CN107679279A - A kind of life-span prediction method of model subjects difference parameter Adaptive matching - Google Patents
A kind of life-span prediction method of model subjects difference parameter Adaptive matching Download PDFInfo
- Publication number
- CN107679279A CN107679279A CN201710784374.0A CN201710784374A CN107679279A CN 107679279 A CN107679279 A CN 107679279A CN 201710784374 A CN201710784374 A CN 201710784374A CN 107679279 A CN107679279 A CN 107679279A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- msubsup
- mover
- sigma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 11
- 239000002245 particle Substances 0.000 claims abstract description 60
- 238000009826 distribution Methods 0.000 claims abstract description 24
- 238000007476 Maximum Likelihood Methods 0.000 claims abstract description 5
- 238000011156 evaluation Methods 0.000 claims abstract description 4
- 230000007423 decrease Effects 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 15
- 238000004088 simulation Methods 0.000 claims description 11
- 230000007704 transition Effects 0.000 claims description 11
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 claims description 5
- 238000012952 Resampling Methods 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 230000005653 Brownian motion process Effects 0.000 claims description 3
- 206010033307 Overweight Diseases 0.000 claims description 3
- 238000005537 brownian motion Methods 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 3
- 238000005562 fading Methods 0.000 claims 3
- 230000006866 deterioration Effects 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000002948 stochastic simulation Methods 0.000 abstract description 9
- 201000004569 Blindness Diseases 0.000 abstract description 2
- 230000003412 degenerative effect Effects 0.000 abstract 1
- 238000005309 stochastic process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于机械设备剩余寿命预测技术领域,具体涉及一种模型个体差异参数自适应匹配的寿命预测方法。The invention belongs to the technical field of remaining life prediction of mechanical equipment, and in particular relates to a life prediction method for adaptive matching of model individual difference parameters.
背景技术Background technique
设备的安全、稳定运行是保障人身安全、提高生产效率的先决条件,因此需要准确预测设备剩余寿命并据此制订有效的设备维护策略。基于模型的寿命预测方法是实现剩余寿命准确预测的方法之一,该方法通过对设备衰退过程的理论分析或经验总结构建衰退模型,而后根据监测数据对模型参数和状态进行实时评估,在此基础上实现对剩余寿命的准确预测。为反映设备衰退的随机性,通常采用随机过程模型来描述其衰退趋势。由于不同设备初始状态、运行工况等条件不尽相同,衰退往往存在个体差异,在建立随机过程模型时必须将个体差异纳入考虑。但目前尚无通用方法来处理个体差异。现有的方法通常假设个体差异参数服从某一分布,并在此基础上进行参数估计。这一假设既无对应的理论依据,也不能取得较好的实用效果。The safe and stable operation of equipment is a prerequisite for ensuring personal safety and improving production efficiency. Therefore, it is necessary to accurately predict the remaining life of equipment and formulate effective equipment maintenance strategies accordingly. The model-based life prediction method is one of the methods to achieve accurate prediction of the remaining life. This method builds a decline model through theoretical analysis or experience summary of the equipment decline process, and then evaluates the model parameters and status in real time according to the monitoring data. Based on this Accurate prediction of remaining life is achieved on the basis of In order to reflect the randomness of equipment decline, a stochastic process model is usually used to describe its decline trend. Due to the different initial states and operating conditions of different equipment, there are often individual differences in the decline, and individual differences must be taken into account when establishing stochastic process models. But there is currently no general approach to deal with individual differences. Existing methods usually assume that the individual difference parameters obey a certain distribution, and estimate the parameters on this basis. This assumption has neither a corresponding theoretical basis nor a good practical effect.
发明内容Contents of the invention
为了克服上述现有技术的缺点,本发明的目的在于提供一种模型个体差异参数自适应匹配的寿命预测方法,充分考虑设备衰退的个体差异,从而提高设备剩余寿命预测的精度。In order to overcome the above-mentioned shortcomings of the prior art, the object of the present invention is to provide a life prediction method for adaptive matching of model individual difference parameters, which fully considers individual differences in equipment degradation, thereby improving the accuracy of equipment remaining life prediction.
为了达到上述目的,本发明采取的技术方案为:In order to achieve the above object, the technical scheme that the present invention takes is:
一种模型个体差异参数自适应匹配的寿命预测方法,包括以下步骤:A life prediction method for adaptive matching of model individual difference parameters, comprising the following steps:
1)建立衰退模型:1) Establish a recession model:
其中,sk表示tk时刻观测得到的状态值,s(t)代表tk后任意时刻t观测得到的状态值,μ(s(τ),τ,b)为非线性衰退速率函数,函数中b为未知常量;a为随机变量,反映设备衰退的个体差异,σB为衰退模型的扩散系数,为一个未知常量;B(τ)为标准布朗运动,反映衰退的时变性;Among them, s k represents the state value observed at time t k , s(t) represents the state value observed at any time t after t k , μ(s(τ),τ,b) is the nonlinear decay rate function, and the function Among them, b is an unknown constant; a is a random variable, reflecting the individual differences of equipment decline, σ B is the diffusion coefficient of the decline model, which is an unknown constant; B(τ) is the standard Brownian motion, reflecting the time-varying nature of the decline;
2)将衰退模型离散化,并据此得到前后两次观测所得状态值的差值序列:2) Discretize the recession model, and obtain the difference sequence of the state values obtained by the two observations:
si,j=si,j-1+aiμ(si,j-1,tj-1,b)Δtj-1+σBdB(Δtj-1) (2)s i,j =s i,j-1 +a i μ(s i,j-1 ,t j-1 ,b)Δt j-1 +σ B dB(Δt j-1 ) (2)
其中,si,j代表已有N个衰退样本中的第i个样本在时刻tj时观测得到的状态值;ΔSi为第i个样本前后两次观测所得状态值的差值序列;Δtj-1=tj-tj-1,代表观测时间间隔;Ki代表第i个样本最后一次观测对应的时刻序号;Among them, s i, j represent the state value observed by the i-th sample in the existing N decaying samples at time t j ; ΔS i is the difference sequence of the state value observed twice before and after the i-th sample; Δt j-1 = t j -t j-1 , which represents the observation time interval; K i represents the time sequence number corresponding to the last observation of the i-th sample;
3)对未知参数进行极大似然估计,其中ai为各样本的个体差异参数,i=1,2,…,N;具体步骤如下:3) For unknown parameters Perform maximum likelihood estimation, where a i is the individual difference parameter of each sample, i=1,2,...,N; the specific steps are as follows:
3.1)根据步骤2)的离散化衰退模型,对每一样本而言,其前后两次观测所得状态值的差值序列服从正态分布其中为第i个样本从t0到内各时刻衰退速率与观测时间间隔相乘所构成的向量;为第i个样本从t0时刻到时刻内观测时间间隔所构成的对角矩阵;3.1) According to the discretized decay model in step 2), for each sample, the difference sequence of the state values obtained by the two observations before and after it obeys the normal distribution in for the ith sample from t 0 to The vector formed by multiplying the decay rate at each moment and the observation time interval; For the i-th sample from time t 0 to Diagonal matrix composed of observation time intervals within a moment;
从而列出对数似然函数如下:The log-likelihood function is thus listed as follows:
式中为所有样本观测所得状态值构成的状态值序列;In the formula The state value sequence composed of state values observed for all samples;
3.2)分别对ai和求偏导,并令偏导数为0,得到参数的估计值如下:3.2) For a i and Find the partial derivative, and set the partial derivative to 0, the estimated value of the parameter is as follows:
3.3)将上式回代到对数似然函数式(4)中,将对数似然函数变形为:3.3) Substitute the above formula back into the logarithmic likelihood function formula (4), and transform the logarithmic likelihood function into:
3.4)使用一维寻优方法求得上式取最大值时对应的参数b,并将其作为估计值将带入式(5)和(6)求解和至此,未知参数的估计值均已获得;3.4) Use the one-dimensional optimization method to obtain the parameter b corresponding to the maximum value of the above formula, and use it as an estimated value Will Bring in formulas (5) and (6) to solve with So far, unknown parameters The estimated value of has been obtained;
4)选择若干个分布作为备选分布,根据步骤3)中得到的参数a的若干个估计值进行Kolmogorov-Smirnov拟合优度检验,即K-S检验,选择K-S检验中显著性水平值,即p值最大时对应的备选分布作为与个体差异参数相匹配的估计分布 4) Select several distributions as alternative distributions, according to several estimated values of parameter a obtained in step 3) Carry out the Kolmogorov-Smirnov goodness of fit test, that is, the KS test, and select the significance level value in the KS test, that is, the alternative distribution corresponding to the maximum p value as the individual difference parameter Match the estimated distribution
5)根据待预测样本的观测信息,使用粒子滤波对参数a和状态sk进行实时评估,具体步骤如下:5) According to the observation information of the sample to be predicted, the particle filter is used to evaluate the parameter a and the state sk in real time, and the specific steps are as follows:
5.1)从步骤4)中得到的的分布中抽取Np个参数粒子设置初始权重为产生Np个状态粒子 5.1) from step 4) Distribution Extract N p parameter particles from Set the initial weight to Generate N p state particles
5.2)根据步骤2)中得到的离散化衰退模型,建立如下的状态一步转移方程:5.2) According to the discretized decay model obtained in step 2), the following state one-step transition equation is established:
其中,和为时刻第i个状态粒子和参数粒子,为第i个状态粒子一步转移后状态值;in, with for The i-th state particle and parameter particle at time, is the state value of the i-th state particle after one-step transfer;
5.3)在tk时刻观测得到状态值sk后,根据式(9)~(10)更新权值并归一化:5.3) After observing the state value s k at time t k , the weights are updated and normalized according to equations (9)-(10):
其中,为时刻第i个粒子权值,为tk时刻更新后第i个粒子归一化前权值,为tk时刻更新后第i个粒子归一化后权值;in, for The weight value of the i-th particle at time, is the normalized weight of the i -th particle after updating at time tk, is the normalized weight of the i-th particle after updating at time t k ;
5.4)根据步骤5.3)中得到粒子的权值进行重采样,复制高权值粒子,去除低权值粒子,即要求重采样后的粒子满足 其中P(·)为概率算子;从而得到新的粒子集和新的粒子集中各粒子权值为由新的粒子集计算状态粒子中值和参数粒子中值将其作为tk时刻的状态和参数估计值;5.4) Perform resampling according to the weights of particles obtained in step 5.3), copy high-weight particles, and remove low-weight particles, that is, the particles after resampling are required to satisfy where P( ) is a probability operator; thus a new particle set is obtained with The weight of each particle in the new particle set is Calculate the state particle median value from the new particle set and the median value of the parameter particle Take it as the state and parameter estimates at time t k ;
6)设置衰退过程随机模拟条件如下:6) Set the stochastic simulation conditions of the recession process as follows:
6.1)给定衰退过程随机模拟的初始条件:6.1) Given the initial conditions of the stochastic simulation of the recession process:
初始时间步长——Δl0;Initial time step - Δl 0 ;
衰退初值其中Ns表示模拟轨迹总数;Recession initial value where Ns represents the total number of simulated trajectories;
6.2)建立衰退过程状态一步转移方程:6.2) Establish the one-step transition equation of the recession process state:
其中,sn(li+tk)为第n条模拟轨迹在li+tk时刻的状态值,i∈N+={1,2,3,...};Δli-1为第i-1步转移时的时间步长;li为状态转移i步所用时长,Vi-1为一步转移噪声,服从均匀分布U(-vi-1,vi-1), Among them, s n (l i +t k ) is the state value of the nth simulated trajectory at the moment l i +t k , i∈N + ={1,2,3,...}; Δl i-1 is The time step of the i-1th step transition; l i is the duration of the i-step state transition, V i-1 is one-step transfer noise, which obeys the uniform distribution U(-v i-1 ,v i-1 ),
6.3)设置时间步长自适应调整逻辑为:6.3) Set the time step adaptive adjustment logic as:
其中,Mi为第i步转移时达到或超过失效阈值的模拟轨迹数,Mam为状态一步转移中允许达到或超过失效阈值的最多模拟轨迹数;Among them, M i is the number of simulated trajectories that reach or exceed the failure threshold when the i-th step is transferred, and M am is the maximum number of simulated trajectories that are allowed to reach or exceed the failure threshold in the state one-step transfer;
7)根据步骤6)开始随机模拟并不断进行状态递推,直至所有模拟轨迹均达到或超过衰退阈值时模拟停止,而后根据式(13)~(14)计算各模拟轨迹剩余寿命及其概率密度:7) Start stochastic simulation according to step 6) and continue state recursion until all simulated trajectories reach or exceed the decay threshold, then the simulation stops, and then calculate the remaining life of each simulated trajectory and its probability density according to formulas (13)-(14) :
其中,λ为失效阈值,Ln为第n条轨迹达到失效阈值所需转移步数,为其剩余寿命值,n=1,2,...,Ns;Among them, λ is the failure threshold, L n is the number of transfer steps required for the nth trajectory to reach the failure threshold, Its remaining life value, n=1,2,...,N s ;
8)计算具有相同剩余寿命的不同轨迹概率密度函数均值,将其作为剩余寿命为的概率密度函数估计值:8) Calculation has the same remaining life The mean value of the probability density function of different trajectories, which is regarded as the remaining life is Estimated probability density function for :
其中, in,
本发明的有益效果:在衰退模型中引入个体差异参数,根据该参数的极大似然估计值自适应匹配其最符合的分布;利用粒子滤波对状态和参数进行评估,而后通过对衰退过程的随机模拟进行剩余寿命预测,避免了预先指定个体差异参数分布的盲目性,实现了设备剩余寿命的有效预测。Beneficial effects of the present invention: Introduce the individual difference parameter in the recession model, and adaptively match its most consistent distribution according to the maximum likelihood estimation value of the parameter; use the particle filter to evaluate the state and parameters, and then pass the decay process Stochastic simulation is used to predict the remaining life, which avoids the blindness of pre-specifying the distribution of individual difference parameters, and realizes the effective prediction of the remaining life of equipment.
附图说明Description of drawings
图1为本发明流程图。Fig. 1 is the flow chart of the present invention.
图2为金属试样疲劳裂纹数据。Figure 2 shows the fatigue crack data of metal samples.
图3为试样寿命预测结果图,图(a)为本发明方法应用于试样1时的预测结果;图(b)为本发明方法应用于试样11时的预测结果。Fig. 3 is the prediction result figure of sample life, and figure (a) is the prediction result when the method of the present invention is applied to sample 1; Fig. (b) is the prediction result when the method of the present invention is applied to sample 11.
具体实施方式detailed description
下面结合附图和实施例对本发明做进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
如图1所示,一种模型个体差异参数自适应匹配的寿命预测方法,包括以下步骤:As shown in Figure 1, a life prediction method for adaptive matching of model individual difference parameters includes the following steps:
1)建立衰退模型:1) Establish a recession model:
其中,sk表示tk时刻观测得到的状态值,s(t)代表tk后任意时刻t观测得到的状态值,μ(s(τ),τ,b)为非线性衰退速率函数,函数中b为未知常量;a为随机变量,反映设备衰退的个体差异,σB为衰退模型的扩散系数,为一个未知常量;B(τ)为标准布朗运动,反映衰退的时变性;Among them, s k represents the state value observed at time t k , s(t) represents the state value observed at any time t after t k , μ(s(τ),τ,b) is the nonlinear decay rate function, and the function Among them, b is an unknown constant; a is a random variable, reflecting the individual differences of equipment decline, σ B is the diffusion coefficient of the decline model, which is an unknown constant; B(τ) is the standard Brownian motion, reflecting the time-varying nature of the decline;
2)将衰退模型离散化,并据此得到前后两次观测所得状态值的差值序列:2) Discretize the recession model, and obtain the difference sequence of the state values obtained by the two observations:
si,j=si,j-1+aiμ(si,j-1,tj-1,b)Δtj-1+σBdB(Δtj-1) (2)s i,j =s i,j-1 +a i μ(s i,j-1 ,t j-1 ,b)Δt j-1 +σ B dB(Δt j-1 ) (2)
其中,si,j代表已有N个衰退样本中的第i个样本在时刻tj时观测得到的状态值;ΔSi为第i个样本前后两次观测所得状态值的差值序列;Δtj-1=tj-tj-1,代表观测时间间隔;Ki代表第i个样本最后一次观测对应的时刻序号;Among them, s i, j represent the state value observed by the i-th sample in the existing N decaying samples at time t j ; ΔS i is the difference sequence of the state value observed twice before and after the i-th sample; Δt j-1 = t j -t j-1 , which represents the observation time interval; K i represents the time sequence number corresponding to the last observation of the i-th sample;
3)对未知参数进行极大似然估计,其中ai为各样本的个体差异参数,i=1,2,…,N;具体步骤如下:3) For unknown parameters Perform maximum likelihood estimation, where a i is the individual difference parameter of each sample, i=1,2,...,N; the specific steps are as follows:
3.1)根据步骤2)的离散化衰退模型,对每一样本而言,其前后两次观测所得状态值的差值序列服从正态分布其中为第i个样本从t0到内各时刻衰退速率与观测时间间隔相乘所构成的向量;为第i个样本从t0时刻到时刻内观测时间间隔所构成的对角矩阵;3.1) According to the discretized decay model in step 2), for each sample, the difference sequence of the state values obtained by the two observations before and after it obeys the normal distribution in for the ith sample from t 0 to The vector formed by multiplying the decay rate at each moment and the observation time interval; For the i-th sample from time t 0 to Diagonal matrix composed of observation time intervals within a moment;
从而列出对数似然函数如下:The log-likelihood function is thus listed as follows:
式中为所有样本观测所得状态值构成的状态值序列;In the formula The state value sequence composed of state values observed for all samples;
3.2)分别对ai和求偏导,并令偏导数为0,得到参数的估计值如下:3.2) For a i and Find the partial derivative, and set the partial derivative to 0, the estimated value of the parameter is as follows:
3.3)将上式回代到对数似然函数式(4)中,将对数似然函数变形为:3.3) Substitute the above formula back into the logarithmic likelihood function formula (4), and transform the logarithmic likelihood function into:
3.4)使用一维寻优方法求得上式取最大值时对应的参数b,并将其作为估计值将带入式(5)和(6)求解和至此,未知参数的估计值均已获得;3.4) Use the one-dimensional optimization method to obtain the parameter b corresponding to the maximum value of the above formula, and use it as an estimated value Will Bring in formulas (5) and (6) to solve with So far, unknown parameters The estimated value of has been obtained;
4)选择若干个分布作为备选分布,根据步骤3)中得到的参数a的若干个估计值进行Kolmogorov-Smirnov拟合优度检验,即K-S检验,选择K-S检验中显著性水平值,即p值最大时对应的备选分布作为与个体差异参数相匹配的估计分布 4) Select several distributions as alternative distributions, according to several estimated values of parameter a obtained in step 3) Carry out the Kolmogorov-Smirnov goodness of fit test, that is, the KS test, and select the significance level value in the KS test, that is, the alternative distribution corresponding to the maximum p value as the individual difference parameter Match the estimated distribution
5)根据待预测样本的观测信息,使用粒子滤波对参数a和状态sk进行实时评估,具体步骤如下:5) According to the observation information of the sample to be predicted, the particle filter is used to evaluate the parameter a and the state sk in real time, and the specific steps are as follows:
5.1)从步骤4)中得到的的分布中抽取Np个参数粒子设置初始权重为产生Np个状态粒子 5.1) from step 4) Distribution Extract N p parameter particles from Set the initial weight to Generate N p state particles
5.2)根据步骤2)中得到的离散化衰退模型,建立如下的状态一步转移方程:5.2) According to the discretized decay model obtained in step 2), the following state one-step transition equation is established:
其中,和为时刻第i个状态粒子和参数粒子,为第i个状态粒子一步转移后状态值;in, with for The i-th state particle and parameter particle at time, is the state value of the i-th state particle after one-step transfer;
5.3)在tk时刻观测得到状态值sk后,根据式(9)~(10)更新权值并归一化:5.3) After observing the state value s k at time t k , the weights are updated and normalized according to equations (9)-(10):
其中,为时刻第i个粒子权值,为tk时刻更新后第i个粒子归一化前权值,为tk时刻更新后第i个粒子归一化后权值;in, for The weight value of the i-th particle at time, is the normalized weight of the i -th particle after updating at time tk, is the normalized weight of the i-th particle after updating at time t k ;
5.4)根据步骤5.3)中得到粒子的权值进行重采样,复制高权值粒子,去除低权值粒子,即要求重采样后的粒子满足 其中P(·)为概率算子;从而得到新的粒子集和新的粒子集中各粒子权值为由新的粒子集计算状态粒子中值和参数粒子中值将其作为tk时刻的状态和参数估计值;5.4) Perform resampling according to the weights of particles obtained in step 5.3), copy high-weight particles, and remove low-weight particles, that is, the particles after resampling are required to satisfy where P( ) is a probability operator; thus a new particle set is obtained with The weight of each particle in the new particle set is Calculate the state particle median value from the new particle set and the median value of the parameter particle Take it as the state and parameter estimates at time t k ;
6)设置衰退过程随机模拟条件如下:6) Set the stochastic simulation conditions of the recession process as follows:
6.1)给定衰退过程随机模拟的初始条件:6.1) Given the initial conditions of the stochastic simulation of the recession process:
初始时间步长——Δl0;Initial time step - Δl 0 ;
衰退初值其中Ns表示模拟轨迹总数;Recession initial value where Ns represents the total number of simulated trajectories;
6.2)建立衰退过程状态一步转移方程:6.2) Establish the one-step transition equation of the recession process state:
其中,sn(li+tk)为第n条模拟轨迹在li+tk时刻的状态值,i∈N+={1,2,3,...};Δli-1为第i-1步转移时的时间步长;li为状态转移i步所用时长,Vi-1为一步转移噪声,服从均匀分布U(-vi-1,vi-1), Among them, s n (l i +t k ) is the state value of the nth simulated trajectory at the moment l i +t k , i∈N + ={1,2,3,...}; Δl i-1 is The time step of the i-1th step transition; l i is the duration of the i-step state transition, V i-1 is one-step transfer noise, which obeys the uniform distribution U(-v i-1 ,v i-1 ),
6.3)设置时间步长自适应调整逻辑为:6.3) Set the time step adaptive adjustment logic as:
其中,Mi为第i步转移时达到或超过失效阈值的模拟轨迹数,Mam为状态一步转移中允许达到或超过失效阈值的最多模拟轨迹数;Among them, M i is the number of simulated trajectories that reach or exceed the failure threshold when the i-th step is transferred, and M am is the maximum number of simulated trajectories that are allowed to reach or exceed the failure threshold in the state one-step transfer;
7)根据步骤6)开始随机模拟并不断进行状态递推,直至所有模拟轨迹均达到或超过衰退阈值时模拟停止,而后根据式(13)~(14)计算各模拟轨迹剩余寿命及其概率密度:7) Start stochastic simulation according to step 6) and continue state recursion until all simulated trajectories reach or exceed the decay threshold, then the simulation stops, and then calculate the remaining life of each simulated trajectory and its probability density according to formulas (13)-(14) :
其中,λ为失效阈值,Ln为第n条轨迹达到失效阈值所需转移步数,为其剩余寿命值,n=1,2,...,Ns;Among them, λ is the failure threshold, L n is the number of transfer steps required for the nth trajectory to reach the failure threshold, Its remaining life value, n=1,2,...,N s ;
8)计算具有相同剩余寿命的不同轨迹概率密度函数均值,将其作为剩余寿命为的概率密度函数估计值:8) Calculation has the same remaining life The mean value of the probability density function of different trajectories, which is regarded as the remaining life is Estimated probability density function for :
其中, in,
为验证本发明的有效性,使用文献StatisticalMethodsforReliabilityData(NewYork:JohnWiley&Sons,1998,pp 639)中提供的金属试样疲劳裂纹数据进行验证。该裂纹数据如图2所示,数据集中共有21个金属试样的裂纹数据,每一试样在实验前预处理添加0.9英寸长的裂纹作为初始缺陷;实验过程中应力循环次数每增加10000记录一次裂纹长度。当裂纹长度达到或超过1.6英寸时,认为试样失效并终止实验;此外,当转数达到120000时,无论裂纹长度是否达到1.6英寸均终止实验。实验结束后,上述21个试样中共有12个试样失效。In order to verify the effectiveness of the present invention, the metal sample fatigue crack data provided in the document Statistical Methods for Reliability Data (New York: John Wiley & Sons, 1998, pp 639) was used for verification. The crack data is shown in Figure 2. There are 21 crack data of metal samples in the data set. Each sample is pretreated to add a 0.9-inch long crack as an initial defect; during the experiment, the number of stress cycles increases by 10,000 records A crack length. When the crack length reaches or exceeds 1.6 inches, the sample is considered to have failed and the test is terminated; in addition, when the number of revolutions reaches 120,000, the test is terminated regardless of whether the crack length reaches 1.6 inches or not. After the experiment, a total of 12 samples out of the above 21 samples failed.
选择如下三种随机过程模型(I:多项式模型;II:指数模型;III:状态传递模型)分别对衰退过程建模,并使用本发明方法对上文所述数据集中12个失效试样先后进行寿命预测。每次预测时取除本身之外的剩余20个样本作为训练集,用以估计参数b和的值,以及个体差异参数a的分布。在此基础上使用粒子滤波进行状态和参数评估,通过对衰退过程的随机模拟进行寿命预测。预测结束后,以1号和11号样本为例作出其预测结果图,如图3所示。Select following three kinds of stochastic process models (I: polynomial model; II: exponential model; III: state transfer model) to model the decay process respectively, and use the method of the present invention to carry out successively on 12 failure samples in the above-mentioned data set life expectancy. For each prediction, the remaining 20 samples except itself are taken as the training set to estimate the parameters b and The value of , and the distribution of the individual difference parameter a. On this basis, the particle filter is used for state and parameter evaluation, and the life prediction is carried out through stochastic simulation of the decay process. After the prediction is over, take samples No. 1 and No. 11 as examples to draw the prediction results, as shown in Figure 3.
由图可见,随着预测时刻接近轴承的最终寿命,上述三个模型的预测结果均逐渐收敛于真实寿命。但图3-(a)对应的试样1的剩余寿命预测值在状态传递模型下较快地收敛于真实寿命,在指数模型和多项式模型下收敛速率则较慢;而图3-(b)对应的试样11则在指数模型和多项式模型下表现较好,在状态传递模型下表现不佳,即三个模型中没有哪一个模型的预测效果完全优于另外两模型。It can be seen from the figure that as the prediction time approaches the final life of the bearing, the prediction results of the above three models gradually converge to the real life. However, the remaining life prediction value of sample 1 corresponding to Figure 3-(a) converges to the real life quickly under the state transfer model, and the convergence rate is slow under the exponential model and polynomial model; while Figure 3-(b) The corresponding sample 11 performed well under the exponential model and the polynomial model, and performed poorly under the state transfer model, that is, none of the three models had a better predictive effect than the other two models.
本发明提出的一种模型个体差异参数自适应匹配的寿命预测方法,可对金属材料在疲劳等失效形式下的剩余寿命进行预测,也可用于其它机电设备的寿命预测问题。需要注意的是,本发明方法中使用的衰退模型为一种通式,实施者在将本发明方法应用于其它产品时,可根据待预测对象衰退趋势的不同选取相应的随机过程模型,从而使其适应不同设备的应用需求。此外,本发明提供了一种“个体差异参数自适应匹配+状态与参数有效评估+剩余寿命随机模拟”的思路,在不脱离本发明构思的前提下,对本发明进行指标、参数或模型等做出的替换修改,也应视为本发明的保护范围。A life prediction method for self-adaptive matching of model individual difference parameters proposed by the invention can predict the remaining life of metal materials under failure modes such as fatigue, and can also be used for life prediction problems of other electromechanical equipment. It should be noted that the decline model used in the method of the present invention is a general formula. When the implementer applies the method of the present invention to other products, he can select the corresponding stochastic process model according to the difference in the decline trend of the object to be predicted, so that It adapts to the application requirements of different devices. In addition, the present invention provides an idea of "self-adaptive matching of individual difference parameters + effective evaluation of state and parameters + random simulation of remaining life". The proposed replacement and modification should also be regarded as the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710784374.0A CN107679279A (en) | 2017-09-04 | 2017-09-04 | A kind of life-span prediction method of model subjects difference parameter Adaptive matching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710784374.0A CN107679279A (en) | 2017-09-04 | 2017-09-04 | A kind of life-span prediction method of model subjects difference parameter Adaptive matching |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107679279A true CN107679279A (en) | 2018-02-09 |
Family
ID=61135551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710784374.0A Pending CN107679279A (en) | 2017-09-04 | 2017-09-04 | A kind of life-span prediction method of model subjects difference parameter Adaptive matching |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107679279A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108459314A (en) * | 2018-03-08 | 2018-08-28 | 北京理工大学 | A kind of three-dimensional solid-state face battle array laser radar non-uniform correction method |
CN109359781A (en) * | 2018-11-20 | 2019-02-19 | 佛山科学技术学院 | A method and device for predicting the remaining life of an intelligent manufacturing system |
CN109376401A (en) * | 2018-09-29 | 2019-02-22 | 西安交通大学 | An adaptive multi-source information optimization and fusion method for predicting the remaining life of machinery |
CN109783877A (en) * | 2018-12-19 | 2019-05-21 | 平安科技(深圳)有限公司 | Time series models method for building up, device, computer equipment and storage medium |
CN111160666A (en) * | 2020-01-02 | 2020-05-15 | 西北工业大学 | State of Health and Reliability Evaluation Method for Strong Noise and Aperiodic Condition Monitoring |
CN112420198A (en) * | 2020-12-16 | 2021-02-26 | 北京航空航天大学 | A method and system for predicting the degree of deterioration of crew's human effectiveness |
CN113507601A (en) * | 2021-04-22 | 2021-10-15 | 广东睿住智能科技有限公司 | Pressure testing method and system of intelligent screen |
-
2017
- 2017-09-04 CN CN201710784374.0A patent/CN107679279A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108459314A (en) * | 2018-03-08 | 2018-08-28 | 北京理工大学 | A kind of three-dimensional solid-state face battle array laser radar non-uniform correction method |
CN108459314B (en) * | 2018-03-08 | 2020-05-19 | 北京理工大学 | Three-dimensional solid-state area array laser radar non-uniform correction method |
CN109376401A (en) * | 2018-09-29 | 2019-02-22 | 西安交通大学 | An adaptive multi-source information optimization and fusion method for predicting the remaining life of machinery |
CN109359781A (en) * | 2018-11-20 | 2019-02-19 | 佛山科学技术学院 | A method and device for predicting the remaining life of an intelligent manufacturing system |
CN109783877A (en) * | 2018-12-19 | 2019-05-21 | 平安科技(深圳)有限公司 | Time series models method for building up, device, computer equipment and storage medium |
CN109783877B (en) * | 2018-12-19 | 2024-03-01 | 平安科技(深圳)有限公司 | Time sequence model establishment method, device, computer equipment and storage medium |
CN111160666A (en) * | 2020-01-02 | 2020-05-15 | 西北工业大学 | State of Health and Reliability Evaluation Method for Strong Noise and Aperiodic Condition Monitoring |
CN112420198A (en) * | 2020-12-16 | 2021-02-26 | 北京航空航天大学 | A method and system for predicting the degree of deterioration of crew's human effectiveness |
CN112420198B (en) * | 2020-12-16 | 2022-04-12 | 北京航空航天大学 | Method and system for predicting efficiency decline degree of sailor human body |
CN113507601A (en) * | 2021-04-22 | 2021-10-15 | 广东睿住智能科技有限公司 | Pressure testing method and system of intelligent screen |
CN113507601B (en) * | 2021-04-22 | 2024-03-29 | 广东睿住智能科技有限公司 | Pressure testing method and system for intelligent screen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107679279A (en) | A kind of life-span prediction method of model subjects difference parameter Adaptive matching | |
CN107480440B (en) | Residual life prediction method based on two-stage random degradation modeling | |
CN108984893B (en) | A Trend Prediction Method Based on Gradient Boosting | |
CN109376401B (en) | An Adaptive Multi-source Information Optimization and Fusion Method for Mechanical Remaining Lifetime Prediction | |
CN111368403A (en) | An Adaptive Nonlinear Degradation Remaining Life Prediction Method | |
CN101520652B (en) | A method for evaluating the service reliability of NC equipment | |
CN109829136B (en) | A method and system for predicting remaining life of degraded equipment with random jumps | |
CN109117566B (en) | Mixed maintenance planning method based on product life prediction model | |
CN109345032B (en) | Particle filter multi-crack-propagation prediction method based on dynamic crack number | |
CN107145720A (en) | Method for Predicting Remaining Life of Equipment Under Continuous Degradation and Unknown Shock | |
CN106228026A (en) | A kind of predicting residual useful life algorithm based on optimum degenerative character amount | |
CN113468720B (en) | Service life prediction method for digital-analog linked random degradation equipment | |
CN112487694B (en) | A Remaining Life Prediction Method of Complex Equipment Based on Multiple Degradation Indexes | |
CN102469103A (en) | Trojan Horse Event Prediction Method Based on BP Neural Network | |
CN108304348A (en) | A kind of bearing residual life prediction technique based on binary Wiener-Hopf equation | |
CN110687450A (en) | Lithium battery residual life prediction method based on phase space reconstruction and particle filtering | |
CN107479000A (en) | A kind of lithium-ion-power cell RUL Forecasting Methodologies based on Box Cox conversion with Monte-Carlo Simulation | |
CN110532620B (en) | Fatigue crack propagation prediction method based on recursive least square-kernel smoothing particle filtering | |
CN109918776B (en) | Fatigue crack prediction method for mechanical products based on two-step least squares method | |
CN104218571B (en) | A kind of running status appraisal procedure of wind power plant | |
CN111783242A (en) | A method and device for predicting remaining life of rolling bearing based on RVM-KF | |
CN117610743A (en) | Nonlinear degradation equipment condition-based maintenance and spare part ordering combined optimization method and system | |
CN109918707B (en) | Aero-engine residual life prediction method based on Levy process | |
CN113791351B (en) | Lithium battery life prediction method based on transfer learning and difference probability distribution | |
CN106096170A (en) | Wind turbines multivariate failure prediction method based on data-driven |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180209 |
|
RJ01 | Rejection of invention patent application after publication |