CN107687896B - 压缩编码光谱成像系统的编码模板矩阵优化设计方法 - Google Patents

压缩编码光谱成像系统的编码模板矩阵优化设计方法 Download PDF

Info

Publication number
CN107687896B
CN107687896B CN201710630712.5A CN201710630712A CN107687896B CN 107687896 B CN107687896 B CN 107687896B CN 201710630712 A CN201710630712 A CN 201710630712A CN 107687896 B CN107687896 B CN 107687896B
Authority
CN
China
Prior art keywords
matrix
coding templet
noise
coding
templet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710630712.5A
Other languages
English (en)
Other versions
CN107687896A (zh
Inventor
卢孝强
邹纯博
唐兴佳
李立波
赵强
李学龙
胡炳樑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN201710630712.5A priority Critical patent/CN107687896B/zh
Publication of CN107687896A publication Critical patent/CN107687896A/zh
Application granted granted Critical
Publication of CN107687896B publication Critical patent/CN107687896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明涉及一种压缩编码光谱成像系统的编码模板矩阵优化设计方法,其具体步骤是:1)随机产生m个编码模板矩阵B;2)计算编码模板矩阵B的适应度值;3)利用旋转轮盘方法对上述编码模板矩阵进行子代选择;4)对选择得到的子代编码模板矩阵进行交叉处理;5)对交叉得到的子代编码模板矩阵进行变异处理,并判断是否满足迭代条件,若满足条件,则迭代结束,若不满足条件,返回步骤2);6)在经过步骤5)处理后的编码模板矩阵中选择最优的编码模板矩阵;本发明通过基于约束等距性条件和传输噪声最小化要求的遗传优化,将编码模板矩阵设计准则进行提升,以使得成像系统的噪声影响最小且编码效果最好。

Description

压缩编码光谱成像系统的编码模板矩阵优化设计方法
技术领域
本发明涉及一种压缩编码光谱成像系统的编码模板矩阵优化设计方法。
背景技术
光谱成像技术是一种集光学、光谱学、精密机械、电子技术及计算机技术等于一体的新型探测技术,在获取目标空间信息的同时,还可以获得目标的光谱信息。
由于传统光谱成像体制,存在系统工程实施难度大、硬件工艺难以实现、海量数据传输压力大、数据冗余量大、数据利用率低等技术瓶颈,出现了一种计算型光谱成像技术,即压缩编码光谱成像技术,它突破探测器硬件、系统工程实施等限制,通过编码模板和色散器件对光信号进行编码混叠调制,并在探测器上完成压缩采样,然后在稀疏先验下,以较低的数据采样率重构得到目标光谱图像信息。
在压缩编码光谱成像系统中,编码模板是关键器件,其主要功能是对光信号进行编码调制,其设计决定着最终能否稀疏重构出准确的光谱图像。编码模板主要由不同编码单元组成,而编码模板的编码传递函数正是由这些编码单元决定,其通过编码模板矩阵唯一表示。因此,对编码模板的设计,关键就是对编码模板矩阵的优化设计。
通常,编码模板矩阵优化设计的要求是使得投影测量矩阵满足约束等距性条件,即,要求投影测量矩阵和稀疏表示基是不相关的,或者说,要求投影测量矩阵的行或列不能由稀疏基的行或列线性表示,这里,投影测量矩阵由编码模板矩阵和光学系统传递矩阵乘积得到。
然而,现有的编码模板矩阵设计方法只考虑了约束等距性条件,并没有从信号系统的角度考虑能量高效传输问题,其特点是,编码模板矩阵的稀疏性较好,但在信号传输中对噪声的鲁棒性较差,噪声影响过大,为此,需研究不同于单一约束等距性条件下的编码模板矩阵优化设计方法。
发明内容
为了解决背景技术中的问题,本发明提供了在编码模板矩阵满足约束等距性条件的基础上,以传输噪声最小化为依据,对编码模板矩阵进行优化搜索设计的压缩编码光谱成像系统的编码模板矩阵优化设计方法。
本发明的具体技术方案是:
本发明提供了一种压缩编码光谱成像系统的编码模板矩阵优化设计方法,包括以下步骤:
1)随机产生m个编码模板矩阵B;每个编码模板矩阵均为r×q,r代表行,q代表列;
判断m个编码模板矩阵B是否满足基因编码要求;若满足,则直接进行下一步;若不满足,则对编码模板矩阵进行基因编码后,再进行下一步;
2)计算编码模板矩阵B的适应度值;
2.1)基于传输噪声最小化和约束等距性条件构建适应度评价函数,具体表达式为:
其中,代表传输噪声最小化的适应度评价函数;
P(BH,φ)代表约束等距性条件适应度评价函数;
γ为权重因子;
B为编码模板矩阵;
H为光学传递矩阵;
φ为稀疏基;
k为噪声因子,为A的方差,其中A=BH
代表v的平均值;
v=diag[A],diag为取对角元素运算或构造对角阵
Tr为求迹运算;
P为求相似度;
2.2)通过步骤2.1)定义的评价函数计算m个编码模板矩阵B的适应度值;
3)利用旋转轮盘方法对上述编码模板矩阵进行子代选择;
4)对选择得到的子代编码模板矩阵进行交叉处理;
5)对交叉得到的子代编码模板矩阵进行变异处理,并判断是否满足迭代条件,若满足条件,则迭代结束,若不满足条件,返回步骤2)
6)在经过步骤5)处理后的编码模板矩阵中选择最优的编码模板矩阵;此处,需判断编码模板矩阵是否在步骤1)中进行了基因编码,若是,则通过基因解码获得最终的编码模板优化矩阵;若不是,则直接作为最终的编码模板优化矩阵。
所述传输噪声最小化和约束等距性条件适应度评价函数构建步骤具体是:
2.1.1)建立传输噪声最小化的适应度评价函数:
建立投影测量矩阵A: A=BH
定义观测信号: y=Ax+n n为观测噪声,x为原始信号;
x=φθ φ为稀疏基;θ为稀疏表示系数
则:
重构原始信号表示为:其中:A-1表示A的广义逆;
重构原始信号的噪声方差表达式为:Cprop=E[A-1nn′A′-1]=A-1E[nn′]A′-1
E[nn′]=k·diag[Ax]
其中:diag为取对角元素运算或构造对角阵,k为噪声因子;
则,重构原始信号的噪声方差的优化表达式为:Cprop=kA-1diag[Ax]A′-1
又,所述压缩编码光谱成像系统的噪声方差为:
其中:为A的方差;
于是,混合噪声方差可写为重构原始信号噪声和压缩编码光谱成像系统噪声的方差和,其表达式为:
对上式,进行迹运算,得到:
再对上式除以令,并假设原始信号x为单位信号,令v=diag[A],此时的混合噪声项可写为:
Tr[Cmix]=sTr[A-1diag[A]A′-1]+Tr[A-1A′-1]
=svTr[A-1A′-1]+Tr[A-1A′-1]=(sv+1)Tr[Α-1A′-1]
将A=BH代入上式,同时,为了方便优化计算,用v的平均代替v,得到基于传输噪声最小化的适应度评价函数为:
2.1.2)针对约束等距性要求,投影测量矩阵A和稀疏表示基φ是不相关的,即对于投影测量矩阵A=BH,其应该满足相关函数P(A,φ)最小;
则约束等距性条件适应度评价函数为:
P(A,φ)=P(BH,φ)
其中,P(A,φ)表示矩阵A和稀疏基φ的相似度;
2.1.3)利用优化准则加权可加性,对传输噪声最小化适应度函数和约束等距性评价函数进行加权相加,得到综合适应度评价函数:
γ为权重因子。
本发明的有益效果是:
本发明通过基于约束等距性条件和传输噪声最小化要求的遗传优化,将编码模板矩阵设计准则进行提升,以使得成像系统的噪声影响最小且编码效果最好。
附图说明
图1为本发明的方法流程图。
具体实施方式
如图1所示,本发明的压缩编码光谱成像系统的编码模板矩阵优化设计方法具体实施方式为:
首先初始化编码模板矩阵,并进行基因编码;
然后基于传输噪声最小化和约束等距性条件构建适应度评价函数,并计算编码模板矩阵的适应度值;
在完成适应度值计算后,利用旋转轮盘方法进行子代编码模板矩阵选择;接着,对选择得到的子代编码模板矩阵进行交叉变异处理;
最后,对处理完的子代编码模板矩阵判断是否满足迭代终止条件,若满足条件,则迭代结束,若不满足条件,继续进行适应度计算和子代编码模板矩阵选择处理,并继续交叉变异处理,直至满足迭代停止条件。
最后,对迭代结束后的编码模板矩阵进行适应度计算,得到适应度最优的编码模板矩阵,并通过基因解码得到最终的编码模板优化设计矩阵。
该方法的具体实施步骤是:
1)随机产生m个编码模板矩阵B;每个编码模块矩阵均为r*q,r代表行,q代表列;考虑到编码模板矩阵的工程可实施性,并结合基因编译要求,定义编码模板矩阵为由0和1元素组成的任意矩阵,其中,0和1正好为一个基因对。通过m次随机,生成一个初始的模板矩阵群体。
为方便起见,将r*q取4*4,m=4,则随机生成的初始的四个编码模板矩阵为:
2)基于传输噪声最小化和约束等距性条件构建适应度评价函数,并计算群体中每个编码模板矩阵的适应度值;
其中,基于传输噪声最小化和约束等距性条件构建的适应度评价函数推导步骤如下:
第一步:建立传输噪声最小化的适应度评价函数:
建立投影测量矩阵A: A=BH
定义观测信号: y=Ax+n n为观测噪声,x为原始信号;
x=φθ φ为稀疏基;θ为稀疏表示系数
则:
重构原始信号表示为:其中:A-1表示A的广义逆;
重构原始信号的噪声方差表达式为:Cprop=E[A-1nn′A′-1]=A-1E[nn′]A′-1
E[nn′]=k·diag[Ax]
其中:diag为取对角元素运算或构造对角阵,k为噪声因子;
则,重构原始信号的噪声方差的优化表达式为:Cprop=kA-1diag[Ax]A′-1
又,所述压缩编码光谱成像系统的噪声方差为:
其中:为A的方差;
于是,混合噪声方差可写为重构原始信号噪声和压缩编码光谱成像系统噪声的方差和,其表达式为:
对上式,进行迹运算,得到:
再对上式除以令,并假设原始信号x为单位信号,令v=diag[A],此时的混合噪声项可写为:
Tr[Cmix]=sTr[A-1diag[A]A′-1]+Tr[A-1A′-1]
=svTr[A-1A′-1]+Tr[A-1A′-1]=(sv+1)Tr[Α-1A′-1]
将A=BH代入上式,同时,为了方便优化计算,用v的平均代替v,得到基于传输噪声最小化的适应度评价函数为:
第二步:建立约束等距性适应度评价函数:
针对约束等距性要求,投影测量矩阵A和稀疏表示基φ是不相关的,即对于投影测量矩阵A=BH,其应该满足相关函数P(A,φ)最小;
则约束等距性条件适应度评价函数为:
P(A,φ)=P(BH,φ)
其中,P(A,φ)表示矩阵A和稀疏基φ的相似度。
第三步:建立综合适应度评价函数:
利用优化准则加权可加性,对传输噪声最小化适应度函数和约束等距性评价函数进行加权相加,得到综合适应度评价函数:
γ为权重因子。
为方便解释原理,假设在某单色散压缩编码光谱成像系统中,通过上述评价函数计算得到的四个个体编码模板矩阵的适应度值为1.7000 0.9000 1.3500 1.0500。
3)利用旋转轮盘方法进行子代编码模板矩阵的选择,具体步骤如下:
a)计算每个个体的相对适应度大小,即,每个个体被遗传到下一代中的概率,p(Bi)=Ri/sum(Ri);p(B1)=0.34;p(B2)=0.18;p(B3)=0.27;p(B4)=0.21;
b)构造轮盘,即每个概率组成一个区域,所有区域的概率值和为1L(B1)=[00.34);L(B2)=[0.34 0.52);L(B3)=[0.52 0.79);L(B4)=[0.79 1]
c)最后再产生一组0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内的次数来确定各个个体被选中的次数。本例产生的4个随机数如下:0.3377 0.90010.3692 0.1112;则选择操作后,四个个体分别为:B11=B1;B12=B4;B13=B2;B14=B1;
4)对选择得到的子代编码模板矩阵进行交叉处理,交叉运算指以某一概率相互交换某两个个体之间的部分染色体。本例采用截断部分交叉的方法,其具体操作过程是:
a)首先,对群体进行随机配对:产生四个随机数0.7803,0.3897,0.2417,0.4039,分别对应B11、B12、B13、B14,然后,依次挑选剩余最大值对应的矩阵和剩余最小值对应的矩阵作为一个配对,这样得到的配对为B11和B13,B14和B12。
b)其次,随机设置交叉点位置。由于矩阵是二维的,在此随机生成一个二维的坐标,其取值在行列的维数内,即本例中,[i,j]∈[(1,4),(1,4)]。
在B11和B13配对矩阵的交换中,随机生成的交叉点坐标为[2,3],在相互交换配对染色体之间的部分基因中,本方法的交换按小于等于该坐标的元素换为配对矩阵的对应元素,大于该坐标的元素都不进行交换。即,待交换位置为[1,1],[1,2],[1,3],[1,4,][2,1],[2,2],[2,3].
同理,在B14和B12配对矩阵的交换中,随机生成的交叉点坐标为[3,1].则,按上述规则,待交换位置为[1,1],[1,2],[1,3],[1,4,][2,1],[2,2],[2,3],[2,4],[3,1]。
则交叉运算后,四个个体为:
5)对交叉得到的子代编码模板矩阵进行变异处理,变异运算是对个体的某一个或某一些基因座上的基因值按某一较小的概率进行改变。本例中,采用基本位变异的方法来进行变异运算,其具体操作过程是:
a)首先确定出各个个体的基因变异位置,同样是按[i,j]∈[(1,4),(1,4)]随机生成变异位,本例中,随机生成的四个矩阵的变异位分别为:[2,1],[4,3],[2,3],[3,3,]。
b)然后随机生成一组概率值,若概率值小于某一较小阈值,则将变异点的原有基因值取反,即将原来元素为1的换为0,原来元素为0的换为1.否则,不取反。
本例中,先随机生成4个概率值为0.0965 0.1320 0.9421 0.9561,阈值设为0.1,则只有第一个个体进行变异。于是变异操作后的个体为:
6)对处理完的子代编码模板矩阵判断是否满足迭代终止条件,若满足条件,则迭代结束,若不满足条件,返回步骤2)。
7)选择适应度最优的上述处理后的编码模板矩阵为最终的编码模板优化矩阵。
本例中,迭代终止条件可设为迭代搜索固定次数,如100次;也可设置为相邻迭代适应度差值小于每个差值,迭代结束。

Claims (1)

1.一种压缩编码光谱成像系统的编码模板矩阵优化设计方法,其特征在于,包括以下步骤:
1)随机产生m个编码模板矩阵B;每个编码模板矩阵均为r×q,r代表行,q代表列;
判断m个编码模板矩阵B是否满足基因编码要求;若满足,则直接进行步骤2);若不满足,则对编码模板矩阵进行基因编码后,再进行步骤2);
2)计算编码模板矩阵B的适应度值;
2.1)基于传输噪声最小化和约束等距性条件构建适应度评价函数,具体表达式为:
其中,代表传输噪声最小化的适应度评价函数;
P(BH,φ)代表约束等距性条件适应度评价函数;
γ为权重因子;
B为编码模板矩阵;
H为光学传递矩阵;
φ为稀疏基;
k为噪声因子,为A的方差,其中A=BH;
代表v的平均值;
v=diag[A],diag为取对角元素运算或对构造角阵;
Tr为求迹运算;
P为求相似度;
传输噪声最小化和约束等距性条件适应度评价函数表达式的构建步骤具体是:
2.1.1)建立传输噪声最小化的适应度评价函数:
建立投影测量矩阵A: A=BH
定义观测信号: y=Ax+n n为观测噪声,x为原始信号;
x=φθ φ为稀疏基;θ为稀疏表示系数
则:
重构原始信号表示为:其中:A-1表示A的广义逆;
重构原始信号的噪声方差表达式为:Cprop=E[A-1nn′A′-1]=A-1E[nn′]A′-1
E[nn′]=k·diag[Ax]
其中:diag为取对角元素运算或构造对角阵,k为噪声因子;
则,重构原始信号的噪声方差的优化表达式为:Cprop=kA-1diag[Ax]A′-1
所述压缩编码光谱成像系统的噪声方差为:
其中:为A的方差;
将重构原始信号噪声和压缩编码光谱成像系统噪声的方差之和作为混合噪声方差,其表达式为:
对上式,进行迹运算,得到:
再对上式除以令,并假设原始信号x为单位信号,令v=diag[A],此时的混合噪声项可写为:
Tr[Cmix]=sTr[A-1diag[A]A′-1]+Tr[A-1A′-1]
=svTr[A-1A′-1]+Tr[A-1A′-1]=(sv+1)Tr[Α-1A′-1]
将A=BH代入上式,同时,为了方便优化计算,用v的平均代替v,得到基于传输噪声最小化的适应度评价函数为:
2.1.2)针对约束等距性要求,投影测量矩阵A和稀疏表示基φ是不相关的,即对于投影测量矩阵A=BH,其应该满足相关函数P(A,φ)最小;
则约束等距性条件适应度评价函数为:
P(A,φ)=P(BH,φ)
其中,P(A,φ)表示矩阵A和稀疏基φ的相似度;
2.1.3)利用优化准则加权可加性,对传输噪声最小化适应度函数和约束等距性评价函数进行加权相加,得到综合适应度评价函数:
2.2)通过步骤2.1)定义的评价函数计算m个编码模板矩阵B的适应度值;
3)利用旋转轮盘方法对上述编码模板矩阵进行子代选择;
4)对选择得到的子代编码模板矩阵进行交叉处理;
5)对交叉得到的子代编码模板矩阵进行变异处理,并判断是否满足迭代条件,若满足条件,则迭代结束,若不满足条件,返回步骤2)
6)在经过步骤5)处理后的编码模板矩阵中选择最优的编码模板矩阵;此处,需判断编码模板矩阵是否在步骤1)中进行了基因编码,若是,则通过基因解码获得最终的编码模板优化矩阵;若不是,则直接作为最终的编码模板优化矩阵。
CN201710630712.5A 2017-07-28 2017-07-28 压缩编码光谱成像系统的编码模板矩阵优化设计方法 Active CN107687896B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710630712.5A CN107687896B (zh) 2017-07-28 2017-07-28 压缩编码光谱成像系统的编码模板矩阵优化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710630712.5A CN107687896B (zh) 2017-07-28 2017-07-28 压缩编码光谱成像系统的编码模板矩阵优化设计方法

Publications (2)

Publication Number Publication Date
CN107687896A CN107687896A (zh) 2018-02-13
CN107687896B true CN107687896B (zh) 2019-08-27

Family

ID=61152376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710630712.5A Active CN107687896B (zh) 2017-07-28 2017-07-28 压缩编码光谱成像系统的编码模板矩阵优化设计方法

Country Status (1)

Country Link
CN (1) CN107687896B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501071B (zh) * 2019-08-02 2021-07-13 杭州电子科技大学 一种基于模糊编码的压缩高光谱掩膜优化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942309B2 (ja) * 1975-09-12 1984-10-13 株式会社精工舎 画像形成方法
CN102750551A (zh) * 2012-06-18 2012-10-24 杭州电子科技大学 一种粒子寻优下基于支持向量机的高光谱遥感分类方法
CN106772225B (zh) * 2017-01-20 2019-03-26 大连大学 基于压缩感知的波束域doa估计

Also Published As

Publication number Publication date
CN107687896A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
Ni et al. Sig-Wasserstein GANs for time series generation
Liu Robotic online path planning on point cloud
Torii et al. Are large-scale 3d models really necessary for accurate visual localization?
Abrahamyan et al. Learned gradient compression for distributed deep learning
CN113077501B (zh) 一种基于特征学习的端到端点云配准方法
Sezer et al. Approximation and compression with sparse orthonormal transforms
CN110929080A (zh) 基于注意力和生成对抗网络的光学遥感图像检索方法
CN105354800B (zh) 基于图像结构的粒子群优化非凸压缩感知图像重构方法
Gu et al. Compression of human motion capture data using motion pattern indexing
CN103198500A (zh) 基于pca冗余字典和方向信息的压缩感知图像重构方法
CN107687896B (zh) 压缩编码光谱成像系统的编码模板矩阵优化设计方法
Ehrhardt et al. Taking visual motion prediction to new heightfields
CN102547286A (zh) 一种区块移动估测方法
CN112258625A (zh) 基于注意力机制的单幅图像到三维点云模型重建方法及系统
Wu et al. A novel RSSI fingerprint positioning method based on virtual AP and convolutional neural network
Peng et al. Stirnet: A spatial-temporal interaction-aware recursive network for human trajectory prediction
CN104081437B (zh) 用于基于可调谐二极管激光吸收光谱的气体浓度重建的贝叶斯方法
Jabi et al. Graph machine learning using 3D topological models
CN112634328A (zh) 基于自定中心星状图和注意力机制预测行人轨迹的方法
KR101642597B1 (ko) 공간 분할 방법, 공간 분할 장치 및 기록 매체
Zhou et al. An intelligent model validation method based on ECOC SVM
Kulkarni et al. Data efficient stagewise knowledge distillation
CN115526253A (zh) 基于生成对抗网络的非接触式估计表面物理属性值的方法
Wu et al. End-to-end lossless compression of high precision depth maps guided by pseudo-residual
CN114821192A (zh) 一种结合语义信息的遥感影像高程预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant