CN107681682A - A kind of ac and dc systemses equivalence method equivalent based on WARD - Google Patents

A kind of ac and dc systemses equivalence method equivalent based on WARD Download PDF

Info

Publication number
CN107681682A
CN107681682A CN201711009021.XA CN201711009021A CN107681682A CN 107681682 A CN107681682 A CN 107681682A CN 201711009021 A CN201711009021 A CN 201711009021A CN 107681682 A CN107681682 A CN 107681682A
Authority
CN
China
Prior art keywords
mrow
node
msub
equivalent
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711009021.XA
Other languages
Chinese (zh)
Other versions
CN107681682B (en
Inventor
郭贤珊
赖清平
马为民
薛英林
吴方劼
石岩
杨鸣
杨一鸣
张涛
胡志坚
罗福玲
付颖
杜晓磊
郝致远
李达
季鸣
季一鸣
程炜
赵峥
常云辉
勇智
韩旭杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Wuhan University WHU
State Grid Gansu Electric Power Co Ltd
State Grid Economic and Technological Research Institute
Original Assignee
State Grid Corp of China SGCC
Wuhan University WHU
State Grid Gansu Electric Power Co Ltd
State Grid Economic and Technological Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Wuhan University WHU, State Grid Gansu Electric Power Co Ltd, State Grid Economic and Technological Research Institute filed Critical State Grid Corp of China SGCC
Priority to CN201711009021.XA priority Critical patent/CN107681682B/en
Publication of CN107681682A publication Critical patent/CN107681682A/en
Application granted granted Critical
Publication of CN107681682B publication Critical patent/CN107681682B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/36Arrangements for transfer of electric power between AC networks via a high-tension DC link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种基于WARD等值的交直流系统等值方法,其步骤:建立各基本元件模型,获取全网节点作为基础数据,并确定数据格式;对全网进行潮流计算,获取全网潮流解;将节点划分为内部节点集合、边界节点集合和外部节点集合,每个集合内元素按照节点编号从小到大排列;形成整个网络的节点导纳矩阵,根据划分的节点集合,形成等值计算的用的分块节点导纳矩阵;计算等值矩阵和边界等值电容和边界等效注入功率;形成新的结构数据体,并保存等值后系统的基础数据,定义为Rempc;对等值后系统进行潮流计算,对比等值前后保留支路和节点的潮流结果,有选择地将潮流结果输出。本发明能有效保证等值前后保留系统的潮流误差很小,可以扩展应用到特高压直流分层系统中。

The invention relates to an equivalent method for AC and DC systems based on WARD equivalents, the steps of which are: establishing models of basic components, obtaining nodes of the entire network as basic data, and determining the data format; performing power flow calculations on the entire network, and obtaining power flows of the entire network Solution; divide the nodes into internal node sets, boundary node sets and external node sets, and arrange the elements in each set according to the node numbers from small to large; form the node admittance matrix of the entire network, and form equivalent calculations according to the divided node sets The block node admittance matrix used; calculate the equivalent matrix and boundary equivalent capacitance and boundary equivalent injection power; form a new structure data body, and save the basic data of the equivalent system, defined as Rempc; equivalent value Afterwards, the system performs power flow calculation, compares the power flow results of reserved branches and nodes before and after the equivalence, and selectively outputs the power flow results. The invention can effectively ensure that the power flow error of the reserved system before and after equivalence is very small, and can be extended and applied to UHV DC layered systems.

Description

一种基于WARD等值的交直流系统等值方法An Equivalence Method for AC and DC Systems Based on WARD Equivalence

技术领域technical field

本发明涉及一种电力系统特高压交直流等值计算领域,特别是关于一种基于WARD等值的交直流系统等值方法。The invention relates to the field of calculation of UHV AC/DC equivalents in power systems, in particular to an AC/DC system equivalent method based on WARD equivalents.

背景技术Background technique

随着特高压直流工程的建设,直流输送容量的不断增加,直流落点越来越集中,现有的直流单层接入方式将不利于受端系统的潮流疏散,系统受端的接纳能力、电压支撑等方面将会产生一系列问题。由于特高压直流分层接入方式下,直流系统的拓扑结构更为复杂,交直流系统间、两层受端间的交互影响也成为需要关注的研究问题。为了准确模拟含有分层接入的交直流大电网在不对称故障期间的暂态特性、或者进行分层接入直流工程的交流滤波器设计,一般需要对超大规模电网进行简化等值,以提供计算速度和仿真效率。所以交流分层接入特高压直流在给我们带来诸多益处的同时,不可避免地也带了新的问题和挑战。发挥特高压直流分层接入交流系统的输电优势,解决这一电压等级下面临的关键技术问题。这对进一步提高输电能力,实现大功率远距离输电、远距离电力系统互联,进而实现大区域电网互联具有重要意义。With the construction of the UHV DC project, the DC transmission capacity continues to increase, and the DC landing point is becoming more and more concentrated. The existing DC single-layer access method will not be conducive to the power flow evacuation of the receiving end system. There will be a series of problems in terms of support and so on. Due to the layered connection of UHV DC, the topology of the DC system is more complex, and the interaction between the AC and DC systems and between the two layers of receivers has also become a research issue that needs to be paid attention to. In order to accurately simulate the transient characteristics of large-scale AC and DC power grids with hierarchical access during asymmetric faults, or to design AC filters for DC projects with hierarchical access, it is generally necessary to simplify the equivalent value of ultra-large-scale power grids to provide Computational speed and simulation efficiency. Therefore, while AC layered access to UHVDC brings us many benefits, it inevitably brings new problems and challenges. Give full play to the power transmission advantages of UHV DC layered access to AC system, and solve the key technical problems faced at this voltage level. This is of great significance for further improving power transmission capacity, realizing high-power long-distance power transmission, long-distance power system interconnection, and then realizing large-scale regional power grid interconnection.

发明内容Contents of the invention

针对上述问题,本发明的目的是提供一种基于WARD等值的交直流系统等值方法,其能为特高压交直流输电工程设计提供依据。In view of the above problems, the object of the present invention is to provide an equivalent method of AC and DC systems based on WARD equivalent, which can provide a basis for the design of UHV AC and DC transmission projects.

为实现上述目的,本发明采取以下技术方案:一种基于WARD等值的交直流系统等值方法,其特征在于包括以下步骤:1)建立WARD等值模型中各基本元件模型,从各基本元件模型中获取全网节点作为基础数据,并确定数据格式是Matpower标准数据格式还是BPA数据格式,如果为BPA数据格式,则将其转换成Matpower标准格式进行计算;2)对全网进行潮流计算,获取全网潮流解,将潮流结果定义在名为result的一个结构体中,格式与数据结构体类似;3)将节点划分为内部节点集合I、边界节点集合B和外部节点集合E,每个集合内元素按照节点编号从小到大排列;4)调用节点导纳子函数makeYbus形成整个网络的节点导纳矩阵,根据划分的节点集合,形成等值计算的用的分块节点导纳矩阵;5)计算矩阵YEQ和边界等值电容C得到等值后的边界等效支路参数,由此计算边界等效注入功率SEQ=Pi EQ+jQi EQ;6)形成新的结构数据体,并保存等值后系统的基础数据,定义为Rempc,将步骤5)添加至新结构数据体中;7)对等值后系统进行潮流计算,对比等值前后保留支路和节点的潮流结果,有选择地将潮流结果输出。In order to achieve the above object, the present invention adopts the following technical scheme: a kind of AC/DC system equivalent method based on WARD equivalent, it is characterized in that comprising the following steps: 1) establish each basic element model in the WARD equivalent model, from each basic element In the model, the nodes of the whole network are obtained as the basic data, and the data format is determined to be Matpower standard data format or BPA data format. If it is BPA data format, it is converted to Matpower standard format for calculation; 2) For the power flow calculation of the whole network, Obtain the power flow solution of the whole network, define the power flow result in a structure named result, the format is similar to the data structure; 3) divide the nodes into internal node set I, boundary node set B and external node set E, each The elements in the set are arranged according to the node number from small to large; 4) Call the node admittance sub-function makeYbus to form the node admittance matrix of the entire network, and form the block node admittance matrix for equivalent calculation according to the divided node set; 5 ) Calculate the matrix Y EQ and the boundary equivalent capacitance C to obtain the boundary equivalent branch parameters after equivalent value, thus calculate the boundary equivalent injection power S EQ =P i EQ +jQ i EQ ; 6) form a new structure data body , and save the basic data of the equivalent system, defined as Rempc, add step 5) to the new structure data body; 7) perform power flow calculation on the equivalent system, and compare the power flow results of the reserved branches and nodes before and after the equivalent , to selectively output the power flow results.

进一步,所述步骤1)中,基本元件模型包括线路模型、发电机和负荷模型、并联元件模型、非对称线路模型、变压器支路和边界电容。Further, in the step 1), the basic component model includes a line model, a generator and load model, a parallel component model, an asymmetrical line model, a transformer branch and boundary capacitance.

进一步,所述步骤2)中,对全网进行潮流计算包括节点功率方程、换流器基本方程、直流网络方程以及控制方程。Further, in the step 2), the power flow calculation for the whole network includes node power equations, basic converter equations, DC network equations and control equations.

进一步,所述节点功率方程:Further, the node power equation:

其中,i=na+k,k=1,2,…,nc,式中正号表示逆变器,负号表示整流器。与交流系统网络方程对比,增加了Vdk,Idk三个变量,它们分别表示直流节点电压,注入电流以及电压电流之间的夹角即换流器的功率因数角。ΔPi表示给定有功不平衡量;ΔQi表示给定的无功不平衡量;Pis表示给定的有功功率;Qis表示给定的无功功率;Vi表示节点i的电压;Vj表示节点j的电压;θij表示节点i和节点j之间的相角差;Gij表示导纳矩阵的实部;Bij表示导纳矩阵的虚部。 Wherein , i=n a +k, k=1, 2, . Compared with the AC system network equation, V dk , I dk and Three variables, which respectively represent the DC node voltage, the angle between the injected current and the voltage and current, that is, the power factor angle of the converter. ΔP i represents the given active unbalance; ΔQ i represents the given reactive unbalance; P is represents the given active power; Q is represents the given reactive power; V i represents the voltage of node i; V j represents The voltage of node j; θ ij represents the phase angle difference between node i and node j; G ij represents the real part of the admittance matrix; B ij represents the imaginary part of the admittance matrix.

进一步,所述换流器基本方程,对于换流器k,有如下方程:Further, the basic equation of the converter, for the converter k, has the following equation:

其中,Δd1k、Δd2k表示直流电压不平衡量;Vdk表示换流器直流电压,表示换流变压器交流侧线电压标幺值,Idk表示换流器的直流电流;Xck表示换流变压器k的等值阻抗,kTk表示换流变压器的变比,kγ为接近1的常数,θdk表示换流器k控制角,表示换流器的功率因数角。Among them, Δd 1k and Δd 2k represent the DC voltage unbalance; V dk represents the DC voltage of the converter, Indicates the per-unit value of the AC side line voltage of the converter transformer, I dk indicates the DC current of the converter; X ck indicates the equivalent impedance of the converter transformer k, k Tk indicates the transformation ratio of the converter transformer, k γ is a constant close to 1 , θ dk represents the converter k control angle, Indicates the power factor angle of the converter.

进一步,所述直流网络方程的标准形式:Further, the standard form of the DC network equation:

其中,Δd3k表示换流器输出直流电流的不平衡量,Idk表示换流器k的直流电流;Vdj表示第j个直流节点的直流电压,gdkj表示消去联络节点后的直流网络的节点电导矩阵元素,式中电压电流均表示直流线路的电压和电流。对于一个简单的两端直流输电系统,直流网络方程简化如下:Among them, Δd 3k represents the unbalanced output DC current of the converter, I dk represents the DC current of the converter k; V dj represents the DC voltage of the jth DC node, and g dkj represents the node of the DC network after the contact node is eliminated Conductance matrix elements, where the voltage and current represent the voltage and current of the DC line. For a simple two-terminal DC transmission system, the DC network equation is simplified as follows:

对于一个简单的两端直流输电系统,直流网络方程简化如下:For a simple two-terminal DC transmission system, the DC network equation is simplified as follows:

式中,R表示直流线路的电阻;Id1表示1端直流节点的电流;Id2表示2端直流节点的电流;如果直流线路的电阻足够小,则可以近似认为Vd1=Vd2,Id1=Id2In the formula, R represents the resistance of the DC line; I d1 represents the current of the DC node at terminal 1; I d2 represents the current of the DC node at 2 terminals; if the resistance of the DC line is small enough, it can be approximately considered that V d1 = V d2 , I d1 =I d2 .

进一步,所述控制方程:Further, the governing equation:

Δd4k=d4k(Idk,Vdk,cosθdk,kTk)=0(k=1,2,…,nc)Δd 4k =d 4k (I dk ,V dk ,cosθ dk ,k Tk )=0(k=1,2,...,n c )

Δd5k=d5k(Idk,Vdk,cosθdk,kTk)=0(k=1,2,…,nc)Δd 5k =d 5k (I dk ,V dk ,cosθ dk ,k Tk )=0(k=1,2,...,n c )

式中,d4k表示整流器变比与电流不平衡量的函数,Δd4k表示整流器控制变量的不平衡量,d5k表示逆变器变比与控制角不平衡量的函数,Δd5k表示逆变器控制变量的不平衡量,Idk表示换流器k的直流电流;Vdk表示换流器k直流电压;θdk表示换流器k控制角;kTk表示换流变压器的变比;由于观察到所有式中与控制角有关的变量均以cosθdk的形式出现,为提高方程的线性度,均以cosθdk为直接待求量。In the formula, d 4k represents the function of rectifier transformation ratio and current unbalance, Δd 4k represents the unbalance of rectifier control variable, d 5k represents the function of inverter transformation ratio and control angle unbalance, Δd 5k represents the inverter control variable , I dk represents the DC current of converter k; V dk represents the DC voltage of converter k; θ dk represents the control angle of converter k; k Tk represents the conversion ratio of the converter transformer; The variables related to the control angle all appear in the form of cosθdk . In order to improve the linearity of the equation, cosθdk is used as the direct quantity to be sought.

进一步,所述步骤3)中,需具备两种容错能力:首先确定集合I、B和E之间没有交集,并且集合I、B和E并集的个数等于总的节点数;其次检测集合I中是否包含平衡节点,如果不包含,则将平衡节点作为边界节点强制保留,进入下一步,若包含则直接进入下一步。Further, in the step 3), it is necessary to have two kinds of fault-tolerant capabilities: firstly, it is determined that there is no intersection between the sets I, B, and E, and the number of the union of sets I, B, and E is equal to the total number of nodes; secondly, the detection set Is whether balance nodes are included in I, if not, the balance nodes are forcibly reserved as boundary nodes, and enter the next step, if included, directly enter the next step.

进一步,所述步骤5)中,边界等效电容C为:Further, in the step 5), the boundary equivalent capacitance C is:

纯线路计算方法:Pure line calculation method:

C(k)=C(k)+ykj C(k)=C(k)+y kj

式中,k∈i;In the formula, k∈i;

变压器线路计算方法,且边界节点为首节点:Transformer line calculation method, and the boundary node is the first node:

变压器线路计算方法,且边界节点为末节点:Transformer line calculation method, and the boundary node is the end node:

其中,Yij(i≠j)表示节点i和节点j构成支路的线路导纳的负值,该支路的相关参数表示为:线路导纳yij,线路总对地导纳bij,变压器变比τij,相位移θijAmong them, Y ij (i≠j) represents the negative value of the line admittance of the branch formed by node i and node j, and the relevant parameters of the branch are expressed as: line admittance y ij , total line-to-ground admittance b ij , Transformer transformation ratio τ ij , phase displacement θ ij .

进一步,所述步骤6)中,节点定义的原则是按照内部节点集合和边界节点集合顺序排列,保留系统内的发电机数据和支路数据,新的发电机数据和支路数据需要根据重新排列的节点编号做出相应的改变;然后,将增加的等值虚拟支路和边界电容数据分别添加到新数据的支路和节点数据中。Further, in the step 6), the principle of node definition is to arrange according to the order of the internal node set and the boundary node set, keep the generator data and branch data in the system, and the new generator data and branch data need to be rearranged according to Make corresponding changes to the node numbers; then, add the added equivalent virtual branch and boundary capacitance data to the branch and node data of the new data respectively.

本发明由于采取以上技术方案,其具有以下优点:1、本发明考虑到了WARD等值法和改进的WARD等值法之间的差异性,既包含常规WARD等值法简单实用的特点,又兼顾了各改进的WARD法进行等值的优点。2、本发明对静态等值的基本模型以及等值过程中的细节问题进行了详细分析,包括边界电容的处理以及等值支路模型的选择。提出节点分群,即当平衡节点不在保留系统内部时将平衡节点作为边界节点强制保留。3、本发明基于常规WARD等值法来开发大电网交直流混合系统的等值工具,给出等值工具应用在不同交流、直流系统的算例分析,说明等值前后保留系统的潮流误差很小。4、本发明根据节点分类,建立整个系统的网络方程,其中Y矩阵是整个网络的节点导纳矩阵,根据节点划分结果对Y矩阵重新排列,形成相应的分块节点导纳矩阵。等值后在导纳矩阵中引入了由外部节点与边界节点形成的等值导纳矩阵YEQ,而其他变化的部分只有原系统边界节点的注入电流IB,内部节点没有变化。对于一个线性系统而言,这一过程将是严格等值的过程,只要外部网络的注入电流IE不发生改变,则在任何运行方式下,等值系统的潮流应与原网络保持一致。5、当系统中增加了直流线路的模型,本发明在计算交直流混合系统的潮流计时就需要增加相应的直流网络方程。直流系统的结构与交流差别很大,因此无法使用交流系统潮流计算的方法直接计算交直流混合系统。从直流线路的模型进行分析,交直流混合系统的网络方程主要从四个方面做出相应的修改:节点功率方程、换流器基本方程、直流网络方程以及控制方程。6、传统的电网静态等值的方法都是针对交流系统,等值的实质是对网络方程化简,消去外部节点的影响。但是,对于交直流混合系统而言,系统的网络方程因为含有直流而发生了很大的变化,无法形成统一的节点导纳矩阵,常规WARD等值的方法也无法适用。因此,本发明采用等效支路法和等效电源法将直流线路进行处理,将其转化成交流系统等值能够处理的模型,然后再进行等值计算。7、本发明在交流系统静态等值方法的基础上,研究了直流输电系统模型,根据交直流潮流计算结果,建立了交直流等效模型,对交直流系统进行等值研究,本发明内容提出的交直流等效模型可以扩展应用到特高压直流分层系统中。The present invention has the following advantages due to the adoption of the above technical scheme: 1. The present invention takes into account the difference between the WARD equivalent method and the improved WARD equivalent method, and not only includes the simple and practical features of the conventional WARD equivalent method, but also takes into account The merits of each improved WARD method for equivalence are shown. 2. The present invention analyzes in detail the basic model of static equivalence and the details of the equivalence process, including the processing of boundary capacitance and the selection of equivalence branch models. A node grouping is proposed, that is, when the balance node is not inside the reservation system, the balance node is forced to be reserved as a boundary node. 3. The present invention is based on the conventional WARD equivalent method to develop an equivalent tool for the AC/DC hybrid system of a large power grid, and gives an example analysis of the application of the equivalent tool in different AC and DC systems, and shows that the power flow error of the reserved system before and after the equivalent is very small. small. 4. The present invention establishes the network equation of the entire system according to the node classification, wherein the Y matrix is the node admittance matrix of the entire network, and rearranges the Y matrix according to the node division results to form a corresponding block node admittance matrix. After equivalence, the equivalent admittance matrix Y EQ formed by external nodes and boundary nodes is introduced into the admittance matrix, and the other changes are only the injection current I B of the original system boundary nodes, and the internal nodes remain unchanged. For a linear system, this process will be strictly equivalent. As long as the injection current I E of the external network does not change, the power flow of the equivalent system should be consistent with the original network in any operating mode. 5. When the model of the DC line is added to the system, the present invention needs to add the corresponding DC network equation when calculating the power flow timing of the AC-DC hybrid system. The structure of the DC system is very different from that of the AC system, so it is impossible to directly calculate the AC-DC hybrid system using the method of calculating the power flow of the AC system. From the analysis of the model of the DC line, the network equations of the AC-DC hybrid system are mainly modified from four aspects: node power equations, converter basic equations, DC network equations and control equations. 6. The traditional grid static equivalence methods are all aimed at AC systems. The essence of equivalence is to simplify the network equations and eliminate the influence of external nodes. However, for the AC-DC hybrid system, the network equation of the system has changed greatly due to the inclusion of DC, and a unified node admittance matrix cannot be formed, and the conventional WARD equivalent method cannot be applied. Therefore, the present invention adopts the equivalent branch method and the equivalent power source method to process the DC line, convert it into a model that can handle the equivalent value of the AC system, and then perform the equivalent calculation. 7. On the basis of the static equivalence method of the AC system, the present invention studies the DC transmission system model, establishes the AC-DC equivalent model according to the calculation results of the AC-DC power flow, and conducts equivalent research on the AC-DC system. The content of the present invention proposes The AC-DC equivalent model can be extended and applied to the UHV DC layered system.

附图说明Description of drawings

图1是本发明的WARD等值流程示意图;Fig. 1 is the WARD equivalent flow diagram of the present invention;

图2是本发明采用的变压器线路模型示意图;Fig. 2 is the transformer line model schematic diagram that the present invention adopts;

图3是本发明采用的不对称线路模型示意图;Fig. 3 is the schematic diagram of the asymmetric line model that the present invention adopts;

图4是本发明采用的不对称线路处理后模型示意图;Fig. 4 is the schematic diagram of the model after the processing of the asymmetric circuit adopted in the present invention;

图5是本发明采用的变压器π型等值支路示意图;Fig. 5 is the transformer π type equivalent branch schematic diagram that the present invention adopts;

图6是本发明采用的补偿电容等值模型示意图;Fig. 6 is a schematic diagram of a compensation capacitance equivalent model adopted in the present invention;

图7是本发明保留平衡节点的分群处理结构图;Fig. 7 is a grouping processing structural diagram of reserved balance nodes in the present invention;

图8是本发明采用的直流输电基本原理接线图;Fig. 8 is the wiring diagram of the basic principle of direct current transmission adopted by the present invention;

图9是本发明采用的等效支路法等效π型线路图;Fig. 9 is the equivalent π-type circuit diagram of the equivalent branch method adopted in the present invention;

图10是本发明采用的等效支路法等效对称π型线路图;Fig. 10 is the equivalent symmetrical π-type circuit diagram of the equivalent branch method adopted in the present invention;

图11是本发明直流线路等效电源法示意图;Fig. 11 is a schematic diagram of the DC line equivalent power supply method of the present invention;

图12a是本发明运用于IEEE 30节点系统等值前潮流误差图;Fig. 12a is the power flow error graph before the present invention is applied to the IEEE 30-node system equivalent;

图12b是本发明运用于IEEE 30节点系统等值后潮流误差图;Fig. 12b is the power flow error diagram after the present invention is applied to the IEEE 30-node system equivalent;

图13a是本发明运用于IEEE 30节点系统更改运行方式后等值前有、无功误差图;Fig. 13a is a diagram of active and reactive power errors before the equivalent value after the present invention is applied to the IEEE 30-node system after changing the operation mode;

图13b是本发明运用于IEEE 30节点系统更改运行方式后等值后有、无功误差图;Fig. 13b is a diagram of active and reactive power errors after equivalent value after the present invention is applied to the IEEE 30-node system after changing the operation mode;

图14是本发明实例中的CEPRI-36系统拓扑结构图;Fig. 14 is the CEPRI-36 system topology structure diagram in the example of the present invention;

图15a是本发明将等效支路法运用于CEPRI-36系统的有功功率潮流误差对比图;Fig. 15a is a comparison diagram of the active power flow error of the present invention applying the equivalent branch method to the CEPRI-36 system;

图15b是本发明将等效支路法运用于CEPRI-36系统的无功功率潮流误差对比图;Figure 15b is a comparison diagram of the reactive power flow error of the present invention applying the equivalent branch method to the CEPRI-36 system;

图16a是本发明将等效电源法运用于CEPRI-36系统的有功功率潮流误差对比图;Fig. 16a is a comparison diagram of the active power flow error of the present invention applying the equivalent power source method to the CEPRI-36 system;

图16b是本发明将等效电源法运用于CEPRI-36系统的无功功率潮流误差对比图。Fig. 16b is a comparison diagram of reactive power flow error of the present invention applying the equivalent power source method to the CEPRI-36 system.

具体实施方式detailed description

下面结合附图和实施例对本发明进行详细的描述。然而应当理解,附图的提供仅为了更好地理解本发明,它们不应该理解成对本发明的限制。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments. However, it should be understood that the accompanying drawings are provided only for better understanding of the present invention, and they should not be construed as limiting the present invention.

如图1所示,本发明提供一种基于WARD等值的交直流系统等值方法,其包括以下步骤:As shown in Figure 1, the present invention provides a kind of AC/DC system equivalence method based on WARD equivalence, and it comprises the following steps:

1)建立WARD等值模型中各基本元件模型,从各基本元件模型中获取全网节点作为基础数据,并确定数据格式是Matpower标准数据格式还是BPA数据格式,如果为BPA数据格式,则将其转换成Matpower标准格式进行计算。将基础数据定义成结构体mpc;其中mpc.bus、mpc.branch,mpc.gen和mpc.baseMVA分别代表节点数据,支路数据,发电机数据和基准功率;1) Establish each basic component model in the WARD equivalent model, obtain the entire network node as the basic data from each basic component model, and determine whether the data format is Matpower standard data format or BPA data format, if it is BPA data format, then convert it to Convert to Matpower standard format for calculation. Define the basic data as the structure mpc; where mpc.bus, mpc.branch, mpc.gen and mpc.baseMVA respectively represent node data, branch data, generator data and reference power;

各基本元件模型包括线路模型、发电机和负荷模型、并联元件模型、非对称线路模型、变压器支路和边界电容;也包括了由交直流混合系统引入的直流模型。Each basic component model includes line model, generator and load model, parallel component model, asymmetrical line model, transformer branch and boundary capacitance; also includes the DC model introduced by the AC-DC hybrid system.

进行静态等值分析时,准确的元件模型是保证获得精确可靠的潮流计算结果的关键因素。在研究WARD等值模型的过程中,参考各种典型的基本元件模型,本发明建立的各基本元件模型如下:When performing static equivalent analysis, an accurate component model is a key factor to ensure accurate and reliable power flow calculation results. In the process of researching the WARD equivalent model, with reference to various typical basic element models, each basic element model that the present invention sets up is as follows:

1.1)建立线路模型:1.1) Establish a line model:

如图2所示,实际工程中,线路模型均采用标准的π型线路,线路导纳ys=1/(rs+jxs),其中,rs表示线路电阻,xs表示线路电抗;总的充电电容用bc表示,将标准线路模型串联一个变压器就是含变压器的线路模型,忽略变压器的励磁阻抗。变压器的位置在每条线路的首端,非标准变比用τ表示,变压器的相移角为θshift,if和it分别代表线路首末端的电流,vf和vt分别代表线路首末端的电压,电流的正方向与图2中箭头方向相同。根据图2所示的线路模型,可以得到该线路的节点电压方程如下:As shown in Figure 2, in actual engineering, the line models all adopt standard π-type lines, and the line admittance y s = 1/( rs + jx s ), where rs represents line resistance and x s represents line reactance; The total charging capacitance is represented by b c . Connecting a standard line model in series with a transformer is a line model with a transformer, and the excitation impedance of the transformer is ignored. The position of the transformer is at the head end of each line, the non-standard transformation ratio is represented by τ, the phase shift angle of the transformer is θ shift , if f and it represent the current at the head end of the line respectively, and v f and v t represent the current at the head end of the line respectively . The voltage at the end, the positive direction of the current is the same as that of the arrow in Figure 2. According to the line model shown in Figure 2, the node voltage equation of the line can be obtained as follows:

其中:in:

1.2)建立发电机和负荷模型:1.2) Establish generator and load model:

由于静态等值过程中不涉及到暂态和最优潮流的过程,发电机和负荷模型可以设置比较简单,均视为某个预先设定节点的复功率注入。对于发电机节点,注入功率可以表示为:Since the static equivalent process does not involve the process of transient state and optimal power flow, the generator and load models can be set relatively simply, and both are regarded as complex power injection of a preset node. For generator nodes, the injected power It can be expressed as:

式中,表示发电机节点注入有功功率。表示发电机节点注入无功功率,i表示节点编号(下同)。In the formula, Indicates the active power injected by the generator node. Indicates the reactive power injected by the generator node, and i indicates the node number (the same below).

对于节点i的负荷功率为:Load power for node i for:

式中,表示负荷有功功率;表示负荷无功功率。In the formula, Indicates the load active power; Indicates the load reactive power.

1.3)建立并联元件模型:1.3) Establish a parallel component model:

通常在高压线路上需要进行一定的无功补偿的电容或者电感元件,这些电容或电感称为并联元件。并联元件模型定义为一个并联在节点侧的恒定阻抗模型,并且以导纳的形式给出。节点的并联元件导纳定义为:Generally, capacitors or inductance elements for reactive power compensation are required on high-voltage lines, and these capacitors or inductors are called parallel elements. The shunt element model is defined as a constant impedance model connected in parallel on the node side, and is given in the form of admittance. The shunt element admittance of a node is defined as:

式中,表示并联元件导纳;表示并联元件电导;表示并联元件电纳。In the formula, Indicates the admittance of the parallel element; Indicates the conductance of the parallel element; Indicates the susceptance of the parallel element.

并联电容向系统注入容性无功,起到维持节点电压恒定的作用。并联电感向系统注入感性无功,能够抑制节点电压过高,所以并联元件的数据通常是以功率的形式写入的。而节点电压的变化会改变并联元件的注入无功,所以该部分的数据是以相应节点电压标幺值为1.0时,并联元素向系统注入的功率的形式写入数据文件的,相应的单位为MW和MVAR。实际注入无功则根据实际电压值相应的变化。Parallel capacitors inject capacitive reactive power into the system to maintain a constant node voltage. Parallel inductors inject inductive reactive power into the system, which can suppress excessive node voltage, so the data of parallel components is usually written in the form of power. The change of the node voltage will change the injected reactive power of the parallel element, so the data of this part is written into the data file in the form of the power injected into the system by the parallel element when the per unit value of the corresponding node voltage is 1.0, and the corresponding unit is MW and MVAR. The actual injected reactive power changes accordingly according to the actual voltage value.

1.4)对非对称线路模型的处理1.4) Processing of asymmetric line models

通常,不对称线路的模型如图3所示。其中C1和C2表示并联在线路左右两边的电容,一般C1和C2的值为两个相等的正数或者一正一负,当C1或者C2值为负时,表示并联了电感。Typically, the model of an asymmetrical line is shown in Figure 3. Among them, C 1 and C 2 represent the capacitors connected in parallel on the left and right sides of the line. Generally, the values of C 1 and C 2 are two equal positive numbers or one positive and one negative. When C 1 or C 2 is negative, it means that they are connected in parallel inductance.

对于两个相等的正值,将其作为π型线路处理,处理方法与一般线路相同。对于一正一负的情况下,本发明采用的处理方法是将其转换成两部分考虑,即对称π型线路和并联电感,这样将不对称线路的分别添加到线路参数和节点参数中。变换后的模型如图4所示,其中, 分别表示非对称线路左右两边的容抗;XL表示不对称线路等效后的并联电抗。For two equal positive values, it is treated as a π-type circuit in the same way as a general circuit. For the case of one positive and one negative, the processing method adopted by the present invention is to convert it into two parts for consideration, that is, a symmetrical π-type line and a parallel inductance, so that the asymmetrical line is added to the line parameters and node parameters respectively. The transformed model is shown in Figure 4, where, with Respectively represent the capacitive reactance of the left and right sides of the asymmetrical line; X L represents the equivalent parallel reactance of the asymmetrical line.

1.5)变压器支路处理1.5) Transformer branch processing

变压器的准确等效支路是一个T形等效支路,它能够准确地反映出变压器运行的真实状况,但是T形等效支路含有串并联的形式,在对电力系统进行分析时十分不便。考虑到变压器在正常运行时,励磁阻抗比较大,通常将励磁阻抗支路提前,因此就变成了Γ型等效支路。变压器模型的确立十分重要,特别对系统的无功准确度影响很大。将变压器支路做π型转化,如图5所示,这样就忽略了变压器非标准变比的影响,再用处理不对称线路的方法将其修改至Matpower基础数据中。采用π型等效电路后就无须再考虑变比方向的问题。The exact equivalent branch of the transformer is a T-shaped equivalent branch, which can accurately reflect the real situation of the transformer operation, but the T-shaped equivalent branch contains a series-parallel form, which is very inconvenient when analyzing the power system . Considering that the excitation impedance of the transformer is relatively large during normal operation, the excitation impedance branch is usually advanced, so it becomes a Γ-type equivalent branch. The establishment of the transformer model is very important, especially it has a great influence on the reactive power accuracy of the system. Transform the transformer branch into π-type, as shown in Figure 5, so that the influence of the non-standard transformation ratio of the transformer is ignored, and then it is modified into the basic data of Matpower by the method of dealing with asymmetrical lines. After adopting the π-type equivalent circuit, there is no need to consider the problem of the transformation ratio direction.

1.6)边界电容的处理1.6) Processing of boundary capacitance

如图6所示,将虚拟线路当作纯阻抗线路进行处理,然后计算每个边界节点处并联补偿电容。边界节点用集合B表示,边界节点个数为nb;内部节点用集合I表示,内部节点的个数用ni表示。Yij(i≠j)表示节点i和节点j构成支路的线路导纳的负值,该支路的相关参数表示为:线路导纳yij,线路总对地导纳bij,变压器变比τij,相位移θij。定义数组C(i)(i=1,2…nb)存储边界节点电容。具体计算公式如下:As shown in Figure 6, the virtual line is treated as a pure impedance line, and then the parallel compensation capacitance at each boundary node is calculated. Boundary nodes are represented by set B, and the number of boundary nodes is nb; internal nodes are represented by set I, and the number of internal nodes is represented by ni. Y ij (i≠ j ) represents the negative value of the line admittance of the branch formed by node i and node j , and the relevant parameters of the branch are expressed as: than τ ij , the phase shift θ ij . An array C(i) (i=1, 2...nb) is defined to store boundary node capacitances. The specific calculation formula is as follows:

纯线路计算方法:Pure line calculation method:

C(k)=C(k)+ykj C(k)=C(k)+y kj

式中,k∈i;In the formula, k∈i;

变压器线路计算方法,且边界节点为首节点:Transformer line calculation method, and the boundary node is the first node:

变压器线路计算方法,且边界节点为末节点:Transformer line calculation method, and the boundary node is the end node:

1.7)直流线路模型1.7) DC line model

一个简单的直流输电系统如图8所示,当系统中增加了直流线路的模型,在计算交直流混合系统的潮流计时就需要增加相应的直流网络方程。直流系统的结构与交流差别很大,因此无法使用交流系统潮流计算的方法直接计算交直流混合系统。从直流线路的模型进行分析,交直流混合系统的网络方程主要从四个方面做出了相应的修改:节点功率方程、换流器基本方程、直流网络方程以及控制方程。A simple DC transmission system is shown in Figure 8. When the DC line model is added to the system, the corresponding DC network equation needs to be added when calculating the power flow timing of the AC-DC hybrid system. The structure of the DC system is very different from that of the AC system, so it is impossible to directly calculate the AC-DC hybrid system using the method of calculating the power flow of the AC system. From the analysis of the model of the DC line, the network equations of the AC-DC hybrid system are mainly modified from four aspects: node power equations, converter basic equations, DC network equations and control equations.

2)对全网进行潮流计算,获取全网潮流解。将潮流结果定义在名为result的一个结构体中,格式与数据结构体类似,方便调用;2) Carry out power flow calculation on the whole network to obtain the power flow solution of the whole network. Define the power flow result in a structure named result, the format is similar to the data structure, and it is convenient to call;

假定交直流混合系统节点数为n,直流节点个数为nc,则交流节点的个数为na=n-nc。按交流和直流的顺序对节点进行顺序排序。Assuming that the number of nodes in the AC/DC hybrid system is n and the number of DC nodes is n c , then the number of AC nodes is n a =nn c . Sort the nodes sequentially in the order of AC and DC.

2.1)节点功率方程:2.1) Node power equation:

其中,i=na+k,k=1,2,…,nc,式中正号表示逆变器,负号表示整流器。与交流系统网络方程对比,增加了Vdk,Idk三个变量,它们分别表示直流节点电压,注入电流以及电压电流之间的夹角即换流器的功率因数角。ΔPi表示给定有功不平衡量;ΔQi表示给定的无功不平衡量;Pis表示给定的有功功率;Qis表示给定的无功功率;Vi表示节点i的电压;Vj表示节点j的电压;θij表示节点i和节点j之间的相角差;Gij表示导纳矩阵的实部;Bij表示导纳矩阵的虚部。由于方程增加了未知量的个数,因此需要其他方程作为补充。 Wherein , i=n a +k, k=1, 2, . Compared with the AC system network equation, V dk , I dk and Three variables, which respectively represent the DC node voltage, the angle between the injected current and the voltage and current, that is, the power factor angle of the converter. ΔP i represents the given active unbalance; ΔQ i represents the given reactive unbalance; P is represents the given active power; Q is represents the given reactive power; V i represents the voltage of node i; V j represents The voltage of node j; θ ij represents the phase angle difference between node i and node j; G ij represents the real part of the admittance matrix; B ij represents the imaginary part of the admittance matrix. Since the equation increases the number of unknowns, other equations are needed to complement it.

2.2)换流器基本方程2.2) Basic equation of converter

对于换流器k,有如下方程:For the converter k, there are the following equations:

其中,Δd1k、Δd2k表示直流电压不平衡量;Vdk表示换流器直流电压,表示换流变压器交流侧线电压标幺值,Idk表示换流器的直流电流;Xck表示换流变压器k的等值阻抗,kTk表示换流变压器的变比,kγ为接近1的常数,θdk表示换流器k控制角,表示换流器的功率因数角。Among them, Δd 1k and Δd 2k represent the DC voltage unbalance; V dk represents the DC voltage of the converter, Indicates the per-unit value of the AC side line voltage of the converter transformer, I dk indicates the DC current of the converter; X ck indicates the equivalent impedance of the converter transformer k, k Tk indicates the transformation ratio of the converter transformer, k γ is a constant close to 1 , θ dk represents the converter k control angle, Indicates the power factor angle of the converter.

2.3)直流网络方程2.3) DC network equation

用来描述直流输电模型的方程称为直流网络方程,一般具有如下标准形式:The equations used to describe the DC transmission model are called DC network equations, and generally have the following standard form:

其中,Δd3k表示换流器输出直流电流的不平衡量,Idk表示换流器k的直流电流;Vdj表示第j个直流节点的直流电压,gdkj表示消去联络节点后的直流网络的节点电导矩阵元素,式中电压电流均表示直流线路的电压和电流。对于一个简单的两端直流输电系统,直流网络方程简化如下:Among them, Δd 3k represents the unbalanced output DC current of the converter, I dk represents the DC current of the converter k; V dj represents the DC voltage of the jth DC node, and g dkj represents the node of the DC network after the contact node is eliminated Conductance matrix elements, where the voltage and current represent the voltage and current of the DC line. For a simple two-terminal DC transmission system, the DC network equation is simplified as follows:

式中,R表示直流线路的电阻;Id1表示1端直流节点的电流;Id2表示2端直流节点的电流;如果直流线路的电阻足够小,则可以近似认为Vd1=Vd2,Id1=Id2In the formula, R represents the resistance of the DC line; I d1 represents the current of the DC node at terminal 1; I d2 represents the current of the DC node at 2 terminals; if the resistance of the DC line is small enough, it can be approximately considered that V d1 = V d2 , I d1 =I d2 .

2.4)控制方程2.4) Governing equation

由于在换流器的基本方程和直流网络方程又引入了两个新的变量,所以必须再增加两个方程才能保证方程有唯一解,通常将换流器和逆变器的控制方程作为补充方程,并且这两个方程的变量具有独立性。Since two new variables are introduced into the basic equation of the converter and the DC network equation, two more equations must be added to ensure that the equation has a unique solution, and the control equations of the converter and inverter are usually used as supplementary equations , and the variables of these two equations are independent.

对于换流器的控制一般存在以下方式:There are generally the following methods for the control of the converter:

①定控制角控制:cosθd-cosθds=0;θd表示换流器控制角,θds表示给定控制角;①Constant control angle control: cosθ d -cosθ ds = 0; θ d represents the control angle of the converter, and θ ds represents the given control angle;

②定变比控制:kT-kTs=0;kT表示换流器变压器变比,kTs表示给定变比;②Constant transformation ratio control: k T -k Ts = 0; k T represents the transformation ratio of the converter transformer, and k Ts represents the given transformation ratio;

③定电流控制:Id-Ids=0;Id表示换流器输出直流,Ids表示给定直流定值;③Constant current control: I d -I ds = 0; I d represents the output DC of the converter, and I ds represents the given DC fixed value;

④定电压控制:Vd-Vds=0;Vd表示换流器输出直流电压,Vds表示给定直流电压值;④Constant voltage control: V d -V ds = 0; V d represents the output DC voltage of the converter, and V ds represents the given DC voltage value;

⑤定功率控制:VdId-Pds=0,Pds表示换流器输出功率给定值。⑤ Constant power control: V d I d -P ds = 0, P ds represents the given value of the output power of the converter.

通常逆变器采用定控制角和定变比的控制方式;整流器通常采用定电流和定变比的控制方式。为了使方程具有通用性,一般将控制方程定义成如下形式:Usually the inverter adopts the control method of constant control angle and constant transformation ratio; the rectifier usually adopts the control method of constant current and constant transformation ratio. In order to make the equations universal, the governing equations are generally defined as follows:

Δd4k=d4k(Idk,Vdk,cosθdk,kTk)=0(k=1,2,…,nc)Δd 4k =d 4k (I dk ,V dk ,cosθ dk ,k Tk )=0(k=1,2,...,n c )

Δd5k=d5k(Idk,Vdk,cosθdk,kTk)=0(k=1,2,…,nc)Δd 5k =d 5k (I dk ,V dk ,cosθ dk ,k Tk )=0(k=1,2,...,n c )

式中,d4k表示整流器变比与电流不平衡量的函数,Δd4k表示整流器控制变量的不平衡量,d5k表示逆变器变比与控制角不平衡量的函数,Δd5k表示逆变器控制变量的不平衡量,Idk表示换流器k的直流电流;Vdk表示换流器k直流电压;θdk表示换流器k控制角;kTk表示换流变压器的变比;由于观察到所有式中与控制角有关的变量均以cosθdk的形式出现,为提高方程的线性度,均以cosθdk为直接待求量。In the formula, d 4k represents the function of rectifier transformation ratio and current unbalance, Δd 4k represents the unbalance of rectifier control variable, d 5k represents the function of inverter transformation ratio and control angle unbalance, Δd 5k represents the inverter control variable , I dk represents the DC current of converter k; V dk represents the DC voltage of converter k; θ dk represents the control angle of converter k; k Tk represents the conversion ratio of the converter transformer; The variables related to the control angle all appear in the form of cosθdk . In order to improve the linearity of the equation, cosθdk is used as the direct quantity to be sought.

节点功率方程式、换流器基本方程、直流网络方程和控制方程共同组成了交直流混联系统的潮流计算方程。要求解交直流混联系统潮流,需要计算所有节点的电压幅值和相角,此外,其还需计算nc个直流节点的直流电压、直流电流、换流变压器变比、换流器控制角和换流器功率因数角五个待求量。每增加一个换流器,就将增加五个补充方程。The node power equation, the basic equation of the converter, the DC network equation and the control equation together constitute the power flow calculation equation of the AC/DC hybrid system. To solve the power flow of the AC/DC hybrid system, it is necessary to calculate the voltage amplitude and phase angle of all nodes. In addition, it also needs to calculate the DC voltage, DC current, converter transformer ratio, and converter control angle of n c DC nodes. and converter power factor angle five demanded quantities. For each additional converter, five supplementary equations will be added.

3)根据使用需要,将节点划分为内部节点集合I、边界节点集合B和外部节点集合E,每个集合内元素按照节点编号从小到大排列。3) According to the needs of use, the nodes are divided into internal node set I, boundary node set B and external node set E, and the elements in each set are arranged according to the node number from small to large.

具备两种容错能力:首先能够判断集合I、B和E之间没有交集,并且集合I、B和E并集的个数等于总的节点数;其次就要检测集合I中是否包含平衡节点,如果不包含,则将平衡节点作为边界节点强制保留,进入下一步;若包含则直接进入下一步。It has two fault-tolerant capabilities: first, it can judge that there is no intersection among sets I, B, and E, and the number of unions of sets I, B, and E is equal to the total number of nodes; secondly, it is necessary to detect whether set I contains balanced nodes, If it is not included, the balance node will be reserved as a boundary node forcibly and enter the next step; if it is included, it will directly enter the next step.

静态等值的第一步就是要对节点进行区分,根据研究需要找出要保留的内部节点和适当的边界节点,其余节点全部消去。在计算完等值网络的相关参数后,需要对等值后的系统进行潮流计算,通过对比保留网络的潮流的结果来验证等值结果的精确性。保留系统中没有平衡节点,系统将自动保留平衡节点,保留系统作为一个群处理,平衡节点作为另外一个群,通过在两个群之间建立虚拟支路使平衡节点与保留系统之间有了直接的联系。The first step of static equivalence is to distinguish the nodes, find out the internal nodes and appropriate boundary nodes to be retained according to the research needs, and eliminate all other nodes. After calculating the relevant parameters of the equivalent network, it is necessary to perform power flow calculation on the equivalent system, and verify the accuracy of the equivalent result by comparing the results of the power flow of the reserved network. If there is no balance node in the reservation system, the system will automatically reserve the balance node. The reservation system is treated as a group, and the balance node is another group. By establishing a virtual branch between the two groups, there is a direct connection between the balance node and the reservation system. contact.

如图7所示的分群处理结构图,将平衡节点当作一个保留节点进行处理。虽然平衡节点与内部系统之间没有直接的联系,但是通过运算可知,矩阵YEQ是一个高度密集的矩阵,这样就可将与平衡节点相关的非对角元素视为虚拟支路的阻抗值,建立平衡节点与边界节点之间的虚拟支路。通过这样的方法,使平衡节点与保留系统之间有了直接的联系。In the grouping processing structure diagram shown in FIG. 7 , the balance node is treated as a reserved node. Although there is no direct connection between the balance node and the internal system, it can be known through calculation that the matrix Y EQ is a highly dense matrix, so that the off-diagonal elements related to the balance node can be regarded as the impedance value of the virtual branch, Establish virtual branches between balance nodes and border nodes. Through this method, there is a direct connection between the balance node and the reservation system.

4)调用节点导纳子函数makeYbus形成整个网络的节点导纳矩阵,根据划分的节点集合,形成等值计算的用的分块节点导纳矩阵YEE、YEB、YBB和YBE4) Call the node admittance sub-function makeYbus to form the node admittance matrix of the entire network, and form block node admittance matrices Y EE , Y EB , Y BB and Y BE for equivalent calculations according to the divided node sets;

根据节点分类,建立整个系统的网络方程,其中Y矩阵是整个网络的节点导纳矩阵,根据节点划分结果对Y矩阵重新排列,形成相应的分块节点导纳矩阵:According to the node classification, the network equation of the entire system is established, where the Y matrix is the node admittance matrix of the entire network, and the Y matrix is rearranged according to the node division results to form the corresponding block node admittance matrix:

展开成如下三个方程:Expanded into the following three equations:

其中:in:

式中,等值前原网络参数:YEE表示外部节点之间导纳矩阵,YEB表示外部节点与边界节点之间导纳矩阵,YBE表示边界节点与外部节点之间导纳矩阵,YBB表示边界节点之间导纳矩阵,YBI表示边界节点与内部节点之间导纳矩阵,YIB表示内部节点与边界节点之间导纳矩阵,YII表示内部节点之间导纳矩阵,VE表示外部节点电压,VB表示边界节点电压,VI表示内部节点电压,II表示内部节点注入电流,IB表示边界节点注入电流,IE表示外部节点注入电流;等值后网络参数:YEQ表示外部节点与边界节点的等值导纳矩阵,表示外部网络等值注入边界节点电流,等值前后边界节点和内部节点参数相同。In the formula, the original network parameters before the equivalent: Y EE represents the admittance matrix between external nodes, Y EB represents the admittance matrix between external nodes and boundary nodes, Y BE represents the admittance matrix between boundary nodes and external nodes, Y BB Represents the admittance matrix between boundary nodes, Y BI represents the admittance matrix between boundary nodes and internal nodes, Y IB represents the admittance matrix between internal nodes and boundary nodes, Y II represents the admittance matrix between internal nodes, V E Represents the external node voltage, V B represents the boundary node voltage, V I represents the internal node voltage, I I represents the injection current of the internal node, I B represents the injection current of the boundary node, I E represents the injection current of the external node; after equivalent network parameters: Y EQ represents the equivalent admittance matrix of external nodes and boundary nodes, Indicates the equivalent injection current of the boundary node in the external network, and the parameters of the boundary node and the internal node before and after the equivalence are the same.

上述分块导纳矩阵就是等值计算后的节点网络方程,可以看到,系统的网络方程中已经没有了VE,也就是说消去了外部网络的影响。导纳矩阵中增加了YEQ,而其他变化的部分只有YBB和边界节点的注入电流IB,内部节点没有变化。对于一个线性系统而言,上述等值计算过程是严格等值的过程,只要外部网络的注入电流IE不发生改变,则在任何运行方式下,等值系统的潮流应与原网络保持一致。The block admittance matrix above is the node network equation after equivalent calculation. It can be seen that V E is no longer in the network equation of the system, that is to say, the influence of the external network is eliminated. Y EQ is added to the admittance matrix, while the other changed parts are only Y BB and the injection current I B of the boundary nodes, and the internal nodes remain unchanged. For a linear system, the above equivalent calculation process is a strict equivalent process. As long as the injection current I E of the external network does not change, the power flow of the equivalent system should be consistent with the original network in any operating mode.

5)计算矩阵YEQ和边界等值电容C,边界等值电容C的求取过程由步骤1.6)给出,最终得到等值后的边界等效支路参数,由此计算边界等效注入功率SEQ=Pi EQ+jQi E;其中,Pi EQ表示节点i等值注入有功功率;表示节点i等值注入无功功率。5) Calculate the matrix Y EQ and the boundary equivalent capacitance C, the calculation process of the boundary equivalent capacitance C is given by step 1.6), and finally obtain the boundary equivalent branch parameters after the equivalent value, and calculate the boundary equivalent injection power S EQ =P i EQ +jQ i E ; where, P i EQ represents the equivalent injected active power of node i; Indicates that the reactive power injected into node i is equivalent.

由于在实际系统中,注入电流这一数据通常是无法获得的,通常都是已知线路功率和节点电压值,因此,所有节点的注入电流可以表示成下述形式:Since in the actual system, the data of the injected current is usually unavailable, and the line power and node voltage values are usually known, therefore, the injected current of all nodes can be expressed as the following form:

式中,表示节点注入电流,表示节点电压,表示节点注入功率。In the formula, represents the node injection current, represents the node voltage, Indicates the node injected power.

将电流用上述功率表示后,原来的线性方程变成了一个非线性方程表示,即:After the current is expressed by the above power, the original linear equation becomes a nonlinear equation, namely:

定义:definition:

则上式可以表示为:Then the above formula can be expressed as:

式中,表示外部节点注入功率,表示边界节点注入功率,表示内部节点注入功率。In the formula, Indicates the external node injected power, Indicates the injected power of the boundary node, Indicates the injected power of internal nodes.

在知晓基本情况下内部网络和边界节点的潮流结果的情况下,根据下式计算边界节点的等值注入功率:In the case of knowing the power flow results of the internal network and boundary nodes in the basic case, the equivalent injected power of the boundary nodes is calculated according to the following formula:

其中,Pi EQ表示节点i等值注入有功功率;表示节点i等值注入无功功率;Vi 0分别表示基本情况下节点i和节点j母线电压模值;θi和θj分别表示基本情况下节点i和节点j母线电压相位角,θij=θij表示节点i和节点j之间的相位差;gij+jbij表示与节点i相连支路的对地导纳值;gi0+jbi0表示与节点i相连支路在i侧的对地支路导纳。Among them, P i EQ represents the equivalent injected active power of node i; Indicates the equivalent injected reactive power of node i; V i 0 and respectively represent the bus voltage modulus of node i and node j in the basic situation; g ij +jb ij represents the ground admittance value of the branch connected to node i; g i0 +jb i0 represents the ground branch admittance of the branch connected to node i on side i.

采用上述式计算边界节点的注入功率非常简便,只需要知晓边界节点的潮流数据以及与边界节点相连的网络拓扑结构即可。对于一个大的系统,可能无法及时准确地获取外部网络的潮流数据,通过状态估计器可以及时地获取边界节点的相关数据,因此,上式所示的计算方法更适用于在线应用。Using the above formula to calculate the injected power of the boundary node is very simple, only need to know the power flow data of the boundary node and the network topology connected to the boundary node. For a large system, the power flow data of the external network may not be obtained timely and accurately, and the relevant data of the boundary nodes can be obtained in time through the state estimator. Therefore, the calculation method shown in the above formula is more suitable for online applications.

6)形成新的结构数据体,并保存等值后系统的基础数据,定义为Rempc。节点定义的原则是按照内部节点集合和边界节点集合顺序排列,保留系统内的发电机数据和支路数据,新的发电机数据和支路数据需要根据重新排列的节点编号做出相应的改变。然后,将步骤5)得到的等效支路参数和边界注入功率分别添加到新数据的支路和节点数据中;6) Form a new structural data body and save the basic data of the equivalent system, which is defined as Rempc. The principle of node definition is to arrange in the order of the internal node set and boundary node set, and retain the generator data and branch data in the system. The new generator data and branch data need to be changed according to the rearranged node numbers. Then, the equivalent branch parameters obtained in step 5) and the boundary injection power are added to the branch and node data of the new data respectively;

7)对等值后系统进行潮流计算,与步骤2)中的潮流计算结果进行对比,即对比等值前后保留支路和节点的潮流结果,可以有选择地将潮流结果输出。7) Perform power flow calculation on the system after equivalence, and compare with the power flow calculation results in step 2), that is, compare the power flow results of reserved branches and nodes before and after equivalence, and selectively output the power flow results.

上述各步骤中,对交直流混合系统中对直流线路的处理方法如下:In the above steps, the processing method for the DC line in the AC-DC hybrid system is as follows:

传统的电网静态等值的方法都是针对交流系统,等值的实质是对网络方程化简,消去外部节点的影响。但是,对于交直流混合系统而言,系统的网络方程因为含有直流而发生了很大的变化,无法形成统一的节点导纳矩阵,常规WARD等值的方法也无法适用。因此,采用等效支路法和等效电源法将直流线路进行处理,将其转化成交流系统等值能够处理的模型,然后再进行等值计算。The traditional grid static equivalence methods are all aimed at AC systems, and the essence of equivalence is to simplify the network equations and eliminate the influence of external nodes. However, for the AC-DC hybrid system, the network equation of the system has changed greatly due to the inclusion of DC, and a unified node admittance matrix cannot be formed, and the conventional WARD equivalent method cannot be applied. Therefore, the DC line is processed by the equivalent branch method and the equivalent power source method, and converted into a model that can be handled by the equivalent value of the AC system, and then the equivalent calculation is performed.

(1)等效支路法(1) Equivalent branch method

根据潮流结果,如图9所示将直流线路等效成π型线路,V1和θ1代表整流侧变压器的交流节点的电压幅值和相角,V2和θ2代表逆变侧变压器交流节点的电压幅值和相角,P1和Q1分别表示整流侧交流系统向直流系统传输的有功功率和无功功率,P2和Q2分别表示逆变侧交流系统向直流系统传输的有功功率和无功功率,正方向与图中箭头方向相同,直流等效成π型线路的导纳参数:g和b是等效支路的串联电导和电纳、b1和b2是等效支路左右两边的对地并联电纳,这些量是待求量。According to the power flow results, the DC line is equivalent to a π-type line as shown in Figure 9, V 1 and θ 1 represent the voltage amplitude and phase angle of the AC node of the rectifier side transformer, and V 2 and θ 2 represent the AC voltage of the inverter side transformer The voltage amplitude and phase angle of the node, P1 and Q1 respectively represent the active power and reactive power transmitted from the AC system on the rectification side to the DC system, and P2 and Q2 respectively represent the active power transmitted from the AC system on the inverter side to the DC system Power and reactive power, the positive direction is the same as the direction of the arrow in the figure, and the DC is equivalent to the admittance parameters of the π-type circuit: g and b are the series conductance and susceptance of the equivalent branch, b 1 and b 2 are the equivalent The parallel susceptance to ground on the left and right sides of the branch is the quantity to be demanded.

交流系统的节点电压和导纳矩阵元素Yij可以表示为:AC system node voltage and admittance matrix elements Y ij can be expressed as:

Yij=Gij+jBij Y ij =G ij +jB ij

式中,ei=Vicosθi,fi=Visinθi,Vi和θi分别表示节点i电压幅值和相位;Gij和Bij分别表示支路ij的电导和电纳In the formula, e i =V i cosθ i , f i =V i sinθ i , V i and θ i represent the voltage amplitude and phase of node i respectively; G ij and B ij represent the conductance and susceptance of branch ij respectively

n个节点电力系统的潮流方程的一般形式是:The general form of the power flow equation for an n-node power system is:

式中,Pi和Qi分别表示节点i注入有功功率和无功功率。In the formula, P i and Q i represent the active power and reactive power injected by node i, respectively.

从而可以得到图9对应的潮流方程:Therefore, the power flow equation corresponding to Figure 9 can be obtained:

其中,θ12=θ12;其他参数与图9中参数对应。通过潮流计算可以获得线路传输功率,以及节点电压和相角,最终计算得到直流线路等效为图9交流线路的参数如下:Wherein, θ 1212 ; other parameters correspond to those in FIG. 9 . Through the power flow calculation, the transmission power of the line, as well as the node voltage and phase angle can be obtained, and the parameters of the DC line equivalent to the AC line in Figure 9 are finally calculated as follows:

通过以上四个式子就可以计算出等效支路的参数,但通常存在b1≠b2,也就是说等效后的π型线路是非对称的,需要将其转化成对称π型线路路才能参与计算,处理方法与处理非对称线路方法相同,将等值支路转化成一个对称的π型线路和一个并联在线路一端的电抗或电感。等效图如图10所示,b1-2表示等效线路左右两边对地并联导纳的差值。通过这样的处理方式可以将系统内所有直流线路处理成交流线路,因此一个交直流混合系统就变为一个纯交流的系统,然后应用交流系统的等值方法进行计算。The parameters of the equivalent branch can be calculated by the above four formulas, but there is usually b 1 ≠ b 2 , that is to say, the equivalent π-type circuit is asymmetrical and needs to be converted into a symmetrical π-type circuit In order to participate in the calculation, the processing method is the same as that of the asymmetrical line, converting the equivalent branch into a symmetrical π-type line and a reactance or inductance connected in parallel at one end of the line. The equivalent diagram is shown in Figure 10, and b 1-2 represents the difference between the left and right sides of the equivalent line and the ground parallel admittance. Through this processing method, all DC lines in the system can be processed into AC lines, so an AC-DC hybrid system becomes a pure AC system, and then the equivalent method of the AC system is used for calculation.

(2)等效电源法(2) Equivalent power supply method

使用交替迭代法求解交流系统方程时,将直流系统等效成接在相应节点上的已知其有功和无功功率的负荷。所以,等效电源法就是根据潮流计算的结果,将直流部分传输的功率等效成接在两侧交流节点的发电机,这两个交流节点定义为PQ节点。等效过程如图11所示,图中分别表示直流线路首末节点传输的功率。When using the alternate iteration method to solve the AC system equations, the DC system is equivalent to a load connected to the corresponding node whose active and reactive power is known. Therefore, the equivalent power supply method is based on the results of power flow calculations, and the power transmitted by the DC part is equivalent to the generators connected to the AC nodes on both sides. These two AC nodes are defined as PQ nodes. The equivalent process is shown in Figure 11, where with Respectively represent the power transmitted by the first and last nodes of the DC line.

等效电源法就是直接将直流线路传输的功率等效成两台等值机,前提是假定直流输送的功率不变。因此,只需要根据换流变压器线路的潮流结果就可以做相应的变换。The equivalent power supply method is to directly equate the power transmitted by the DC line into two equivalent machines, on the premise that the power transmitted by the DC is assumed to be unchanged. Therefore, the corresponding conversion can be done only according to the power flow result of the converter transformer line.

实施例:下面通过具体实施例详细说明应用本发明的系统静态等值。实施例1:IEEE 30节点标准系统;实施例2:中国电科院36节点交直流混合系统。具体实施例计算过程和结果如下:Embodiment: The static equivalent of the system applying the present invention will be described in detail below through specific embodiments. Embodiment 1: IEEE 30-node standard system; Embodiment 2: 36-node AC/DC hybrid system of China Electric Power Research Institute. Concrete embodiment calculation process and result are as follows:

实施例1:Example 1:

(1)IEEE 30节点标准系统(1) IEEE 30-node standard system

表1给出了IEEE-30节点划分的详细结果。Table 1 presents the detailed results of IEEE-30 node division.

表1 IEEE-30节点划分Table 1 IEEE-30 node division

应用等值程序对标准30节点算例进行等值计算,边界等值机(作为PQ节点处理),边界节点虚拟支路阻抗值,边界并联补偿数据如表2、表3、表4所示。Apply the equivalent program to the standard 30-node example for equivalent calculation, the boundary equivalent machine (treated as a PQ node), the boundary node virtual branch impedance value, and boundary parallel compensation data are shown in Table 2, Table 3, and Table 4.

表2边界等值机(单位:MW/MVAR)Table 2 Boundary equivalent machine (unit: MW/MVAR)

表3边界节点虚拟支路阻抗值(pu.)Table 3 Boundary node virtual branch impedance value (pu.)

表4边界并联补偿值(pu.)Table 4 Boundary parallel compensation value (pu.)

为了验证等值结果的准确性,需要对等值前系统和等值后系统的潮流进行比对。在相同的运行方式下对等值后的系统进行潮流计算,结果如表5所示。In order to verify the accuracy of the equivalent results, it is necessary to compare the power flows of the pre-equivalent system and the post-equivalent system. In the same operation mode, the power flow calculation is performed on the equivalent system, and the results are shown in Table 5.

表5内部网络潮流误差(单位:MW/MVAR)Table 5 Internal network power flow error (unit: MW/MVAR)

通过表5可以看出,在运行方式不发生改变的情况下,等值后系统的潮流结果与原系统基本一致。图11等值前后潮流误差图中给出了潮流误差的比对结果,从图11中可以看出,线路有功误差的数量级是10-8,无功误差的数量级是10-7。因此系统在基态的情况下,等值结果十分精确。It can be seen from Table 5 that the power flow results of the equivalent system are basically consistent with the original system when the operation mode does not change. Figure 11 shows the comparison results of power flow errors before and after the equivalence. It can be seen from Figure 11 that the order of magnitude of line active error is 10 -8 , and that of reactive power error is 10 -7 . Therefore, when the system is in the ground state, the equivalent results are very accurate.

(2)IEEE30系统运行方式发生变化(2) The operation mode of IEEE30 system changes

当系统运行方式发生变化,特别是系统需要无功增量时,WARD等值存在一定误差。现针对IEEE30系统支路4-6发生断线故障的情况下,对系统进行等值仿真分析。由于11号节点为PV节点,首先对节点进行重新划分,将该节点作为消去节点,重新划分的节点如表6所示。When the system operation mode changes, especially when the system requires reactive power increment, there is a certain error in the WARD equivalent. Now, in the case of disconnection faults in branches 4-6 of the IEEE30 system, the equivalent simulation analysis of the system is carried out. Since node 11 is a PV node, the node is re-divided first, and this node is used as the eliminated node. The re-divided nodes are shown in Table 6.

表6节点划分Table 6 Node division

考虑支路4-6发生短路,计算短路后系统的稳态潮流,再将系统进行等值计算,计算等值系统短路后的稳态潮流。将等值前和等值后的稳态潮流进行对比。如图12a、图12b所示,在考虑运行方式改变的条件下,等值前和等值后系统的有功和无功潮流误差。可以看出,在线路4-6短路的情况下,对比运行方式不改变的条件下,误差值有所增大,但是仍然在工程接受的范围内。有功潮流误差基本保持在5%以内,最大误差7%。无功误差基本保持在10%以内,最大误差15%。可以看出,无功误差稍大于有功误差,这也是WARD等值本身所固有的缺陷,因为当系统内部运行方式发生改变时,外部系统的注入功率会发生一定的改变,特别是无功功率。而等值系统的边界注入功率仍然是按照基态的情况计算的,因此误差会增大。但是综合来看,在系统运行方式发生改变后,WARD等值仍然具有不错的等值效果。Consider the short-circuit of branch 4-6, calculate the steady-state power flow of the system after the short-circuit, and then carry out the equivalent calculation of the system to calculate the steady-state power flow of the equivalent system after the short-circuit. Compare the steady-state power flow before and after equivalence. As shown in Figure 12a and Figure 12b, under the condition of considering the change of operation mode, the active and reactive power flow errors of the system before and after the equivalence. It can be seen that in the case of a short circuit on line 4-6, compared with the condition that the operation mode remains unchanged, the error value has increased, but it is still within the acceptable range of the project. The active power flow error is basically kept within 5%, and the maximum error is 7%. The reactive power error is basically kept within 10%, and the maximum error is 15%. It can be seen that the reactive power error is slightly larger than the active power error, which is also an inherent defect of the WARD equivalent itself, because when the internal operation mode of the system changes, the injected power of the external system will change to a certain extent, especially the reactive power. However, the boundary injection power of the equivalent system is still calculated according to the ground state, so the error will increase. But on the whole, after the system operation mode has changed, the WARD equivalent value still has a good equivalent effect.

实施例2:中国电科院36节点交直流混合系统。Example 2: 36-node AC-DC hybrid system of China Electric Power Research Institute.

以中国电科院36节点交直流混合系统为例,分别采用本报告提出等效支路法和等效电源法,对交直流混合系统进行等值分析。Taking the 36-node AC-DC hybrid system of China Electric Power Research Institute as an example, the equivalent branch method and the equivalent power source method proposed in this report are used to conduct equivalent analysis on the AC-DC hybrid system.

(1)等效支路法(1) Equivalent branch method

首先计算该测试系统的潮流。直流线路两侧的交流节点潮流结果(pu.)如表7所示,其中正方向与图13a、图13b中定义相同。First calculate the power flow for the test system. The AC node power flow results (pu.) on both sides of the DC line are shown in Table 7, where the positive direction is the same as defined in Figure 13a and Figure 13b.

表7潮流结果Table 7 Power flow results

表7中,P33和Q33分别表示节点33注入有功功率和无功功率,P34和Q34分别表示节点34注入有功功率和无功功率;V33分别表示节点33电压幅值和相角,V34分别表示节点34电压幅值和相角。In Table 7, P 33 and Q 33 represent the active power and reactive power injected by node 33 respectively, and P 34 and Q 34 represent the active power and reactive power injected by node 34 respectively; V 33 and respectively represent the voltage amplitude and phase angle of node 33, V 34 and represent the node 34 voltage amplitude and phase angle, respectively.

将表7中的已知量代入式中,计算出等效支路的参数分别为:g=0.5820,b=-7.3541,b1=0.05117,b2=0.61253。按照等效支路处理的方法处理相关数据,去掉母线33和34之间的直流线路参数,增加交流线路33-34,阻抗参数为0.0107+j0.1351,并联总电容bc=0.1023,母线34并联电容注入功率B=56.14MAVR,根据计算结果修改MATLAB基础数据。Substituting the known quantities in Table 7 into the formula, the calculated parameters of the equivalent branches are: g=0.5820, b=-7.3541, b 1 =0.05117, b 2 =0.61253. Process the relevant data according to the method of equivalent branch processing, remove the DC line parameters between the busbars 33 and 34, add the AC line 33-34, the impedance parameter is 0.0107+j0.1351, the total parallel capacitance bc =0.1023, and the busbar 34 Parallel capacitor injection power B = 56.14MAVR, according to the calculation results to modify the basic data of MATLAB.

对CEPRI-36进行节点划分。为了方便,本报告保留平衡节点在内的几个重要发电机节点,其余节点全部消去,节点划分结果如表8所示。Carry out node division for CEPRI-36. For convenience, this report retains several important generator nodes including the balance node, and all other nodes are eliminated. The node division results are shown in Table 8.

表8 CEPRI-36节点划分结果Table 8 CEPRI-36 node division results

应用等值程序,对测试系统进行等值计算。图13给出了原系统、处理后系统以及等值后系统保留支路的有功、无功潮流对比结果。Equivalence calculations are performed on the test system using the equivalence program. Figure 13 shows the comparison results of active power and reactive power flow of the original system, the treated system and the reserved branch of the equivalent system.

(2)等效电源法(2) Equivalent power supply method

根据潮流结果,修改CEPRI-36基础数据,去掉直流支路33-34,在节点33和34添加负荷数据(标幺值,额定功率为100MW)P33+Q33=3.0015+j0.4270,在节点34出添加负荷P34+Q34=-2.9057+j0.1174。According to the power flow results, modify the CEPRI-36 basic data, remove the DC branches 33-34, add load data (per unit value, rated power is 100MW) at nodes 33 and 34 P 33 +Q 33 =3.0015+j0.4270, in The added load of node 34 is P 34 +Q 34 =-2.9057+j0.1174.

节点分类与表8中CEPRI-36节点划分结果中相同。应用等值程序,对测试系统进行等值计算。如图15a~图16b所示,给出了原系统、处理后系统以及等值后系统的潮流对比结果。The node classification is the same as in the CEPRI-36 node division results in Table 8. Equivalence calculations are performed on the test system using the equivalence program. As shown in Figure 15a to Figure 16b, the power flow comparison results of the original system, the processed system and the equivalent system are given.

根据以上两个仿真结果,可以得到如下结论:According to the above two simulation results, the following conclusions can be drawn:

(1)采用等效电源法和等值支路法,在保持系统运行方式不发生改变的情况下,处理前后潮流结果高度一致;(1) Using the equivalent power source method and the equivalent branch method, the power flow results before and after processing are highly consistent under the condition that the system operation mode remains unchanged;

(2)两种处理方法得到的结果基本相同,并且等值前后网络潮流结果高度一致,误差很小。因此,等值结果十分精确。(2) The results obtained by the two processing methods are basically the same, and the network power flow results before and after the equivalence are highly consistent, and the error is very small. Therefore, the equivalent result is very accurate.

上述各实施例仅用于说明本发明,其中方法的各实施步骤等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。The above-mentioned embodiments are only used to illustrate the present invention, and the various implementation steps of the method etc. all can be changed to some extent, and all equivalent transformations and improvements carried out on the basis of the technical solution of the present invention should not be excluded from the scope of the present invention. outside the scope of protection.

Claims (10)

1.一种基于WARD等值的交直流系统等值方法,其特征在于包括以下步骤:1. a kind of AC/DC system equivalent method based on WARD equivalent, it is characterized in that comprising the following steps: 1)建立WARD等值模型中各基本元件模型,从各基本元件模型中获取全网节点作为基础数据,并确定数据格式是Matpower标准数据格式还是BPA数据格式,如果为BPA数据格式,则将其转换成Matpower标准格式进行计算;1) Establish each basic component model in the WARD equivalent model, obtain the entire network node as the basic data from each basic component model, and determine whether the data format is Matpower standard data format or BPA data format, if it is BPA data format, then convert it to Convert to Matpower standard format for calculation; 2)对全网进行潮流计算,获取全网潮流解,将潮流结果定义在名为result的一个结构体中,格式与数据结构体类似;2) Carry out power flow calculation on the whole network, obtain the power flow solution of the whole network, define the power flow result in a structure named result, and the format is similar to the data structure; 3)将节点划分为内部节点集合I、边界节点集合B和外部节点集合E,每个集合内元素按照节点编号从小到大排列;3) Divide the nodes into internal node set I, boundary node set B and external node set E, and the elements in each set are arranged according to the node numbers from small to large; 4)调用节点导纳子函数makeYbus形成整个网络的节点导纳矩阵,根据划分的节点集合,形成等值计算的用的分块节点导纳矩阵;4) Call the node admittance sub-function makeYbus to form the node admittance matrix of the entire network, and form the block node admittance matrix for equivalent calculation according to the divided node set; 5)计算矩阵YEQ和边界等值电容C得到等值后的边界等效支路参数,由此计算边界等效注入功率SEQ=Pi EQ+jQi EQ5) Calculate the matrix Y EQ and the boundary equivalent capacitance C to obtain the boundary equivalent branch parameters after equivalent value, and thus calculate the boundary equivalent injection power S EQ =P i EQ +jQ i EQ ; 6)形成新的结构数据体,并保存等值后系统的基础数据,定义为Rempc,将步骤5)添加至新结构数据体中;6) Form a new structural data body, and save the basic data of the equivalent system, which is defined as Rempc, and add step 5) to the new structural data body; 7)对等值后系统进行潮流计算,对比等值前后保留支路和节点的潮流结果,有选择地将潮流结果输出。7) Carry out power flow calculation for the system after equivalence, compare the power flow results of reserved branches and nodes before and after equivalence, and selectively output the power flow results. 2.如权利要求1所述的一种基于WARD等值的交直流系统等值方法,其特征在于:所述步骤1)中,基本元件模型包括线路模型、发电机和负荷模型、并联元件模型、非对称线路模型、变压器支路和边界电容。2. A kind of AC/DC system equivalence method based on WARD equivalence as claimed in claim 1, is characterized in that: in described step 1), basic element model comprises line model, generator and load model, parallel element model , asymmetrical line model, transformer branch and boundary capacitance. 3.如权利要求1所述的一种基于WARD等值的交直流系统等值方法,其特征在于:所述步骤2)中,对全网进行潮流计算包括节点功率方程、换流器基本方程、直流网络方程以及控制方程。3. A kind of AC-DC system equivalent method based on WARD equivalent as claimed in claim 1, is characterized in that: in described step 2), carrying out power flow calculation to the whole network includes node power equation, converter basic equation , DC network equations and governing equations. 4.如权利要求3所述的一种基于WARD等值的交直流系统等值方法,其特征在于:所述节点功率方程:4. a kind of AC/DC system equivalent method based on WARD equivalent as claimed in claim 3, is characterized in that: described node power equation: 其中,i=na+k,k=1,2,…,nc,式中正号表示逆变器,负号表示整流器。与交流系统网络方程对比,增加了Vdk,Idk三个变量,它们分别表示直流节点电压,注入电流以及电压电流之间的夹角即换流器的功率因数角。ΔPi表示给定有功不平衡量;ΔQi表示给定的无功不平衡量;Pis表示给定的有功功率;Qis表示给定的无功功率;Vi表示节点i的电压;Vj表示节点j的电压;θij表示节点i和节点j之间的相角差;Gij表示导纳矩阵的实部;Bij表示导纳矩阵的虚部。 Wherein , i=n a +k, k=1, 2, . Compared with the AC system network equation, V dk , I dk and Three variables, which respectively represent the DC node voltage, the angle between the injected current and the voltage and current, that is, the power factor angle of the converter. ΔP i represents the given active unbalance; ΔQ i represents the given reactive unbalance; P is represents the given active power; Q is represents the given reactive power; V i represents the voltage of node i; V j represents The voltage of node j; θ ij represents the phase angle difference between node i and node j; G ij represents the real part of the admittance matrix; B ij represents the imaginary part of the admittance matrix. 5.如权利要求3所述的一种基于WARD等值的交直流系统等值方法,其特征在于:所述换流器基本方程,对于换流器k,有如下方程:5. A kind of AC/DC system equivalent method based on WARD equivalent as claimed in claim 3, is characterized in that: described converter basic equation, for converter k, has following equation: <mrow> <msub> <mi>&amp;Delta;d</mi> <mrow> <mn>1</mn> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>T</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <msub> <mi>n</mi> <mi>a</mi> </msub> <mo>+</mo> <mi>k</mi> </mrow> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;Delta;d</mi><mrow><mn>1</mn><mi>k</mi></mrow></msub><mo>=</mo><msub><mi>V</mi><mrow><mi>d</mi><mi>k</mi></mrow></msub><mo>-</mo><msub><mi>k</mi><mrow><mi>T</mi><mi>k</mi></mrow></msub><msub><mi>V</mi><mrow><msub><mi>n</mi><mi>a</mi></msub><mo>+</mo><mi>k</mi></mrow></msub><msub><mi>cos&amp;theta;</mi><mrow><mi>d</mi><mi>k</mi></mrow></msub><mo>+</mo><msub><mi>X</mi><mrow><mi>c</mi><mi>k</mi></mrow></msub><msub><mi>I</mi><mrow><mi>d</mi><mi>k</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mrow><mo>(</mo><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>n</mi><mi>c</mi></msub><mo>)</mo></mrow></mrow> 其中,Δd1k、Δd2k表示直流电压不平衡量;Vdk表示换流器直流电压,表示换流变压器交流侧线电压标幺值,Idk表示换流器的直流电流;Xck表示换流变压器k的等值阻抗,kTk表示换流变压器的变比,kγ为接近1的常数,θdk表示换流器k控制角,表示换流器的功率因数角。Among them, Δd 1k and Δd 2k represent the DC voltage unbalance; V dk represents the DC voltage of the converter, Indicates the per-unit value of the AC side line voltage of the converter transformer, I dk indicates the DC current of the converter; X ck indicates the equivalent impedance of the converter transformer k, k Tk indicates the transformation ratio of the converter transformer, k γ is a constant close to 1 , θ dk represents the converter k control angle, Indicates the power factor angle of the converter. 6.如权利要求3所述的一种基于WARD等值的交直流系统等值方法,其特征在于:所述直流网络方程的标准形式:6. a kind of AC/DC system equivalent method based on WARD equivalent as claimed in claim 3, is characterized in that: the standard form of described DC network equation: <mrow> <msub> <mi>&amp;Delta;d</mi> <mrow> <mn>3</mn> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo>&amp;PlusMinus;</mo> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>g</mi> <mrow> <mi>d</mi> <mi>k</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;Delta;d</mi><mrow><mn>3</mn><mi>k</mi></mrow></msub><mo>=</mo><mo>&amp;PlusMinus;</mo><msub><mi>I</mi><mrow><mi>d</mi><mi>k</mi></mrow></msub><mo>-</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>g</mi><mrow><mi>d</mi><mi>k</mi><mi>j</mi></mrow></msub><msub><mi>V</mi><mrow><mi>d</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo>mo><msub><mi>n</mi><mi>c</mi></msub><mo>)</mo></mrow></mrow> 其中,Δd3k表示换流器输出直流电流的不平衡量,Idk表示换流器k的直流电流;Vdj表示第j个直流节点的直流电压,gdkj表示消去联络节点后的直流网络的节点电导矩阵元素,式中电压电流均表示直流线路的电压和电流。对于一个简单的两端直流输电系统,直流网络方程简化如下:Among them, Δd 3k represents the unbalanced output DC current of the converter, I dk represents the DC current of the converter k; V dj represents the DC voltage of the jth DC node, and g dkj represents the node of the DC network after the contact node is eliminated Conductance matrix elements, where the voltage and current represent the voltage and current of the DC line. For a simple two-terminal DC transmission system, the DC network equation is simplified as follows: 对于一个简单的两端直流输电系统,直流网络方程简化如下:For a simple two-terminal DC transmission system, the DC network equation is simplified as follows: <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>/</mo> <mi>R</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>R</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>R</mi> </mrow> </mtd> <mtd> <mrow> <mn>1</mn> <mo>/</mo> <mi>R</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>I</mi><mrow><mi>d</mi><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mrow><mo>-</mo><msub><mi>I</mi><mrow><mi>d</mi><mn>2</mn></mrow></msub></mrow></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><mn>1</mn><mo>/</mo><mi>R</mi></mrow></mtd><mtd><mrow><mo>-</mo><mn>1</mn><mo>/</mo><mi>R</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>-</mo><mn>1</mn><mo>/</mo><mi>R</mi></mrow></mtd><mtd><mrow><mn>1</mn><mo>/</mo><mi>R</mi></mrow></mtd></mtr></mtable></mfenced><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>V</mi><mrow><mi>d</mi><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>V</mi><mrow><mi>d</mi><mn>2</mn></mrow></msub></mtd></mtr></mtable></mfenced></mrow> 式中,R表示直流线路的电阻;Id1表示1端直流节点的电流;Id2表示2端直流节点的电流;如果直流线路的电阻足够小,则可以近似认为Vd1=Vd2,Id1=Id2In the formula, R represents the resistance of the DC line; I d1 represents the current of the DC node at terminal 1; I d2 represents the current of the DC node at 2 terminals; if the resistance of the DC line is small enough, it can be approximately considered that V d1 = V d2 , I d1 =I d2 . 7.如权利要求3所述的一种基于WARD等值的交直流系统等值方法,其特征在于:所述控制方程:7. a kind of AC/DC system equivalent method based on WARD equivalent as claimed in claim 3, is characterized in that: described control equation: Δd4k=d4k(Idk,Vdk,cosθdk,kTk)=0(k=1,2,…,nc)Δd 4k =d 4k (I dk ,V dk ,cosθ dk ,k Tk )=0(k=1,2,...,n c ) Δd5k=d5k(Idk,Vdk,cosθdk,kTk)=0(k=1,2,…,nc)Δd 5k =d 5k (I dk ,V dk ,cosθ dk ,k Tk )=0(k=1,2,...,n c ) 式中,d4k表示整流器变比与电流不平衡量的函数,Δd4k表示整流器控制变量的不平衡量,d5k表示逆变器变比与控制角不平衡量的函数,Δd5k表示逆变器控制变量的不平衡量,Idk表示换流器k的直流电流;Vdk表示换流器k直流电压;θdk表示换流器k控制角;kTk表示换流变压器的变比;由于观察到所有式中与控制角有关的变量均以cosθdk的形式出现,为提高方程的线性度,均以cosθdk为直接待求量。In the formula, d 4k represents the function of rectifier transformation ratio and current unbalance, Δd 4k represents the unbalance of rectifier control variable, d 5k represents the function of inverter transformation ratio and control angle unbalance, Δd 5k represents the inverter control variable , I dk represents the DC current of converter k; V dk represents the DC voltage of converter k; θ dk represents the control angle of converter k; k Tk represents the conversion ratio of the converter transformer; The variables related to the control angle all appear in the form of cosθdk . In order to improve the linearity of the equation, cosθdk is used as the direct quantity to be sought. 8.如权利要求1所述的一种基于WARD等值的交直流系统等值方法,其特征在于:所述步骤3)中,需具备两种容错能力:首先确定集合I、B和E之间没有交集,并且集合I、B和E并集的个数等于总的节点数;其次检测集合I中是否包含平衡节点,如果不包含,则将平衡节点作为边界节点强制保留,进入下一步,若包含则直接进入下一步。8. A kind of AC-DC system equivalence method based on WARD equivalence as claimed in claim 1, is characterized in that: in described step 3), need possess two kinds of fault-tolerant capabilities: at first determine the set I, B and E There is no intersection among them, and the number of the union of sets I, B, and E is equal to the total number of nodes; secondly, check whether the set I contains balanced nodes, if not, then forcefully retain the balanced nodes as boundary nodes, and enter the next step, If included, go directly to the next step. 9.如权利要求1所述的一种基于WARD等值的交直流系统等值方法,其特征在于:所述步骤5)中,边界等效电容C为:9. A kind of AC/DC system equivalent method based on WARD equivalent as claimed in claim 1, is characterized in that: in described step 5), boundary equivalent capacitance C is: 纯线路计算方法:Pure line calculation method: C(k)=C(k)+ykj C(k)=C(k)+y kj 式中,k∈i;In the formula, k∈i; 变压器线路计算方法,且边界节点为首节点:Transformer line calculation method, and the boundary node is the first node: <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mi>j</mi> </mrow> </msub> <mo>/</mo> <mi>&amp;tau;</mi> <mo>&amp;times;</mo> <msup> <mi>e</mi> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </msup> <mo>-</mo> <mn>0.5</mn> <mi>i</mi> <mo>&amp;times;</mo> <msub> <mi>b</mi> <mrow> <mi>k</mi> <mi>j</mi> </mrow> </msub> <mo>/</mo> <msup> <mi>&amp;tau;</mi> <mn>2</mn> </msup> </mrow> <mrow><mi>C</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mi>C</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>y</mi><mrow><mi>k</mi><mi>j</mi></mrow></msub><mo>/</mo><mi>&amp;tau;</mi><mo>&amp;times;</mo><msup><mi>e</mi><msub><mi>&amp;theta;</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></msup><mo>-</mo><mn>0.5</mn><mi>i</mi><mo>&amp;times;</mo><msub><mi>b</mi><mrow><mi>k</mi><mi>j</mi></mrow></msub><mo>/</mo><msup><mi>&amp;tau;</mi><mn>2</mn></msup></mrow> 变压器线路计算方法,且边界节点为末节点:Transformer line calculation method, and the boundary node is the end node: <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;times;</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;times;</mo> <msup> <mi>e</mi> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </msup> <mo>-</mo> <mn>0.5</mn> <mi>i</mi> <mo>&amp;times;</mo> <msub> <mi>b</mi> <mrow> <mi>k</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow><mi>C</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mi>C</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>y</mi><mrow><mi>k</mi><mi>j</mi></mrow></msub><mo>&amp;times;</mo><msub><mi>&amp;tau;</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>&amp;times;</mo><msup><mi>e</mi><msub><mi>&amp;theta;</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></msup><mo>-</mo><mn>0.5</mn><mi>i</mi><mo>&amp;times;</mo><msub><mi>b</mi><mrow><mi>k</mi><mi>j</mi></mrow></msub></mrow> 其中,Yij(i≠j)表示节点i和节点j构成支路的线路导纳的负值,该支路的相关参数表示为:线路导纳yij,线路总对地导纳bij,变压器变比τij,相位移θijAmong them, Y ij (i≠j) represents the negative value of the line admittance of the branch formed by node i and node j, and the relevant parameters of the branch are expressed as: line admittance y ij , total line-to-ground admittance b ij , Transformer transformation ratio τ ij , phase displacement θ ij . 10.如权利要求1所述的一种基于WARD等值的交直流系统等值方法,其特征在于:所述步骤6)中,节点定义的原则是按照内部节点集合和边界节点集合顺序排列,保留系统内的发电机数据和支路数据,新的发电机数据和支路数据需要根据重新排列的节点编号做出相应的改变;然后,将增加的等值虚拟支路和边界电容数据分别添加到新数据的支路和节点数据中。10. A kind of AC-DC system equivalence method based on WARD equivalence as claimed in claim 1, is characterized in that: in described step 6), the principle of node definition is to arrange according to internal node set and boundary node set order, Keep the generator data and branch data in the system, and the new generator data and branch data need to be changed according to the rearranged node numbers; then, add the added equivalent virtual branch and boundary capacitance data respectively into the branch and node data of the new data.
CN201711009021.XA 2017-10-25 2017-10-25 Alternating current-direct current system equivalence method based on WARD equivalence Active CN107681682B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711009021.XA CN107681682B (en) 2017-10-25 2017-10-25 Alternating current-direct current system equivalence method based on WARD equivalence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711009021.XA CN107681682B (en) 2017-10-25 2017-10-25 Alternating current-direct current system equivalence method based on WARD equivalence

Publications (2)

Publication Number Publication Date
CN107681682A true CN107681682A (en) 2018-02-09
CN107681682B CN107681682B (en) 2020-10-09

Family

ID=61142745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711009021.XA Active CN107681682B (en) 2017-10-25 2017-10-25 Alternating current-direct current system equivalence method based on WARD equivalence

Country Status (1)

Country Link
CN (1) CN107681682B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448549A (en) * 2018-05-09 2018-08-24 华中科技大学 A flexible DC line protection method based on measuring power with a current-limiting reactor
CN109301856A (en) * 2018-09-07 2019-02-01 山东大学 A method and system for modeling and analysis of DC hierarchical structure
CN110676852A (en) * 2019-08-26 2020-01-10 重庆大学 A Fast Probabilistic Power Flow Calculation Method for Improved Extreme Learning Machine Considering Power Flow Characteristics
CN111262249A (en) * 2019-12-20 2020-06-09 国网新疆电力有限公司 Power grid flow simulation method and system
CN112054515A (en) * 2020-08-28 2020-12-08 武汉大学 Receiving-end power grid DC receiving capacity detection method based on multi-objective optimization
CN112685981A (en) * 2020-12-28 2021-04-20 南方电网科学研究院有限责任公司 Static equivalence method and device for power system, terminal equipment and storage medium
CN112952841A (en) * 2021-02-05 2021-06-11 杭州沃瑞电力科技有限公司 Power transmission network step-by-step optimization reconstruction method for controlling power grid short-circuit current level
CN113270861A (en) * 2021-04-14 2021-08-17 国网甘肃省电力公司经济技术研究院 Limit capacity calculation method for accessing renewable energy into power grid
CN113746097A (en) * 2021-09-27 2021-12-03 杭州电力设备制造有限公司 Power system analysis method, system, equipment and storage medium
CN116822436A (en) * 2023-06-30 2023-09-29 四川大学 An oscillation risk sensitivity analysis method for AC systems at the DC transmission end
CN118281883A (en) * 2024-06-03 2024-07-02 中国电力科学研究院有限公司 Data adjustment method and system based on tide voltage intensity
CN118501791A (en) * 2024-07-18 2024-08-16 济南市计量检定测试院 Metering detection data precision evaluation method and system
CN119227421A (en) * 2024-11-29 2024-12-31 三峡金沙江云川水电开发有限公司 A collector network equivalent method based on improved node equation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411613A1 (en) * 2002-10-14 2004-04-21 Abb Research Ltd. Simulation of an electrical power transmission network
CN102570457A (en) * 2012-01-16 2012-07-11 广东省电力调度中心 Static equivalence method for two-port external network based on measurement data of internal network
CN103400303A (en) * 2013-07-03 2013-11-20 广东电网公司电力调度控制中心 Static equivalence method for external network based on internal network routine Ward equivalent circuit
CN103647272A (en) * 2013-10-22 2014-03-19 国家电网公司 Alternating-current and direct-current power grid static equivalence method suitable for cascading failures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411613A1 (en) * 2002-10-14 2004-04-21 Abb Research Ltd. Simulation of an electrical power transmission network
CN102570457A (en) * 2012-01-16 2012-07-11 广东省电力调度中心 Static equivalence method for two-port external network based on measurement data of internal network
CN103400303A (en) * 2013-07-03 2013-11-20 广东电网公司电力调度控制中心 Static equivalence method for external network based on internal network routine Ward equivalent circuit
CN103647272A (en) * 2013-10-22 2014-03-19 国家电网公司 Alternating-current and direct-current power grid static equivalence method suitable for cascading failures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冷永杰: "交直流混合系统外网等值研究", 《中国电力》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448549A (en) * 2018-05-09 2018-08-24 华中科技大学 A flexible DC line protection method based on measuring power with a current-limiting reactor
CN109301856A (en) * 2018-09-07 2019-02-01 山东大学 A method and system for modeling and analysis of DC hierarchical structure
CN109301856B (en) * 2018-09-07 2021-05-07 山东大学 A method and system for modeling and analysis of DC hierarchical structure
CN110676852A (en) * 2019-08-26 2020-01-10 重庆大学 A Fast Probabilistic Power Flow Calculation Method for Improved Extreme Learning Machine Considering Power Flow Characteristics
CN110676852B (en) * 2019-08-26 2020-11-10 重庆大学 Improved extreme learning machine rapid probability load flow calculation method considering load flow characteristics
CN111262249A (en) * 2019-12-20 2020-06-09 国网新疆电力有限公司 Power grid flow simulation method and system
CN111262249B (en) * 2019-12-20 2024-01-30 国网新疆电力有限公司 Power grid tide simulation method and system
CN112054515A (en) * 2020-08-28 2020-12-08 武汉大学 Receiving-end power grid DC receiving capacity detection method based on multi-objective optimization
CN112685981A (en) * 2020-12-28 2021-04-20 南方电网科学研究院有限责任公司 Static equivalence method and device for power system, terminal equipment and storage medium
CN112685981B (en) * 2020-12-28 2024-05-07 南方电网科学研究院有限责任公司 Static equivalence method and device for power system, terminal equipment and storage medium
CN112952841A (en) * 2021-02-05 2021-06-11 杭州沃瑞电力科技有限公司 Power transmission network step-by-step optimization reconstruction method for controlling power grid short-circuit current level
CN113270861A (en) * 2021-04-14 2021-08-17 国网甘肃省电力公司经济技术研究院 Limit capacity calculation method for accessing renewable energy into power grid
CN113270861B (en) * 2021-04-14 2022-10-11 国网甘肃省电力公司经济技术研究院 Limit capacity calculation method for accessing renewable energy into power grid
CN113746097A (en) * 2021-09-27 2021-12-03 杭州电力设备制造有限公司 Power system analysis method, system, equipment and storage medium
CN113746097B (en) * 2021-09-27 2023-09-29 杭州电力设备制造有限公司 Power system analysis method, system, equipment and storage medium
CN116822436A (en) * 2023-06-30 2023-09-29 四川大学 An oscillation risk sensitivity analysis method for AC systems at the DC transmission end
CN116822436B (en) * 2023-06-30 2024-02-27 四川大学 Oscillation risk sensitivity analysis method for direct-current transmission end alternating-current system
CN118281883A (en) * 2024-06-03 2024-07-02 中国电力科学研究院有限公司 Data adjustment method and system based on tide voltage intensity
CN118501791A (en) * 2024-07-18 2024-08-16 济南市计量检定测试院 Metering detection data precision evaluation method and system
CN118501791B (en) * 2024-07-18 2024-10-01 济南市计量检定测试院 Metering detection data precision evaluation method and system
CN119227421A (en) * 2024-11-29 2024-12-31 三峡金沙江云川水电开发有限公司 A collector network equivalent method based on improved node equation
CN119227421B (en) * 2024-11-29 2025-03-14 三峡金沙江云川水电开发有限公司 Current collection network equivalence method based on improved node equation

Also Published As

Publication number Publication date
CN107681682B (en) 2020-10-09

Similar Documents

Publication Publication Date Title
CN107681682B (en) Alternating current-direct current system equivalence method based on WARD equivalence
CN109067193B (en) Cascade power electronic transformer and unbalance compensation control method thereof
CN103094905B (en) Selection method of dynamic reactive power compensation configuration point
CN103001214B (en) A kind of power distribution network Three Phase Power Flow based on neutral point excursion
CN103036462A (en) Model prediction control method of voltage source type rectifier when network voltage is unbalanced
CN203690930U (en) Hybrid reactive compensation control system
CN109918733A (en) A method and device for electromagnetic transient equivalent modeling of doubly-fed wind turbines
CN106501667A (en) A kind of fault-line selecting method of single-phase wire break containing distributed power distribution network
CN103955594B (en) Dynamic equivalence method of electric power system
CN104617576B (en) Fault Calculation Method for Multi-DC Feed-in AC Grid Considering DC Control Characteristics
CN113489356B (en) Single-phase grid-connected inverter SISO amplitude-phase impedance calculation method and system under polar coordinate system
CN105095590B (en) A kind of modeling method of the electromechanical transient simulation system based on three sequence equivalent impedances
CN106684920A (en) Stability test method applied to multi-inverter parallel grid-connected system
CN105305392A (en) Symmetrical component method for short circuit calculation of voltage-controlled type IIDG included power distribution network
CN106877309A (en) Stability judgment method for direct-current micro-grid in master-slave control mode
CN102545206A (en) Voltage source commutation-high voltage direct current (VSC-HVDC) power flow computing method based on automatic differential (AD) and reserving non-linear method
CN114421511A (en) Control method and device for hybrid direct current transmission equipment and hybrid direct current transmission system
CN103560494B (en) The short circuit current acquisition methods that distribution protection is adjusted
CN107196307A (en) A kind of method that electric network active trend is quickly estimated after transformer fault
CN117973096A (en) Direct-drive wind farm parallel simulation method, system, terminal and medium based on double-layer network division
CN112307699B (en) VSC-HVDC electromechanical transient simulation method and system based on phase components
CN105897092A (en) Design method for achieving single-phase operation of star-connection three-phase asynchronous generator
CN102707161A (en) Method and device for monitoring short-circuit capacity on line based on dynamic transfer impedance
CN202602289U (en) Filter
CN102170125A (en) Power checking method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant