沟从入水口至点m-1之间的沟 长差,m;Δc为浅沟从入水口至沟长xm与浅沟从入水口至沟长xm-1处的含沙量差,kg/m3
2.根据权利要求1所述的浅沟侵蚀输沙能力的定量表达方法,其特征在于,在步骤S1之前,制备精确控制水动力条件的侵蚀水槽,并使用所述侵蚀水槽进行步骤S1中的测定。
3.根据权利要求1所述的浅沟侵蚀输沙能力的定量表达方法,其特征在于,所述步骤S2中单位时间水流的输沙量G的计算公式为:
Figure RE-FDA0002627327860000021
Figure RE-FDA0002627327860000022
其中,G为水流中输沙量,kg/m·s;G=qc,q是单位宽度流量,m2/s。
4.根据权利要求1所述的浅沟侵蚀输沙能力的定量表达方法,其特征在于,所述步骤S3中不同水动力条件下单位时间水流的输沙量随沟长的变化复合非线性数学关系为:
G(x)=A(1-e-βx) (5)
其中G为输沙量,单位为kg/m·s,β为衰减系数,x是沟长,单位为m,A是回归系数。
5.根据权利要求4所述的浅沟侵蚀输沙能力的定量表达方法,其特征在于,所述步骤S4中输沙能力的计算公式为:
Figure RE-FDA0002627327860000023
α=Tcβ (6.1)
Tc=A (6.2)
其中,Tc为输沙能力,单位为kg m-1s-1,α为系数。
6.根据权利要求1-5任一所述的浅沟侵蚀输沙能力的定量表达方法,其特征在于,所述水动力条件包括径流量和坡度。
CN201710711495.2A 2017-08-18 2017-08-18 一种浅沟侵蚀输沙能力的定量表达方法 Active CN107688086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710711495.2A CN107688086B (zh) 2017-08-18 2017-08-18 一种浅沟侵蚀输沙能力的定量表达方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710711495.2A CN107688086B (zh) 2017-08-18 2017-08-18 一种浅沟侵蚀输沙能力的定量表达方法

Publications (2)

Publication Number Publication Date
CN107688086A CN107688086A (zh) 2018-02-13
CN107688086B true CN107688086B (zh) 2020-12-04

Family

ID=61153572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710711495.2A Active CN107688086B (zh) 2017-08-18 2017-08-18 一种浅沟侵蚀输沙能力的定量表达方法

Country Status (1)

Country Link
CN (1) CN107688086B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568152B (zh) * 2019-08-20 2022-03-29 西安理工大学 一种降雨条件下的坡面糙率及泥沙侵蚀率的估算方法
CN110632277B (zh) * 2019-09-20 2020-07-28 中国农业大学 一种测量集中水流输沙能力的方法及装置
CN112630413B (zh) * 2021-01-07 2024-05-24 中国科学院地理科学与资源研究所 土壤管道流输沙能力模拟试验装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241790A (ja) * 2005-03-02 2006-09-14 Damdre Corp 浚渫土砂の輸送システム及びその輸送方法
CN104111318A (zh) * 2014-07-17 2014-10-22 中国农业科学院农业环境与可持续发展研究所 一种坡地水蚀输沙能力的稀土元素示踪方法
CN104677588A (zh) * 2015-03-13 2015-06-03 北京师范大学 一种土壤风力侵蚀测量方法及装置
CN106599473A (zh) * 2016-12-15 2017-04-26 中国水利水电科学研究院 一种坡面水沙过程耦合模拟方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241790A (ja) * 2005-03-02 2006-09-14 Damdre Corp 浚渫土砂の輸送システム及びその輸送方法
CN104111318A (zh) * 2014-07-17 2014-10-22 中国农业科学院农业环境与可持续发展研究所 一种坡地水蚀输沙能力的稀土元素示踪方法
CN104677588A (zh) * 2015-03-13 2015-06-03 北京师范大学 一种土壤风力侵蚀测量方法及装置
CN106599473A (zh) * 2016-12-15 2017-04-26 中国水利水电科学研究院 一种坡面水沙过程耦合模拟方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUANTIFYING THE SEDIMENT TRANSPORT CAPACITY IN ERODING RILLS USING A REE TRACING METHOD;Qingwen Zhang等;《LAND DEGRADATION & DEVELOPMENT》;20160418;参见摘要、"MATERIALS AND METHODS"和"RESULTS"部分 *

Also Published As

Publication number Publication date
CN107688086A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
CN107688086B (zh) 一种浅沟侵蚀输沙能力的定量表达方法
CN110457651B (zh) 一种利用数据同化改进的滑坡位移预测方法
CN106337388B (zh) 一种梯级水库区间来沙量的确定及其沿程分配方法
CN103454140B (zh) 一种测量金属材料疲劳裂纹扩展门槛值的简易方法
Liu et al. A simulation model for unified interrill erosion and rill erosion on hillslopes
CN104462863A (zh) 一种推求河道区间入流的计算方法
JP6103083B1 (ja) 情報処理装置、情報処理システム、情報処理方法及びプログラム
CN111046567A (zh) 一种基于Godunov格式的城市排水管网水流数值模拟方法
CN106570786B (zh) 一种基于调度规则时变特性的水库适应性调度方法
CN107992446B (zh) 一种浅沟侵蚀土壤剥蚀能力的定量计算方法
Wang et al. Calculation method for sediment load in flood and non-flood seasons in the Inner Mongolia reach of the Yellow River
CN102912760B (zh) 水库下游河道最低通航水位生成方法
CN117035480A (zh) 基于河道输沙平衡的流域水土流失治理度确定方法及系统
CN108386170B (zh) 一种油藏开发过程中地下能耗表征方法
CN104462202B (zh) 一种土的固结系数模型及建立方法
CN101418564B (zh) 一种稳定输水渠道
Jeong et al. Instantaneous physical rainfall–runoff prediction technique using a power–law relationship between time to peak and peak flow of an instantaneous unit hydrograph and the rainfall excess intensity
CN205228998U (zh) 一种水土流失自动监测仪
Piedra-Cueva et al. Erosion of a deposited layer of cohesive sediment
CN107090798A (zh) 一种水库超饱和输沙状态下恢复饱和系数计算方法
Kang et al. Two-dimensional hydrodynamic robust numerical model of soil erosion based on slopes and river basins
Smith et al. Dynamics and scale in simulating erosion by water
Aliakbari et al. Study and simulation of hydraulic and structural changes result of changing of section from soil to concrete.
CN105389453A (zh) 一种获取水利水电工程入库设计洪水的方法
Markofsky et al. Numerical simulation of unsteady suspended sediment transport

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant