CN107679279A - A kind of life-span prediction method of model subjects difference parameter Adaptive matching - Google Patents

A kind of life-span prediction method of model subjects difference parameter Adaptive matching Download PDF

Info

Publication number
CN107679279A
CN107679279A CN201710784374.0A CN201710784374A CN107679279A CN 107679279 A CN107679279 A CN 107679279A CN 201710784374 A CN201710784374 A CN 201710784374A CN 107679279 A CN107679279 A CN 107679279A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mover
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710784374.0A
Other languages
Chinese (zh)
Inventor
雷亚国
闫涛
李乃鹏
李宁波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710784374.0A priority Critical patent/CN107679279A/en
Publication of CN107679279A publication Critical patent/CN107679279A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

A kind of life-span prediction method of model subjects difference parameter Adaptive matching, equipment degenerated mode is built first, and individual difference parameter is introduced in a model, the distribution that it is best suited according to the maximum likelihood estimation Adaptive matching of the parameter, then use the real-time evaluation status of particle filter method and parameter, on this basis by obtaining residual life probability density to the stochastic simulation of degenerative process, present invention, avoiding the blindness of predesignated individual difference parameter distribution, realizes effective prediction of equipment residual life.

Description

Service life prediction method for model individual difference parameter adaptive matching
Technical Field
The invention belongs to the technical field of residual life prediction of mechanical equipment, and particularly relates to a life prediction method for model individual difference parameter adaptive matching.
Background
The safe and stable operation of the equipment is a prerequisite condition for ensuring personal safety and improving production efficiency, so that the residual service life of the equipment needs to be accurately predicted, and an effective equipment maintenance strategy needs to be formulated according to the residual service life. The method constructs a decay model through theoretical analysis or empirical summary of the decay process of equipment, and then carries out real-time evaluation on model parameters and states according to monitoring data, thereby realizing accurate prediction of the residual life on the basis. To reflect the randomness of the equipment degradation, a stochastic process model is usually used to describe the degradation trend. Because the initial states, the operating conditions and other conditions of different devices are different, the decline often has individual differences, and the individual differences must be taken into consideration when a random process model is established. However, there is currently no general method for dealing with individual differences. Existing methods generally assume that individual difference parameters obey a certain distribution and perform parameter estimation on this basis. This assumption has no corresponding theoretical basis and cannot achieve better practical effects.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention aims to provide a life prediction method for model individual difference parameter adaptive matching, which fully considers the individual difference of equipment degradation, thereby improving the accuracy of the residual life prediction of the equipment.
In order to achieve the purpose, the invention adopts the technical scheme that:
a life prediction method for model individual difference parameter adaptive matching comprises the following steps:
1) establishing a regression model:
wherein s iskRepresents tkThe state value observed at the moment, s (t) representing tkThe state value observed at any later moment t, mu (s (tau), tau and b) is a nonlinear decay rate function, and b in the function is an unknown constant; a is a random variable reflecting individual differences of equipment deterioration, sigmaBThe diffusion coefficient of the regression model is an unknown constant; b (tau) is standard Brownian motion, reflecting degenerated time-varying;
2) discretizing the regression model, and accordingly obtaining a difference sequence of state values obtained by two times of observation:
si,j=si,j-1+aiμ(si,j-1,tj-1,b)Δtj-1BdB(Δtj-1) (2)
wherein s isi,jRepresenting the ith sample of the existing N fading samples at time tjObserving the obtained state value; delta SiA difference sequence of state values obtained by observing the ith sample twice before and after; Δ tj-1=tj-tj-1Representing an observation time interval; kiRepresenting the time sequence number corresponding to the last observation of the ith sample;
3) for unknown parametersPerforming maximum likelihood estimation, wherein aiAs individual difference parameters for each sample, i ═ 1,2, …, N; the method comprises the following specific steps:
3.1) according to the discretization decay model of the step 2), for each sample, the difference sequence of the state values obtained by two times of observation is subjected to normal distributionWhereinFrom t for the ith sample0ToThe vector formed by multiplying the fading rate of each moment and the observation time interval;from t for the ith sample0Is timed toObserving a diagonal matrix formed by time intervals in time;
the log-likelihood function is thus listed as follows:
in the formulaA state value sequence formed by state values obtained by observing all samples;
3.2) for a respectivelyiAndthe partial derivative is calculated and is made 0, and the estimated values of the parameters are obtained as follows:
3.3) the above equation is back substituted into the log-likelihood function equation (4), and the log-likelihood function is transformed into:
3.4) using one-dimensional optimization method to obtain the corresponding parameter b when the maximum value of the above formula is taken as the estimated valueWill be provided withSolving for equations (5) and (6)Andup to this point, the parameters are unknownThe estimated values of (a) are all obtained;
4) selecting several distributions as alternative distributions, based on several estimated values of the parameter a obtained in step 3)Performing Kolmogorov-Smirnov goodness-of-fit test (K-S test), and selecting the alternative distribution corresponding to the maximum significance level value (p value) in the K-S test as the individual difference parameterMatched estimated distribution
5) Using particle filtering to parametrize according to the observation information of the sample to be predictedNumber a and state skThe real-time evaluation is carried out, and the specific steps are as follows:
5.1) from step 4)Distribution of (2)Extracting N frompParticles of individual parameterSetting an initial weight ofGenerating NpParticles in individual state
5.2) establishing the following state one-step transfer equation according to the discretization regression model obtained in the step 2):
wherein,andis composed ofThe ith state particle and parameter particle at time instant,the state value of the ith state particle after one-step transfer;
5.3) at tkObserving the time to obtain a state value skThen, the weight values are updated and normalized according to equations (9) to (10):
wherein,is composed ofThe weight of the ith particle at the moment,is tkThe ith particle normalized front weight value after the moment is updated,is tkThe weight value of the ith particle after the time updating is normalized;
5.4) resampling according to the weight of the particles obtained in the step 5.3), copying high-weight particles, and removing low-weight particles, namely the resampled particles are required to meet the requirement Wherein P (-) is a probability operator; thereby obtaining a new particle setAndthe new particle set has a weight of each particle ofComputing median of state particles from new set of particlesAnd median of parameter particlesLet it be tkState and parameter estimates at time;
6) the random simulation conditions for the fading process are set as follows:
6.1) initial conditions for random simulation of the given decay process:
initial time step-Deltal0
Initial value of declineWhere Ns represents the total number of simulated traces;
6.2) establishing a state one-step transfer equation of the decline process:
wherein s isn(li+tk) For the nth simulation track at li+tkThe state value of the time, i ∈ N+={1,2,3,...};Δli-1The time step length when the step i-1 is transferred is taken as the time step length; liThe time duration for the state transition step i,Vi-1to shift the noise in one step, uniform distribution of U (-v) is obeyedi-1,vi-1),
6.3) setting the time step adaptive adjustment logic as follows:
wherein M isiNumber of simulated tracks that meet or exceed the failure threshold at the i-th transition, MamThe maximum number of simulation traces allowed to reach or exceed the failure threshold in the state one-step transition;
7) starting random simulation and continuously carrying out state recursion according to the step 6), stopping simulation until all simulation tracks reach or exceed a decline threshold value, and then calculating the remaining life and probability density of each simulation track according to the formulas (13) to (14):
where λ is the failure threshold, LnThe number of transfer steps required for the nth track to reach the failure threshold,n is 1,2, N, which is the remaining life value of the batterys
8) Calculating to have the same remaining lifeIs taken as the remaining life of the mean of the probability density functions of the different trajectories ofProbability density function estimate of (1):
wherein,
the invention has the beneficial effects that: introducing individual difference parameters into the regression model, and adaptively matching the most consistent distribution according to the maximum likelihood estimation value of the parameters; the state and the parameters are evaluated by utilizing the particle filtering, and then the residual life is predicted by randomly simulating the decay process, so that the blindness of pre-designated individual difference parameter distribution is avoided, and the effective prediction of the residual life of the equipment is realized.
Drawings
FIG. 1 is a flow chart of the present invention.
FIG. 2 is fatigue crack data for a metal specimen.
FIG. 3 is a graph showing the predicted life of a sample, and (a) shows the predicted life of a sample 1 to which the method of the present invention is applied; FIG. (b) shows the predicted result when the method of the present invention is applied to sample 11.
Detailed Description
The invention is described in further detail below with reference to the figures and examples.
As shown in fig. 1, a life prediction method for model individual difference parameter adaptive matching includes the following steps:
1) establishing a regression model:
wherein s iskRepresents tkThe state value observed at the moment, s (t) representing tkThe state value observed at any later moment t, mu (s (tau), tau and b) is a nonlinear decay rate function, and b in the function is an unknown constant; a is a random variable reflecting individual differences of equipment deterioration, sigmaBThe diffusion coefficient of the regression model is an unknown constant; b (tau) is standard Brownian motion, reflecting degenerated time-varying;
2) discretizing the regression model, and accordingly obtaining a difference sequence of state values obtained by two times of observation:
si,j=si,j-1+aiμ(si,j-1,tj-1,b)Δtj-1BdB(Δtj-1) (2)
wherein s isi,jRepresenting the ith sample of the existing N fading samples at time tjObserving the obtained state value; delta SiA difference sequence of state values obtained by observing the ith sample twice before and after; Δ tj-1=tj-tj-1Representing an observation time interval; kiRepresenting the time sequence number corresponding to the last observation of the ith sample;
3) for unknown parametersPerforming maximum likelihood estimation, wherein aiAs individual difference parameters for each sample, i ═ 1,2, …, N; the method comprises the following specific steps:
3.1) according to the discretization decay model of the step 2), for each sample, the difference sequence of the state values obtained by two times of observation is subjected to normal distributionWhereinFrom t for the ith sample0ToThe vector formed by multiplying the fading rate of each moment and the observation time interval;from t for the ith sample0Is timed toObserving a diagonal matrix formed by time intervals in time;
the log-likelihood function is thus listed as follows:
in the formulaA state value sequence formed by state values obtained by observing all samples;
3.2) for a respectivelyiAndthe partial derivative is calculated and is made 0, and the estimated values of the parameters are obtained as follows:
3.3) the above equation is back substituted into the log-likelihood function equation (4), and the log-likelihood function is transformed into:
3.4) using one-dimensional optimization method to obtain the corresponding parameter b when the maximum value of the above formula is taken as the estimated valueWill be provided withSolving for equations (5) and (6)Andup to this point, the parameters are unknownThe estimated values of (a) are all obtained;
4) selecting several distributions as alternative distributions, based on several estimated values of the parameter a obtained in step 3)Performing Kolmogorov-Smirnov goodness-of-fit test (K-S test), and selecting the alternative distribution corresponding to the maximum significance level value (p value) in the K-S test as the individual difference parameterMatched estimated distribution
5) Using particle filtering to pair parameter a and state s according to observation information of sample to be predictedkThe real-time evaluation is carried out, and the specific steps are as follows:
5.1) from step 4)Distribution of (2)Extracting N frompParticles of individual parameterSetting an initial weight ofGenerating NpParticles in individual state
5.2) establishing the following state one-step transfer equation according to the discretization regression model obtained in the step 2):
wherein,andis composed ofThe ith state particle and parameter particle at time instant,the state value of the ith state particle after one-step transfer;
5.3) at tkObserving the time to obtain a state value skThen, the weight values are updated and normalized according to equations (9) to (10):
wherein,is composed ofThe weight of the ith particle at the moment,is tkThe ith particle normalized front weight value after the moment is updated,is tkThe weight value of the ith particle after the time updating is normalized;
5.4) resampling according to the weight of the particles obtained in the step 5.3), copying high-weight particles, and removing low-weight particles, namely the resampled particles are required to meet the requirement Wherein P (-) is a probability operator; thereby obtaining a new particle setAndthe new particle set has a weight of each particle ofComputing median of state particles from new set of particlesAnd median of parameter particlesLet it be tkState and parameter estimates at time;
6) the random simulation conditions for the fading process are set as follows:
6.1) initial conditions for random simulation of the given decay process:
initial time step-Deltal0
Initial value of declineWhere Ns represents the total number of simulated traces;
6.2) establishing a state one-step transfer equation of the decline process:
wherein s isn(li+tk) For the nth simulation track at li+tkThe state value of the time, i ∈ N+={1,2,3,...};Δli-1The time step length when the step i-1 is transferred is taken as the time step length; liThe time duration for the state transition step i,Vi-1to shift the noise in one step, uniform distribution of U (-v) is obeyedi-1,vi-1),
6.3) setting the time step adaptive adjustment logic as follows:
wherein M isiNumber of simulated tracks that meet or exceed the failure threshold at the i-th transition, MamThe maximum number of simulation traces allowed to reach or exceed the failure threshold in the state one-step transition;
7) starting random simulation and continuously carrying out state recursion according to the step 6), stopping simulation until all simulation tracks reach or exceed a decline threshold value, and then calculating the remaining life and probability density of each simulation track according to the formulas (13) to (14):
where λ is the failure threshold, LnThe number of transfer steps required for the nth track to reach the failure threshold,n is 1,2, N, which is the remaining life value of the batterys
8) Calculating to have the same remaining lifeIs taken as the remaining life of the mean of the probability density functions of the different trajectories ofProbability density function estimate of (1):
wherein,
to verify the effectiveness of the present invention, the metal specimen fatigue crack data provided in the literature statistical methods for reliability data (New York: John Wiley & Sons,1998, pp 639) was used for verification. The crack data is shown in fig. 2, where the data set contains crack data for a total of 21 metal samples, each sample being pretreated before the experiment with 0.9 inch long added crack as the initial defect; the crack length was recorded every 10000 times the number of stress cycles increased during the experiment. When the crack length reached or exceeded 1.6 inches, the specimen was considered to have failed and the test was terminated; further, when the number of revolutions reached 120000, the experiment was terminated regardless of whether the crack length reached 1.6 inches. After the experiment was completed, a total of 12 specimens out of the 21 specimens failed.
The decay process is modeled by selecting three random process models (I: polynomial model; II: exponential model; III: state transfer model), and the service life of 12 failure samples in the data set is predicted successively by using the method. The remaining 20 samples, except itself, are taken at each prediction as a training set to estimate the parameters b andand the distribution of the individual difference parameter a. On the basis, the state and parameter evaluation is carried out by using particle filtering, and the service life is predicted by random simulation of the fading process. After the prediction is finished, a prediction result graph is prepared by taking sample numbers 1 and 11 as examples, as shown in fig. 3.
As can be seen from the figure, as the predicted time approaches the final service life of the bearing, the predicted results of the three models gradually converge to the real service life. However, the predicted value of the remaining life of the sample 1 corresponding to fig. 3- (a) converges to the real life faster under the state transfer model, and the convergence rate is slower under the exponential model and the polynomial model; the sample 11 corresponding to fig. 3- (b) performs better under the exponential model and the polynomial model, and performs poorly under the state transfer model, that is, the prediction effect of none of the three models is completely better than that of the other two models.
The life prediction method of model individual difference parameter adaptive matching provided by the invention can predict the residual life of the metal material in failure modes such as fatigue and the like, and can also be used for the life prediction problem of other electromechanical equipment. It should be noted that the regression model used in the method of the present invention is a general formula, and when an implementer applies the method of the present invention to other products, the implementer can select a corresponding random process model according to the different regression trends of the object to be predicted, so that the method can adapt to the application requirements of different devices. In addition, the invention provides a concept of 'individual difference parameter adaptive matching + state and parameter effective evaluation + residual life random simulation', and the invention is subjected to replacement and modification of indexes, parameters or models and the like on the premise of not departing from the concept of the invention and is also considered as the protection scope of the invention.

Claims (1)

1. A life prediction method for model individual difference parameter adaptive matching is characterized by comprising the following steps:
1) establishing a regression model:
<mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>a</mi> <munderover> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mi>t</mi> </munderover> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>,</mo> <mi>&amp;tau;</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;tau;</mi> <mo>+</mo> <munderover> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mi>t</mi> </munderover> <msub> <mi>&amp;sigma;</mi> <mi>B</mi> </msub> <mi>d</mi> <mi>B</mi> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
wherein s iskRepresents tkThe state value observed at the moment, s (t) representing tkThe state value observed at any later moment t, mu (s (tau), tau and b) is a nonlinear decay rate function, and b in the function is an unknown constant; a is a random variable reflecting individual differences of equipment deterioration, sigmaBThe diffusion coefficient of the regression model is an unknown constant; b (tau) is standard Brownian motion, reflecting degenerated time-varying;
2) discretizing the regression model, and accordingly obtaining a difference sequence of state values obtained by two times of observation:
si,j=si,j-1+aiμ(si,j-1,tj-1,b)Δtj-1BdB(Δtj-1) (2)
<mrow> <msub> <mi>&amp;Delta;S</mi> <mi>i</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mo>,</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mo>,</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
wherein s isi,jRepresenting the ith sample of the existing N fading samples at time tjObserving the obtained state value; delta SiA difference sequence of state values obtained by observing the ith sample twice before and after; Δ tj-1=tj-tj-1Representing an observation time interval; kiRepresenting the time sequence number corresponding to the last observation of the ith sample;
3) for unknown parametersPerforming maximum likelihood estimation, wherein aiAs individual difference parameters for each sample, i ═ 1,2, …, N; the method comprises the following specific steps:
3.1) according to the discretization decay model of the step 2), for each sample, the difference sequence of the state values obtained by two times of observation is subjected to normal distributionWhereinFrom t for the ith sample0ToThe vector formed by multiplying the fading rate of each moment and the observation time interval;from t for the ith sample0Is timed toObserving a diagonal matrix formed by time intervals in time;
the log-likelihood function is thus listed as follows:
in the formulaA state value sequence formed by state values obtained by observing all samples;
3.2) for a respectivelyiAndthe partial derivative is calculated and is made 0, and the estimated values of the parameters are obtained as follows:
<mrow> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&amp;omega;</mi> <mi>i</mi> <mi>T</mi> </msubsup> <msubsup> <mi>&amp;Sigma;</mi> <mi>i</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&amp;Delta;S</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mi>&amp;omega;</mi> <mi>i</mi> <mi>T</mi> </msubsup> <msubsup> <mi>&amp;Sigma;</mi> <mi>i</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mi>N</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>B</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;S</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>&amp;Sigma;</mi> <mi>i</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;S</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msub> <mi>K</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
3.3) the above equation is back substituted into the log-likelihood function equation (4), and the log-likelihood function is transformed into:
3.4) using one-dimensional optimization method to obtain the corresponding parameter b when the maximum value of the above formula is taken as the estimated valueWill be provided withSolving for equations (5) and (6)Andup to this point, the parameters are unknownThe estimated values of (a) are all obtained;
4) selecting several distributions as alternative distributions, based on several estimated values of the parameter a obtained in step 3)Selecting by performing Kolmogorov-Smirnov goodness-of-fit test, i.e., K-S testAlternative distributions corresponding to the level of significance, i.e. when the p-value is maximal, in the K-S test as parameters of individual differencesMatched estimated distribution
5) Using particle filtering to pair parameter a and state s according to observation information of sample to be predictedkThe real-time evaluation is carried out, and the specific steps are as follows:
5.1) from step 4)Distribution of (2)Extracting N frompParticles of individual parameterSetting an initial weight ofGenerating NpParticles in individual state
5.2) establishing the following state one-step transfer equation according to the discretization regression model obtained in the step 2):
<mrow> <msubsup> <mover> <mi>s</mi> <mo>~</mo> </mover> <mi>k</mi> <mi>i</mi> </msubsup> <mo>=</mo> <msubsup> <mi>s</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <msubsup> <mi>s</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mover> <mi>b</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>B</mi> </msub> <mi>d</mi> <mi>B</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
wherein,andis tk-1The ith state particle and parameter particle at time instant,the state value of the ith state particle after one-step transfer;
5.3) at tkObserving the time to obtain a state value skThen, the weight values are updated and normalized according to equations (9) to (10):
<mrow> <msubsup> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>k</mi> <mi>i</mi> </msubsup> <mo>=</mo> <msubsup> <mi>w</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mfrac> <mn>1</mn> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <msubsup> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>B</mi> <mn>2</mn> </msubsup> <msub> <mi>t</mi> <mi>k</mi> </msub> </mrow> </msqrt> </mfrac> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>-</mo> <msubsup> <mover> <mi>s</mi> <mo>~</mo> </mover> <mi>k</mi> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>B</mi> <mn>2</mn> </msubsup> <msub> <mi>t</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>w</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>*</mo> </mrow> </msubsup> <mo>=</mo> <mfrac> <msubsup> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>k</mi> <mi>i</mi> </msubsup> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mi>s</mi> </mrow> </msubsup> <msubsup> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>k</mi> <mi>i</mi> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
wherein,is tk-1The weight of the ith particle at the moment,is tkThe ith particle normalized front weight value after the moment is updated,is tkThe weight value of the ith particle after the time updating is normalized;
5.4) resampling according to the weight of the particles obtained in the step 5.3), copying high-weight particles, and removing low-weight particles, namely the resampled particles are required to meet the requirement Wherein P (-) is a probability operator; thereby obtaining a new particle setAndthe new particle set has a weight of each particle ofComputing median of state particles from new set of particlesAnd median of parameter particlesLet it be tkState and parameter estimates at time;
6) the random simulation conditions for the fading process are set as follows:
6.1) initial conditions for random simulation of the given decay process:
initial time step-Deltal0
Decline initial value-Where Ns represents the total number of simulated traces;
6.2) establishing a state one-step transfer equation of the decline process:
<mrow> <msub> <mi>s</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mi>k</mi> </msub> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>(</mo> <mrow> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> <mo>,</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;l</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
wherein s isn(li+tk) For the nth simulation track at li+tkThe state value of the time, i ∈ N+={1,2,3,...};Δli-1The time step length when the step i-1 is transferred is taken as the time step length; liThe time duration for the state transition step i,Vi-1to shift the noise in one step, uniform distribution of U (-v) is obeyedi-1,vi-1),
6.3) setting the time step adaptive adjustment logic as follows:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;l</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>&amp;Delta;l</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;l</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mrow> <mi>a</mi> <mi>m</mi> </mrow> </msub> <msub> <mi>&amp;Delta;l</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;Delta;l</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&lt;</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>M</mi> <mrow> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;l</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>a</mi> <mi>m</mi> </mrow> </msub> <msub> <mi>&amp;Delta;l</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mi>i</mi> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>&gt;</mo> <msub> <mi>M</mi> <mrow> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
wherein M isiNumber of simulated tracks that meet or exceed the failure threshold at the i-th transition, MamThe maximum number of simulation traces allowed to reach or exceed the failure threshold in the state one-step transition;
7) starting random simulation and continuously carrying out state recursion according to the step 6), stopping simulation until all simulation tracks reach or exceed a decline threshold value, and then calculating the remaining life and probability density of each simulation track according to the formulas (13) to (14):
<mrow> <msub> <mi>l</mi> <msub> <mi>L</mi> <mi>n</mi> </msub> </msub> <mo>=</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>n</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&amp;Delta;l</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>p</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>=</mo> <msub> <mi>l</mi> <msub> <mi>L</mi> <mi>n</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>&amp;cong;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;lambda;</mi> <mo>-</mo> <msub> <mover> <mi>s</mi> <mo>&amp;OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mi>k</mi> </msub> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>n</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> <msub> <mi>&amp;Delta;l</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>l</mi> <msub> <mi>L</mi> <mi>n</mi> </msub> </msub> </msubsup> <msubsup> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>B</mi> <mn>2</mn> </msubsup> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mi>k</mi> </msub> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>(</mo> <msub> <mi>l</mi> <msub> <mi>L</mi> <mi>n</mi> </msub> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>l</mi> <msub> <mi>L</mi> <mi>n</mi> </msub> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>B</mi> <mn>2</mn> </msubsup> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mfrac> <msubsup> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>B</mi> <mn>2</mn> </msubsup> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>l</mi> <msub> <mi>L</mi> <mi>n</mi> </msub> </msub> </msubsup> <msubsup> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>B</mi> <mn>2</mn> </msubsup> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </msqrt> </mfrac> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>-</mo> <msub> <mover> <mi>s</mi> <mo>&amp;OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mi>k</mi> </msub> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>n</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>&amp;mu;</mi> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>,</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> <msub> <mi>&amp;Delta;l</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>l</mi> <msub> <mi>L</mi> <mi>n</mi> </msub> </msub> </msubsup> <msubsup> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>B</mi> <mn>2</mn> </msubsup> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
where λ is the failure threshold, LnThe number of transfer steps required for the nth track to reach the failure threshold,n is 1,2, N, which is the remaining life value of the batterys
8) Calculating to have the same remaining lifeIs taken as the remaining life of the mean of the probability density functions of the different trajectories ofProbability density function estimate of (1):
wherein,
CN201710784374.0A 2017-09-04 2017-09-04 A kind of life-span prediction method of model subjects difference parameter Adaptive matching Pending CN107679279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710784374.0A CN107679279A (en) 2017-09-04 2017-09-04 A kind of life-span prediction method of model subjects difference parameter Adaptive matching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710784374.0A CN107679279A (en) 2017-09-04 2017-09-04 A kind of life-span prediction method of model subjects difference parameter Adaptive matching

Publications (1)

Publication Number Publication Date
CN107679279A true CN107679279A (en) 2018-02-09

Family

ID=61135551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710784374.0A Pending CN107679279A (en) 2017-09-04 2017-09-04 A kind of life-span prediction method of model subjects difference parameter Adaptive matching

Country Status (1)

Country Link
CN (1) CN107679279A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459314A (en) * 2018-03-08 2018-08-28 北京理工大学 A kind of three-dimensional solid-state face battle array laser radar non-uniform correction method
CN109359781A (en) * 2018-11-20 2019-02-19 佛山科学技术学院 The prediction technique and device in longevity more than a kind of intelligent manufacturing system
CN109376401A (en) * 2018-09-29 2019-02-22 西安交通大学 A kind of adaptive multi-source information preferably with the mechanical method for predicting residual useful life that merges
CN109783877A (en) * 2018-12-19 2019-05-21 平安科技(深圳)有限公司 Time series models method for building up, device, computer equipment and storage medium
CN111160666A (en) * 2020-01-02 2020-05-15 西北工业大学 Health state and reliability assessment method for monitoring strong noise and non-periodic state
CN112420198A (en) * 2020-12-16 2021-02-26 北京航空航天大学 Method and system for predicting efficiency decline degree of sailor human body
CN113507601A (en) * 2021-04-22 2021-10-15 广东睿住智能科技有限公司 Pressure testing method and system of intelligent screen

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459314A (en) * 2018-03-08 2018-08-28 北京理工大学 A kind of three-dimensional solid-state face battle array laser radar non-uniform correction method
CN108459314B (en) * 2018-03-08 2020-05-19 北京理工大学 Three-dimensional solid-state area array laser radar non-uniform correction method
CN109376401A (en) * 2018-09-29 2019-02-22 西安交通大学 A kind of adaptive multi-source information preferably with the mechanical method for predicting residual useful life that merges
CN109359781A (en) * 2018-11-20 2019-02-19 佛山科学技术学院 The prediction technique and device in longevity more than a kind of intelligent manufacturing system
CN109783877A (en) * 2018-12-19 2019-05-21 平安科技(深圳)有限公司 Time series models method for building up, device, computer equipment and storage medium
CN109783877B (en) * 2018-12-19 2024-03-01 平安科技(深圳)有限公司 Time sequence model establishment method, device, computer equipment and storage medium
CN111160666A (en) * 2020-01-02 2020-05-15 西北工业大学 Health state and reliability assessment method for monitoring strong noise and non-periodic state
CN112420198A (en) * 2020-12-16 2021-02-26 北京航空航天大学 Method and system for predicting efficiency decline degree of sailor human body
CN112420198B (en) * 2020-12-16 2022-04-12 北京航空航天大学 Method and system for predicting efficiency decline degree of sailor human body
CN113507601A (en) * 2021-04-22 2021-10-15 广东睿住智能科技有限公司 Pressure testing method and system of intelligent screen
CN113507601B (en) * 2021-04-22 2024-03-29 广东睿住智能科技有限公司 Pressure testing method and system for intelligent screen

Similar Documents

Publication Publication Date Title
CN107679279A (en) A kind of life-span prediction method of model subjects difference parameter Adaptive matching
CN108037463B (en) Lithium ion battery life prediction method
CN107480440B (en) Residual life prediction method based on two-stage random degradation modeling
Gong et al. State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm
CN103730006B (en) A kind of combination forecasting method of Short-Term Traffic Flow
WO2016107246A1 (en) Wavelet noise reduction and relevance vector machine-based method for predicting remaining life of lithium battery
CN109345032B (en) Particle filter multi-crack-propagation prediction method based on dynamic crack number
CN110348615B (en) Cable line fault probability prediction method based on ant colony optimization support vector machine
CN107730127B (en) Relay storage degradation data prediction method based on output characteristic initial distribution
CN109189834A (en) Elevator Reliability Prediction Method based on unbiased grey fuzzy Markov chain model
CN104573881A (en) Adaptive prediction method of residual service life of service equipment modeled based on degradation data
CN107451392A (en) A kind of method for predicting residual useful life containing multiple dependent degeneration processes
CN112487694B (en) Complex equipment residual life prediction method based on multiple degradation indexes
CN112288147B (en) Method for predicting insulation state of generator stator by BP-Adaboost strong predictor
CN108761346A (en) A kind of vehicle lithium battery method for predicting residual useful life
CN112883550A (en) Degradation equipment residual life prediction method considering multiple uncertainties
CN111783242A (en) RVM-KF-based rolling bearing residual life prediction method and device
CN109918707B (en) Aero-engine residual life prediction method based on Levy process
CN116738862A (en) Boiler scaling fault prediction method, device, equipment and medium
Bidhan et al. Estimation of reliability parameters of software growth models using a variation of Particle Swarm Optimization
CN115183969A (en) Method and system for estimating BWBN model parameters
CN113884936A (en) Lithium ion battery health state prediction method based on ISSA coupling DELM
CN110738414B (en) Risk prediction method and device and computer readable storage medium
CN110261539B (en) Multi-crack-propagation prediction method based on exponential increment crack propagation coefficient
Chen et al. Bayesian analysis for lifetime delayed degradation process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180209