CN107677705B - 一种近水平油水两相流持水率测量方法 - Google Patents

一种近水平油水两相流持水率测量方法 Download PDF

Info

Publication number
CN107677705B
CN107677705B CN201710465817.XA CN201710465817A CN107677705B CN 107677705 B CN107677705 B CN 107677705B CN 201710465817 A CN201710465817 A CN 201710465817A CN 107677705 B CN107677705 B CN 107677705B
Authority
CN
China
Prior art keywords
water
pipeline
water layer
sensor
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710465817.XA
Other languages
English (en)
Other versions
CN107677705A (zh
Inventor
金宁德
张宏鑫
周倚宇
翟路生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710465817.XA priority Critical patent/CN107677705B/zh
Publication of CN107677705A publication Critical patent/CN107677705A/zh
Application granted granted Critical
Publication of CN107677705B publication Critical patent/CN107677705B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/048Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material

Abstract

本发明涉及一种近水平油水两相流持水率测量方法,所采用的测量装置包括测试管道、上游快关阀、下游快关阀和双平行线电导传感器阵列,两个快关阀分别设置在测试管道的两端,各个双平行线电导传感器分布式地插入在测试管道的不同截面上;将测量管道固定在实验管路内,当流体流动稳定后上下游快关阀迅速关闭,待测试管道内油水两相流流体静置分层后对位于油水分界面位置处的双平行线电导传感器进行信号采集及处理,得到对应于位置各个双平行线电导传感器位置处的水层高度hw,n,结合水层高度和传感器位置参数n,计算持水率。

Description

一种近水平油水两相流持水率测量方法
技术领域
本发明涉及油田动态监测领域水平井产液剖面测试中近水平油水两相流持水率测量方法。
背景技术
水平井作为一种非常高效的油气开采手段,能够较大幅度增大油气田的单井产能和最终采收率,水平井石油开采技术被称为第二次技术革命。在水平井钻井过程中,钻井轨迹控制会存在一定误差,从而使得井筒轴向与水平方向存在一个小的夹角(一般小于5°),形成近水平井筒。井内流速较低时,由于油水相间重力分离作用加剧,井筒内流体流动呈现显著的层状流分布状态,增大了水平井产液剖面测试技术难度。持水率是近水平井内油水两相流关键流动参数之一,准确获取持水率参数对近水平油水两相流流量测量模型建立及有效进行持水率仪器测量性能评价具有重要应用价值。
快关阀法是实验室内获取两相流分相持率的常规手段,该方法通过上下游两阀门同时快速关闭后将阀门间流体引流至管段外测量其分相体积而实现。但是,在水平和近水平油水两相流流动环境下快关阀之间流体引流至管外时管壁残存流体较多会引起持水率测量误差,同时,在管段外直接测量水层或者油层高度时,由于光线折射作用引起的水层高度读数误差亦会造成持水率测量误差。另外,由于油水两相间密度差异较小,采用其它如射线法或差压法测量油水两相流持水率精度偏低。
发明内容
本发明提出一种近水平油水两相流持水率测量方法。通过双平行线电导阵列传感器电压信号分析,实现近水平油水两相流持水率精确测量。
一种近水平油水两相流持水率测量方法,所采用的测量装置包括测试管道、上游快关阀、下游快关阀和双平行线电导传感器阵列,两个快关阀分别设置在测试管道的两端,各个双平行线电导传感器分布式地插入在测试管道的不同截面上;根据测试管道的长度L、内径Φ以及管路倾斜角θ,需对双平行线电导传感器的数量N、电极间距d、位置Xn以及双平行线电导传感器间距Δx进行优化设;将测量管道固定在实验管路内,当流体流动稳定后上下游快关阀迅速关闭,待测试管道内油水两相流流体静置分层后对位于油水分界面位置处的双平行线电导传感器进行信号采集及处理,得到对应于位置各个双平行线电导传感器位置处的水层高度hw,n,结合水层高度和传感器位置参数n,计算持水率方法如下:
(1)将双平行线电导传感器在管道底端面至末端面之间所处位置依次编号为1,2,..., N,在实验管路中分别充满水和油,测量每对双平行线电导传感器的全水输出电压分别为 Vw,1、Vw,2…Vw,N,测量每对双平行线电导传感器的全油输出电压分别为Vo,1、Vo,2…Vo,N
(2)实验测量的每对双平行线电导传感器油水两相流时输出电压分别为V1、V2…VN
(3)选取水层高度介于0~Φ之间的每组双平行线电导传感器测量数据进行分析,Vw为管道内水层总体积,R=Φ/2为管道截面半径,每组双平行线电导传感器测量的层高度为hw,n
1)若其中包含第1对传感器,且该传感器测量得到的水层高度hw,1满足:
Figure BDA0001325962690000021
则采用下式计算管内的水层体积:
Figure 2
式中,B=hw,n+(Xn-x)·tanθ为截面水层高度计算中间参数,B|x=0=hw,n+Xntanθ为管道端面处水层高度;Xn=n·Δx为该组双平行线电导传感器与管路底端截面之间的距离;
2)若其中包含第N对传感器,且该传感器测量得到的水层高度hw,N满足:
Figure BDA0001325962690000023
则采用下式计算管内的水层体积:
Figure BDA0001325962690000024
其中,B=hw,n+(Xn-x)·tanθ为截面水层高度计算中间参数,B|x=L=hw,n-(L-Xn)tanθ为管路端面处水层高度;Xn=n·Δx为该组传感器与管路最低端截面之间的距离;
3)若第1对、第N对传感器测量得到的水层高度hw,1和hw,N均不在上述范围,或者选取处理的传感器中不包含这两对传感器,则下式计算管内的水层体积:
Figure BDA0001325962690000031
其中,Xn=n·Δx为该组传感器与管路最低端截面之间的距离;hw,n为该组双平行线电导传感器测量的水层高度;
4)重复上述过程,计算得到所有满足要求的传感器测量得到的水相体积,取平均值作为水相体积的测量值。
(4)根据测得的管内水层体积,通过下式可以计算得到持水率测量值:
Figure BDA0001325962690000032
本发明由于采取以上技术方案,其具有以下优点:
(1)本发明通过双平行线电导传感器阵列分布位置优化计算方法,可有效地减小持水率测量盲区;采用的双平行线电导传感器对水层高度敏感,可精确地测量所处位置处的水层高度,保证持水率测量精确度。
(2)本发明可对近水平油水两相流持水率进行精确测量,对有效进行持水率仪器测量性能评价及近水平油水两相流流量测量模型建立具有重要应用价值。
附图说明
图1是近水平油水两相流持水率测量装置示意图。
图2是本测量装置实际几何尺寸示意图。
图3是公式(5)适用的油水界面示意图。
图4是公式(7)适用的油水界面示意图。
图5是本装置测量持水率下限时的油水界面示意图。
图6是本装置测量持水率上限时的油水界面示意图。
图7是本发明装置采用双平行线电导传感器阵列测量持水率与实际配比持水率对比关系图。
具体实施方式
考虑到油水相间导电性差异明显,而双平行线电导传感器对水膜厚度变化敏感,所以,本发明将快关阀法与双平行线电导法结合解决近水平油水两相流持水率测量难题。
近水平井油水两相流分层界面与井筒轴向呈一定夹角,双平行线电导传感器测量得到的水层高度值与传感器所处位置密切相关,故需要对双平行线电导传感器阵列分布位置进行优化设计。在此基础上,通过双平行线电导传感器信号分析,最终可实现对近水平油水两相流持水率精确测量。
本发明涉及的近水平油水两相流持水率测量装置及获取持水率方法包括以下步骤:
1.根据实验管路的长度L、内径Φ以及管路倾斜角θ,按照双平行线电导传感器阵列分布位置优化计算方法对所需双平行线电导传感器的数量N和位置Xn以及分布间距Δx进行优化设计。
2.设计近水平油水两相流持水率测量传感器,即双平行线电导传感器阵列(传感器1~传感器13)。
3.将传感器安装在实验管路内,当流体流动稳定后上下游快关阀迅速关闭;待管段内油水两相流流体静置分层后再对位于油水分界面位置处的双平行线电导传感器进行信号采集,并记录相对应的传感器位置序号。
4.将采集得到的传感器信号进行处理,得到对应于该传感器位置处的水层高度hw,n,结合水层高度和传感器位置参数n等,计算得到持水率。
下面结合附图说明该装置测量近水平油水两相流持水率具体实施过程:
(1)依据设定的实验管路长度L、管道直径Φ及管路倾斜角θ,它们之间存在如下几何关系:
Figure BDA0001325962690000041
Figure BDA0001325962690000042
由以上两个公式,可计算确定出每组双平行线电导传感器之间的距离Δx以及传感器数量N,其中,N值为非零整数,若计算中N的数值不为整数则需对管长L进行微调。
每对双平行线电导传感器的几何结构如图1所示。本发明中,例如设定双平行线电导传感器电极直径
Figure BDA0001325962690000044
电极间距d=5mm,持水率测试管道长L=1050mm,管子内径Φ=20mm,持水率测试管道倾斜角θ=5°。由公式(1)(2)计算得到的每对双平行线电导传感器之间的距离Δx=75mm,双平行线电导传感器的数目N=13。图2给出了近水平油水两相流持水率测量装置的尺寸示意图。
(2)将双平行线电导传感器在管道底端面至末端面之间所处位置依次编号为1,2,...,N。在管路中分别充满水和油,测量每对传感器的全水输出电压分别为Vw,1、Vw,2…Vw,N,测量每对传感器的全油输出电压分别为Vo,1、Vo,2…Vo,N。实验过程中测量到的每对传感器油水两相流时输出电压分别为V1、V2…VN,则可以得到近水平油水两相流时测试管道内双平行线电导传感器所在位置处的水层高度hw,n测量值:
Figure BDA0001325962690000043
其中,Vn代表第n对传感器所在位置处的油水两相流时输出电压,Vw,n和Vo,n分别代表该组传感器的全水输出电压和全油输出电压,n为传感器位置参数(取值范围为1到N)。
(3)选取hw,n介于0~Φ之间的传感器数据进行分析:
1)若其中包含第1对传感器,且由该对传感器测量得到的水层高度hw,1满足:
Figure BDA0001325962690000051
即油水分界线位于如图3所示位置以下,则需采用(5)式计算管内的水层体积:
Figure BDA0001325962690000052
其中,Vw为管道内水相总体积;R=Φ/2为管道截面半径;B=hw,n+(Xn-x)·tanθ为截面水层高度计算中间参数,B|x=0=hw,n+Xntanθ为管路端面处水层高度;Xn=n·Δx为该组传感器与管路最低端截面之间的距离。
2)若其中包含第N对传感器,且该传感器测量到的水层高度hw,N满足:
Figure BDA0001325962690000053
即油水分界线位于如图4所示位置以上,则需采用(7)式计算管内的水层体积:
Figure BDA0001325962690000054
式中,B=hw,n+(Xn-x)·tanθ为截面水层高度计算中间参数,B|x=L=hw,n-(L-Xn)tanθ为管路端面处水层高度。
3)若第1对及第N对传感器测量得到的水层高度hw,1和hw,N均不在上述范围,则采用(8)式计算管内的水层体积:
Figure BDA0001325962690000061
4)重复上述过程,计算得到所有满足要求的传感器测量得到的水相体积Vw,取平均值作为水相体积的测量值。
(4)根据测得的管内水相体积Vw,通过(9)式可以计算得到持水率测量值:
Figure BDA0001325962690000062
(5)若各组传感器的测量值均为0或者均为Φ,则超出本发明测量装置的测量范围。可将hw,1=0代入(5)式得到本装置测量下限,将hw,n=0代入(7)式得到本装置测量上限。经计算,在本设计实验管路几何条件下,持水率测量范围为1.02%至98.98%,图5和图6给出了测量盲区示意图。分析可知,管路长径比L/Φ和倾斜角θ越大,可测持水率范围越大。
实验验证与结果:
利用本发明设计的近水平油水两相流分相持率测量装置,可以开展近水平油水两相流持水率测量静态标定实验。
(1)将实验管道中充满水,使用量筒测量管内水相的总体积;然后,使管道分别内充满水和油,分别获得全水和全油时每对传感器的测量值。
(2)用量筒分别量取占管体积10%的水相和90%的油相,使管内持水率为10%到90%。
(3)获得此种实验工况下每对传感器的输出电压值,按照公式计算出对应传感器测量的持水率,对所有在测量范围内的传感器测量值取平均得到该工况下的持水率测量值。使持水率从10%逐渐增加至90%,分别获得每组工况的持水率测量值,绘制持水率测量值与真实值之间的变化关系,如图7所示。
(4)可以看出,持水率测量值与实际值之间有较好的线性关系,其拟合曲线满足:
Figure BDA0001325962690000063
其中,
Figure BDA0001325962690000064
Figure BDA0001325962690000065
分别表示真实持水率和传感器测量持水率。采用本装置测量的持水率与真实持水率具有良好的一致性,验证了本发明设计的近水平油水两相流持水率测量方法可行性。

Claims (1)

1.一种近水平油水两相流持水率测量方法,所采用的测量装置包括测试管道、上游快关阀、下游快关阀和双平行线电导传感器阵列,两个快关阀分别设置在测试管道的两端,各个双平行线电导传感器分布式地插入在测试管道的不同截面上;根据测试管道的长度L、内径Φ以及管路倾斜角θ,需对双平行线电导传感器的数量N、电极间距d、位置Xi以及相邻双平行线电导传感器间距Δx进行优化设计,Xi为第i个双平行线电导传感器的位置,i的取值为1~N;将测试管道固定在实验管路内,当流体流动稳定后上下游快关阀迅速关闭,待测试管道内油水两相流流体静置分层后对各个双平行线电导传感器进行信号采集及处理,得到油水分界面位置处的双平行线电导传感器的水层高度hw,n,结合水层高度hw,n和传感器位置Xn计算持水率,计算持水率方法如下:
第一步,将双平行线电导传感器在管道底端面至末端面之间所处位置依次编号为1,2,...,N,在实验管路中分别充满水和油,测量每个双平行线电导传感器的全水输出电压分别为Vw,1、Vw,2…Vw,N,测量每个双平行线电导传感器的全油输出电压分别为Vo,1、Vo,2…Vo,N
第二步,实验测量的每个双平行线电导传感器油水两相流时输出电压分别为V1、V2…VN,利用以下公式计算得到近水平油水两相流时测试管道内双平行线电导传感器所在位置处的水层高度hw,i,其中hw,i为第i个双平行线电导传感器测量的水层高度:
Figure FDA0002642281330000011
其中,Vi为第i个双平行线电导传感器所在位置处的油水两相流时输出电压,Vw,i和Vo,i分别为第i个双平行线电导传感器的全水输出电压和全油输出电压;
第三步,选取水层高度介于0~Φ之间的双平行线电导传感器测量数据进行分析,Vw为管道内水层总体积,R=Φ/2为管道截面半径:
1)若其中包含第1个双平行线电导传感器,且该传感器测量得到的水层高度hw,1满足:
Figure FDA0002642281330000012
则采用下式计算管内的水层体积:
Figure FDA0002642281330000021
式中,B=hw,n+(Xn-x)·tanθ为截面水层高度计算中间参数,B|x=0=hw,n+Xn tanθ为管道底端面处水层高度;Xn=n·Δx;
2)若其中包含第N个双平行线电导传感器,且该传感器测量得到的水层高度hw,N满足:
Figure FDA0002642281330000022
则采用下式计算管内的水层体积:
Figure FDA0002642281330000023
其中,B=hw,n+(Xn-x)·tanθ为截面水层高度计算中间参数,B|x=L=hw,n-(L-Xn)tanθ为管道末端面处水层高度;Xn=n·Δx;
3)若第1个、第N个传感器测量得到的水层高度hw,1和hw,N均不在上述范围,或者选取处理的传感器中不包含这两个传感器,则下式计算管内的水层体积:
Figure FDA0002642281330000024
其中,Xn=n·Δx;
4)重复上述过程,计算得到所有满足要求的传感器测量得到的水层体积,取平均值作为水层体积的测量值;
第四步,根据测得的管内水层体积,通过下式可以计算得到持水率测量值:
Figure FDA0002642281330000031
CN201710465817.XA 2017-06-19 2017-06-19 一种近水平油水两相流持水率测量方法 Active CN107677705B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710465817.XA CN107677705B (zh) 2017-06-19 2017-06-19 一种近水平油水两相流持水率测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710465817.XA CN107677705B (zh) 2017-06-19 2017-06-19 一种近水平油水两相流持水率测量方法

Publications (2)

Publication Number Publication Date
CN107677705A CN107677705A (zh) 2018-02-09
CN107677705B true CN107677705B (zh) 2020-10-23

Family

ID=61133554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710465817.XA Active CN107677705B (zh) 2017-06-19 2017-06-19 一种近水平油水两相流持水率测量方法

Country Status (1)

Country Link
CN (1) CN107677705B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828029B (zh) * 2018-08-14 2020-10-23 天津大学 基于插入式电容传感器的含水率测量装置
CN109839332B (zh) * 2018-12-17 2021-04-13 天津大学 一种基于动态接触角的水平油水两相流压降预测方法
CN112985503B (zh) * 2021-02-20 2022-04-05 山东万盛电气有限公司 一种油水两相流持率和流速在线测量装置及测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201280932Y (zh) * 2008-10-22 2009-07-29 燕山大学 五电极激励屏蔽持水率测量电导传感器
CN203374266U (zh) * 2013-05-28 2014-01-01 燕山大学 纵向多极全井眼持水率测量电导传感器
CN103760612A (zh) * 2014-01-17 2014-04-30 华北电力大学(保定) 一种油田井下持水率可视化测量方法
CN105275450A (zh) * 2015-11-19 2016-01-27 天津大学 油气水三相流流动参数声电传感器组合测量方法
CN105574272A (zh) * 2015-12-17 2016-05-11 北京航空航天大学 一种基于双环电导探针阵列的水平井持水率测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201280932Y (zh) * 2008-10-22 2009-07-29 燕山大学 五电极激励屏蔽持水率测量电导传感器
CN203374266U (zh) * 2013-05-28 2014-01-01 燕山大学 纵向多极全井眼持水率测量电导传感器
CN103760612A (zh) * 2014-01-17 2014-04-30 华北电力大学(保定) 一种油田井下持水率可视化测量方法
CN105275450A (zh) * 2015-11-19 2016-01-27 天津大学 油气水三相流流动参数声电传感器组合测量方法
CN105574272A (zh) * 2015-12-17 2016-05-11 北京航空航天大学 一种基于双环电导探针阵列的水平井持水率测量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Experimental flow pattern map, slippage and time–frequency representation of oil–water two-phase flow in horizontal small diameter pipes;Lu-Sheng Zhai et al.;《International Journal of Multiphase Flow》;20150730;第76卷;第183-184页,图24 *
The development of a conductance method for measuring liquid holdup in horizontal oil–water two-phase flows;Lusheng Zhai et al.;《Measurement Science and Technology》;20120117;第23卷;第1-15页 *
测量水平油水层状流相含率的平行线电容传感器;黄旭等;《测井技术》;20120430;第36卷(第2期);第188-191页 *

Also Published As

Publication number Publication date
CN107677705A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN107677705B (zh) 一种近水平油水两相流持水率测量方法
CN103776876B (zh) 一种分布式电导传感器的结构参数优化方法
US20080000306A1 (en) Method and apparatus for measuring multi-streams and multi-phase flow
CN103760197B (zh) 一种基于分布式电导传感器的两相流测量系统
CN111997586B (zh) 一种利用阵列流量测井获取水平井持水率的方法
CN110145301B (zh) 一种随钻密度成像测井仪环境校正方法
CN104897737A (zh) 八电极旋转电场式电导传感器持气率测量方法
CN105486358A (zh) 基于文丘里管双差压的气液两相流参数测量方法
EP3535551A1 (en) Improvements in or relating to the monitoring of fluid flow
CN107218981A (zh) 一种基于超声波旁流原理的气体流量测量装置及方法
CN112362121B (zh) 一种基于热学法的水平井油水两相流流量的测量方法
Chakraborty et al. Model based reconstruction of an axisymmetric moving void using multiple conductivity probes
CN110987097B (zh) 一种利用压力波动测量气液多相流流量的方法
CN112378812A (zh) 一种吸附型页岩气解吸速率测定实验装置及方法
CN204594519U (zh) 流体微流量自动计量装置
RU2378638C2 (ru) Плотномер-расходомер жидких сред
Tan et al. Determining the boundary of inclusions with known conductivities using a Levenberg–Marquardt algorithm by electrical resistance tomography
CN102279207A (zh) 一种金属管筒腐蚀检测方法
CN112985503B (zh) 一种油水两相流持率和流速在线测量装置及测量方法
CN115201226A (zh) 一种油水两相流双参数测量方法
US20090024327A1 (en) System and method for measuring flow in a pipeline
CN115307693A (zh) 一种多量程可调节式mems差压流量计
CN109765334B (zh) 一种颗粒堆积床内气液两相流含气率测量装置及方法
CN103063371A (zh) 一种密集管束焊缝检测装置及检测方法
CN107449802A (zh) 插入式三扇区弧形对壁电导传感器含水率测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant