CN107656250A - A kind of Intelligent radar sea target detection system and method based on artificial bee colony algorithm - Google Patents

A kind of Intelligent radar sea target detection system and method based on artificial bee colony algorithm Download PDF

Info

Publication number
CN107656250A
CN107656250A CN201711116260.5A CN201711116260A CN107656250A CN 107656250 A CN107656250 A CN 107656250A CN 201711116260 A CN201711116260 A CN 201711116260A CN 107656250 A CN107656250 A CN 107656250A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711116260.5A
Other languages
Chinese (zh)
Inventor
刘兴高
卢伟胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201711116260.5A priority Critical patent/CN107656250A/en
Publication of CN107656250A publication Critical patent/CN107656250A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于人工蜂群算法的智能雷达海上目标检测系统及方法,系统由雷达、数据库和上位机依次相连组成,雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库,所述的上位机包括数据预处理模块、鲁棒预报模型建模模块、智能寻优模块、目标检测模块、模型更新模块以及结果显示模块:本发明针对海上目标检测的复杂特性,对雷达杂波数据进行重构,并对目标数据进行检测,引入人工蜂群算法,从而提供一种实现在线检测、智能性高的雷达海上目标检测系统及方法。

The invention discloses an intelligent radar sea target detection system and method based on an artificial bee colony algorithm. The system is composed of a radar, a database, and a host computer connected in sequence. The radar irradiates the detected sea area and stores the radar sea clutter data in the The database, the host computer includes a data preprocessing module, a robust forecast model modeling module, an intelligent optimization module, a target detection module, a model update module and a result display module: the present invention aims at the complex characteristics of maritime target detection , reconstruct the radar clutter data, detect the target data, and introduce the artificial bee colony algorithm, so as to provide a radar sea target detection system and method with online detection and high intelligence.

Description

一种基于人工蜂群算法的智能雷达海上目标检测系统及方法An intelligent radar maritime target detection system and method based on artificial bee colony algorithm

技术领域technical field

本发明涉及雷达数据处理领域,特别地,涉及一种基于人工蜂群算法的智能雷达海上目标检测系统及方法。The invention relates to the field of radar data processing, in particular to an intelligent radar sea target detection system and method based on an artificial bee colony algorithm.

背景技术Background technique

海杂波,即来自于海面的雷达后向散射回波。近几十年来,随着对海杂波认识的深入,德国、挪威等国家相继尝试利用雷达观测海杂波获取雷达海浪图像来反演海浪信息,以获得关于海洋状态的实时信息,如海浪的波高、方向和周期等,从而进一步对海上微小目标进行检测,这对海上活动具有十分重要的意义。Sea clutter is radar backscatter echoes from the sea surface. In recent decades, with the in-depth understanding of sea clutter, Germany, Norway and other countries have successively tried to use radar to observe sea clutter to obtain radar wave images to invert wave information, so as to obtain real-time information about the state of the ocean, such as the Wave height, direction and period, etc., so as to further detect small targets at sea, which is of great significance to maritime activities.

海上目标检测技术具有重要的地位,提供准确的目标判决是对海雷达工作的重要任务之一。雷达自动检测系统依据判决准则在给定的检测阈值下做出判决,而强海杂波往往成为微弱目标信号的主要干扰。如何处理海杂波将直接影响到雷达在海洋环境下的检测能力:1)识别导航浮标、小片的冰,漂浮在海面的油污,这些可能会对导航带来潜在的危机;3)监测非法捕鱼是环境监测的一项重要的任务。Maritime target detection technology plays an important role, and providing accurate target judgment is one of the important tasks of marine radar. The radar automatic detection system makes a judgment under a given detection threshold according to the judgment criterion, and the strong sea clutter often becomes the main interference of the weak target signal. How to deal with sea clutter will directly affect the detection ability of radar in the marine environment: 1) Identify navigation buoys, small pieces of ice, and oil pollution floating on the sea surface, which may bring potential crises to navigation; 3) Monitor illegal fishing Fish is an important task for environmental monitoring.

在传统的目标检测时,海杂波被认为是干扰导航的一种噪声被去掉。然而,在雷达对海观测目标时,微弱的运动目标回波常常湮没在海杂波中,信杂比较低,雷达不易检测到目标,同时海杂波的大量尖峰还会造成严重虚警,对雷达的检测性能产生较大影响。对于各种对海警戒和预警雷达而言,研究的主要目标是提高海杂波背景下目标的检测能力。因此,不仅具有重要的理论意义和实际意义,而且也是国内外海上目标检测的难点和热点。In traditional target detection, sea clutter is considered to be a noise that interferes with navigation and is removed. However, when the radar observes the target on the sea, the weak moving target echo is often buried in the sea clutter, and the signal clutter ratio is low, so it is difficult for the radar to detect the target. The detection performance of the radar has a great influence. For various maritime warning and early warning radars, the main goal of the research is to improve the detection ability of targets in the background of sea clutter. Therefore, it not only has important theoretical and practical significance, but also is a difficult point and a hot spot in the detection of maritime targets at home and abroad.

发明内容Contents of the invention

为了克服已有雷达海上目标检测方法无法实现在线检测、智能性较差的不足,本发明提供一种实现在线检测、智能性强的基于人工蜂群算法的智能雷达海上目标检测系统及方法。In order to overcome the shortcomings of existing radar sea target detection methods that cannot realize online detection and poor intelligence, the present invention provides an intelligent radar sea target detection system and method based on artificial bee colony algorithm that realizes online detection and has strong intelligence.

本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:

一种基于人工蜂群算法的智能雷达海上目标检测系统,包括雷达、数据库以及上位机,雷达、数据库和上位机依次相连,所述雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库,所述的上位机包括:An intelligent radar sea target detection system based on the artificial bee colony algorithm, including a radar, a database and a host computer, the radar, the database and the host computer are connected in sequence, the radar illuminates the detected sea area, and stores the radar sea clutter data To the database, the host computer includes:

数据预处理模块,用以进行雷达海杂波数据预处理,采用如下过程完成:The data preprocessing module is used to preprocess the radar sea clutter data, which is completed by the following process:

(1)雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库;(1) The radar irradiates the detected sea area, and stores the radar sea clutter data into the database;

(2)从数据库中采集N个雷达海杂波回波信号幅值xi作为训练样本,i=1,...,N;(2) Collect N radar sea clutter echo signal amplitudes x i from the database as training samples, i=1,...,N;

(3)对训练样本进行归一化处理,得到归一化幅值 (3) Normalize the training samples to obtain the normalized amplitude

其中,minx表示训练样本中的最小值,maxx表示训练样本中的最大值;Among them, minx represents the minimum value in the training sample, and maxx represents the maximum value in the training sample;

(4)将归一化后的训练样本重构,分别得到输入矩阵X和对应的输出矩阵Y:(4) Reconstruct the normalized training samples to obtain the input matrix X and the corresponding output matrix Y respectively:

其中,D表示重构维数,D为自然数,且D<N,D的取值范围为50-70;Among them, D represents the reconstruction dimension, D is a natural number, and D<N, and the value range of D is 50-70;

所述鲁棒预报模型建模模块用以建立预报模型,采用如下过程完成:The robust forecast model modeling module is used to establish a forecast model, which is completed by the following process:

将数据预处理模块得到的X、Y代入如下线性方程:Substitute the X and Y obtained by the data preprocessing module into the following linear equation:

其中 in

权重因子vi由下式计算:The weight factor v i is calculated by the following formula:

其中是误差变量ξi标准差的估计,c1,c2为常量;in is the estimate of the standard deviation of the error variable ξ i , c 1 and c 2 are constants;

求解得待估计函数f(x):Solve the estimated function f(x):

其中,M是支持向量的数目,1v=[1,...,1]T,上标T表示矩阵的转置,是拉格朗日乘子,b*是偏置量,K=exp(-||xi-xj||/θ2),其中i=1,…,M,j=1,…,M,和exp(-||x-xi||/θ2)均为支持向量机的核函数,xj为第j个雷达海杂波回波信号幅值,θ是核参数,x表示输入变量,γ是惩罚系数;Among them, M is the number of support vectors, 1 v =[1,...,1] T , The superscript T denotes the transpose of the matrix, is the Lagrangian multiplier, b * is the bias, K=exp(-||x i -x j ||/θ 2 ), where i=1,...,M, j=1,...,M , and exp(-||xx i ||/θ 2 ) are the kernel functions of the support vector machine, x j is the amplitude of the jth radar sea clutter echo signal, θ is the kernel parameter, x is the input variable, γ is the penalty coefficient;

智能寻优模块,采用人工蜂群算法对鲁棒预报模型的核参数θ和惩罚系数γ进行优化,采用如下过程完成:The intelligent optimization module uses the artificial bee colony algorithm to optimize the kernel parameters θ and penalty coefficient γ of the robust forecasting model, and completes it through the following process:

步骤1:初始化人工蜂群算法的参数,设蜜源数P,最大迭代数itermax,初始搜索空间的最小值和最大值Ld和Ud;蜜源的位置表示问题的可行解,由于模型有两个参数需要优化,所以位置pi的维度为2维,按下式随机生成蜜源的位置pi=(pi1,pi2),置初始迭代次数iter=0;Step 1: Initialize the parameters of the artificial bee colony algorithm, set the number of honey sources P, the maximum iteration number iter max , the minimum and maximum values of the initial search space L d and U d ; the position of the honey source represents the feasible solution of the problem, since the model has two Each parameter needs to be optimized, so the dimension of the position p i is 2 dimensions, the position p i of the nectar source is randomly generated according to the following formula = (p i1 , p i2 ), and the initial iteration number iter = 0;

pij=Ld+rand()*(Ud-Ld)(i=1,2,...,P,j=1,2)p ij =L d +rand()*(U d -L d )(i=1,2,...,P,j=1,2)

步骤2:为蜜源pi分配一只引领蜂,按下式进行搜索,产生新蜜源ViStep 2: assign a leading bee to the nectar source p i , search according to the formula, and generate a new nectar source V i ;

步骤3:计算Vi的适应度值,根据贪婪选择的方法确定保留的蜜源;Step 3: Calculate the fitness value of V i , and determine the retained honey source according to the method of greedy selection;

步骤4:计算引领蜂找到的蜜源被更随的概率;Step 4: Calculate the probability that the nectar source that leads the bees to find is replaced;

步骤5:跟随蜂采用与引领蜂相同的方式进行搜索,根据贪婪选择的方法确定保留的蜜源;Step 5: follow the bees to search in the same way as the lead bees, and determine the nectar source to keep according to the method of greedy selection;

步骤6:判断蜜源Vi是否满足被放弃的条件,如满足,对应的引领蜂角色变为侦察蜂,否则直接转到步骤8;Step 6: Determine whether the nectar source V i satisfies the condition of being abandoned, if so, the corresponding role of the leading bee becomes a scout bee, otherwise go directly to step 8;

步骤7:侦察蜂随机产生新蜜源;Step 7: Scout bees randomly generate new honey sources;

步骤8:iter=iter+1,判断是否已经达到最大迭代次数,若满足则输出最优参数,否则转到步骤2。Step 8: iter=iter+1, judge whether the maximum number of iterations has been reached, if so, output the optimal parameters, otherwise go to step 2.

其中,蜜源数为100,初始搜索空间的最小值和最大值0和100,最大迭代次数100。Among them, the number of nectar sources is 100, the minimum and maximum values of the initial search space are 0 and 100, and the maximum number of iterations is 100.

目标检测模块,用以进行目标检测,采用如下过程完成:The target detection module is used for target detection, which is completed by the following process:

1)在采样时刻t采集D个海杂波回波信号幅值得到TX=[xt-D+1,…,xt],xt-D+1表示第t-D+1采样时刻的海杂波回波信号幅值,xt表示第t采样时刻的海杂波回波信号幅值;1) Collect D sea clutter echo signal amplitudes at sampling time t to obtain TX=[x t-D+1 ,...,x t ], where x t-D+1 represents the Sea clutter echo signal amplitude, x t represents the sea clutter echo signal amplitude at the tth sampling moment;

2)进行归一化处理;2) Carry out normalization processing;

3)代入鲁棒预报模型建模模块得到的待估计函数f(x)计算得到采样时刻(t+1)的海杂波预报值。3) Substituting the estimated function f(x) obtained by the modeling module of the robust prediction model to calculate the sea clutter forecast value at the sampling time (t+1).

4)计算海杂波预报值与雷达回波实测值的差值e,计算控制限Qα4) Calculate the difference e between the predicted value of sea clutter and the measured value of radar echo, and calculate the control limit Q α :

其中,α是置信度,θ123,h0是中间变量,λj i表示协方差矩阵的第j个特征值的i次方,k是样本维数,Cα是正态分布置信度为α的统计;Among them, α is the confidence level, θ 1 , θ 2 , θ 3 , and h 0 are intermediate variables, λ j i represents the i-th power of the jth eigenvalue of the covariance matrix, k is the sample dimension, and C α is the positive Statistical distribution reliability is α;

5)进行检测判断:当e2差值大于控制限Qα时,该点存在目标,否则没有目标。5) Detection and judgment: when the e 2 difference is greater than the control limit Q α , there is a target at this point, otherwise there is no target.

模型更新模块,用以按设定的采样时间间隔,采集数据,将得到的实测数据与模型预报值比较,如果相对误差大于10%,则将新数据加入训练样本数据,更新预报模型。The model update module is used to collect data according to the set sampling time interval, compare the obtained measured data with the model forecast value, and if the relative error is greater than 10%, add new data to the training sample data and update the forecast model.

结果显示模块,用以将目标检测模块的检测结果在上位机显示。The result display module is used to display the detection result of the target detection module on the host computer.

一种基于人工蜂群算法的智能雷达海上目标检测系统所使用的雷达海上目标检测方法,所述的方法包括以下步骤:A kind of radar sea target detection method used by the intelligent radar sea target detection system based on artificial bee colony algorithm, described method comprises the following steps:

(1)雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库;(1) The radar irradiates the detected sea area, and stores the radar sea clutter data into the database;

(2)从数据库中采集N个雷达海杂波回波信号幅值xi作为训练样本,i=1,...,N;(2) Collect N radar sea clutter echo signal amplitudes x i from the database as training samples, i=1,...,N;

(3)对训练样本进行归一化处理,得到归一化幅值 (3) Normalize the training samples to obtain the normalized amplitude

其中,minx表示训练样本中的最小值,maxx表示训练样本中的最大值;Among them, minx represents the minimum value in the training sample, and maxx represents the maximum value in the training sample;

(4)将归一化后的训练样本重构,分别得到输入矩阵X和对应的输出矩阵Y:(4) Reconstruct the normalized training samples to obtain the input matrix X and the corresponding output matrix Y respectively:

其中,D表示重构维数,D为自然数,且D<N,D的取值范围为50-70;Among them, D represents the reconstruction dimension, D is a natural number, and D<N, and the value range of D is 50-70;

(5)将得到的X、Y代入如下线性方程:(5) Substitute the obtained X and Y into the following linear equation:

其中 in

权重因子vi由下式计算:The weight factor v i is calculated by the following formula:

其中是误差变量ξi标准差的估计,c1,c2为常量;in is the estimate of the standard deviation of the error variable ξ i , c 1 and c 2 are constants;

求解得待估计函数f(x):Solve the estimated function f(x):

其中,M是支持向量的数目,1v=[1,...,1]T,上标T表示矩阵的转置,是拉格朗日乘子,b*是偏置量,K=exp(-||xi-xj||/θ2),其中i=1,…,M,j=1,…,M,和exp(-||x-xi||/θ2)均为支持向量机的核函数,xj为第j个雷达海杂波回波信号幅值,θ是核参数,x表示输入变量,γ是惩罚系数;Among them, M is the number of support vectors, 1 v =[1,...,1] T , The superscript T denotes the transpose of the matrix, is the Lagrangian multiplier, b * is the bias, K=exp(-||x i -x j ||/θ 2 ), where i=1,...,M, j=1,...,M , and exp(-||xx i ||/θ 2 ) are the kernel functions of the support vector machine, x j is the amplitude of the jth radar sea clutter echo signal, θ is the kernel parameter, x is the input variable, γ is the penalty coefficient;

(6)用人工蜂群算法对步骤(5)的核参数θ和惩罚系数γ进行优化,采用如下过程完成:(6) Use the artificial bee colony algorithm to optimize the kernel parameter θ and the penalty coefficient γ of step (5), and use the following process to complete:

(6.1)初始化人工蜂群算法的参数,设蜜源数P,最大迭代数itermax,初始搜索空间的最小值和最大值Ld和Ud;蜜源的位置表示问题的可行解,由于模型有两个参数需要优化,所以位置pi的维度为2维,按下式随机生成蜜源的位置pi=(pi1,pi2),置初始迭代次数iter=0;(6.1) Initialize the parameters of the artificial bee colony algorithm, set the number of honey sources P, the maximum iteration number iter max , the minimum and maximum values L d and U d of the initial search space; the position of the honey source represents the feasible solution of the problem, since the model has two Each parameter needs to be optimized, so the dimension of the position p i is 2 dimensions, the position p i of the nectar source is randomly generated according to the following formula = (p i1 , p i2 ), and the initial iteration number iter = 0;

pij=Ld+rand()*(Ud-Ld)(i=1,2,...,P,j=1,2)p ij =L d +rand()*(U d -L d )(i=1,2,...,P,j=1,2)

(6.2)为蜜源pi分配一只引领蜂,按下式进行搜索,产生新蜜源Vi(6.2) Assign a leading bee to the honey source p i , search according to the formula, and generate a new honey source V i ;

(6.3)计算Vi的适应度值,根据贪婪选择的方法确定保留的蜜源;(6.3) Calculate the fitness value of Vi , and determine the nectar source to keep according to the method of greedy selection;

(6.4)计算引领蜂找到的蜜源被更随的概率;(6.4) Calculate the probability that the nectar source that leads the bee to find is more followed;

(6.5)跟随蜂采用与引领蜂相同的方式进行搜索,根据贪婪选择的方法确定保留的蜜源;(6.5) Follower bees search in the same way as lead bees, and determine the nectar source to keep according to the method of greedy selection;

(6.6)判断蜜源Vi是否满足被放弃的条件,如满足,对应的引领蜂角色变为侦察蜂,否则直接转到步骤(6.8);(6.6) Determine whether the nectar source V i satisfies the condition of being abandoned, if so, the corresponding role of the leading bee becomes a scout bee, otherwise directly go to step (6.8);

(6.7)侦察蜂随机产生新蜜源;(6.7) Scout bees randomly generate new honey sources;

(6.8)iter=iter+1,判断是否已经达到最大迭代次数,若满足则输出最优参数,否则转到步骤(6.2)。(6.8) iter=iter+1, judging whether the maximum number of iterations has been reached, if satisfied, then output the optimal parameters, otherwise go to step (6.2).

其中,蜜源数为100,初始搜索空间的最小值和最大值0和100,最大迭代次数100。Among them, the number of nectar sources is 100, the minimum and maximum values of the initial search space are 0 and 100, and the maximum number of iterations is 100.

(7)在采样时刻t采集D个海杂波回波信号幅值得到TX=[xt-D+1,…,xt],xt-D+1表示第t-D+1采样时刻的海杂波回波信号幅值,xt表示第t采样时刻的海杂波回波信号幅值;(7) Collect D sea clutter echo signal amplitudes at sampling time t to obtain TX=[x t-D+1 ,...,x t ], where x t-D+1 represents the t-D+1th sampling time The amplitude of the sea clutter echo signal, x t represents the amplitude of the sea clutter echo signal at the tth sampling moment;

(8)进行归一化处理;(8) Carry out normalization processing;

(9)代入步骤(5)得到的待估计函数f(x)计算得到采样时刻(t+1)的海杂波预报值。(9) Substituting the estimated function f(x) obtained in step (5) to calculate the predicted value of sea clutter at the sampling time (t+1).

(10)计算海杂波预报值与雷达回波实测值的差值e,计算控制限Qα(10) Calculate the difference e between the predicted value of sea clutter and the measured value of radar echo, and calculate the control limit Q α :

其中,α是置信度,θ123,h0是中间变量,λj i表示协方差矩阵的第j个特征值的i次方,k是样本维数,Cα是正态分布置信度为α的统计;Among them, α is the confidence level, θ 1 , θ 2 , θ 3 , and h 0 are intermediate variables, λ j i represents the i-th power of the jth eigenvalue of the covariance matrix, k is the sample dimension, and C α is the positive Statistical distribution reliability is α;

(11)进行检测判断:当e2差值大于控制限Qα时,该点存在目标,否则没有目标。(11) Detection and judgment: when the e 2 difference is greater than the control limit Q α , there is a target at this point, otherwise there is no target.

(12)按设定的采样时间间隔采集数据,将得到的实测数据与模型预报值比较,如果相对误差大于10%,则将新数据加入训练样本数据,更新预报模型。(12) Collect data according to the set sampling time interval, compare the obtained measured data with the model forecast value, if the relative error is greater than 10%, add new data to the training sample data, and update the forecast model.

本发明的技术构思为:本发明针对雷达海杂波的混沌特性,对雷达海杂波数据进行重构,并对重构后的数据进行非线性拟合,建立雷达海杂波的预报模型,计算雷达海杂波的预报值和实测值的差,有目标存在时的误差会显著大于没有目标时,引入人工蜂群算法,从而实现海杂波背景下的强智能目标检测。The technical idea of the present invention is: the present invention aims at the chaotic characteristics of the radar sea clutter, reconstructs the radar sea clutter data, performs nonlinear fitting on the reconstructed data, and establishes a forecast model of the radar sea clutter, Calculate the difference between the predicted value and the measured value of the radar sea clutter. The error will be significantly greater when there is a target than when there is no target. The artificial bee colony algorithm is introduced to achieve strong intelligent target detection under the background of sea clutter.

本发明的有益效果主要表现在:1、可在线检测海上目标;2、所用的检测方法只需较少样本;3、智能性强、受人为因素影响小。The beneficial effects of the present invention are mainly manifested in: 1. Sea targets can be detected online; 2. The detection method used only needs fewer samples; 3. It has strong intelligence and is less affected by human factors.

附图说明Description of drawings

图1是本发明所提出的系统的硬件结构图;Fig. 1 is the hardware structural diagram of the system proposed by the present invention;

图2是本发明所提出的上位机的功能模块图。Fig. 2 is a functional block diagram of the host computer proposed by the present invention.

具体实施方式Detailed ways

下面结合附图对本发明作进一步描述。本发明实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The embodiments of the present invention are used to explain the present invention, rather than to limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modification and change made to the present invention will fall into the protection scope of the present invention.

实施例1Example 1

参照图1、图2,一种基于人工蜂群算法的智能雷达海上目标检测系统,包括雷达1、数据库2、及上位机3,雷达1、数据库2和上位机3依次相连,所述雷达1对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库2,所述的上位机3包括:With reference to Fig. 1, Fig. 2, a kind of intelligent radar sea target detection system based on artificial bee colony algorithm, comprises radar 1, database 2, and host computer 3, and radar 1, database 2 and host computer 3 are connected successively, and described radar 1 The detected sea area is irradiated, and the radar sea clutter data is stored in the database 2, and the upper computer 3 includes:

数据预处理模块4,用以进行雷达海杂波数据预处理,采用如下过程完成:The data preprocessing module 4 is used for radar sea clutter data preprocessing, which is completed by the following process:

1)从数据库中采集N个雷达海杂波回波信号幅值xi作为训练样本,i=1,...,N;1) Collect N radar sea clutter echo signal amplitudes x i from the database as training samples, i=1,...,N;

2)对训练样本进行归一化处理,得到归一化幅值 2) Normalize the training samples to obtain the normalized amplitude

其中,minx表示训练样本中的最小值,maxx表示训练样本中的最大值;Among them, minx represents the minimum value in the training sample, and maxx represents the maximum value in the training sample;

3)将归一化后的训练样本重构,分别得到输入矩阵X和对应的输出矩阵Y:3) Reconstruct the normalized training samples to obtain the input matrix X and the corresponding output matrix Y respectively:

其中,D表示重构维数,D为自然数,且D<N,D的取值范围为50-70;Among them, D represents the reconstruction dimension, D is a natural number, and D<N, and the value range of D is 50-70;

鲁棒预报模型建模模块5,用以建立预报模型,采用如下过程完成:Robust forecast model modeling module 5 is used to establish a forecast model, which is completed by the following process:

将得到的X、Y代入如下线性方程:Substitute the obtained X and Y into the following linear equation:

其中 in

权重因子vi由下式计算:The weight factor v i is calculated by the following formula:

其中是误差变量ξi标准差的估计,c1,c2为常量in is the estimate of the standard deviation of the error variable ξ i , c 1 , c 2 are constants

求解得待估计函数f(x):Solve the estimated function f(x):

其中,M是支持向量的数目,1v=[1,...,1]T,上标T表示矩阵的转置,是拉格朗日乘子,b*是偏置量,K=exp(-||xi-xj||/θ2),其中i=1,…,M,j=1,…,M,和exp(-||x-xi||/θ2)均为支持向量机的核函数,xj为第j个雷达海杂波回波信号幅值,θ是核参数,x表示输入变量,γ是惩罚系数;Among them, M is the number of support vectors, 1 v =[1,...,1] T , The superscript T denotes the transpose of the matrix, is the Lagrangian multiplier, b * is the bias, K=exp(-||x i -x j ||/θ 2 ), where i=1,...,M, j=1,...,M , and exp(-||xx i ||/θ 2 ) are the kernel functions of the support vector machine, x j is the amplitude of the jth radar sea clutter echo signal, θ is the kernel parameter, x is the input variable, γ is the penalty coefficient;

智能寻优模块6,用以采用人工蜂群算法对鲁棒预报模型的核参数θ和惩罚系数γ进行优化,采用如下过程完成:The intelligent optimization module 6 is used to optimize the kernel parameter θ and the penalty coefficient γ of the robust prediction model by using the artificial bee colony algorithm, and the following process is used to complete:

步骤1:初始化人工蜂群算法的参数,设蜜源数P,最大迭代数itermax,初始搜索空间的最小值和最大值Ld和Ud;蜜源的位置表示问题的可行解,由于模型有两个参数需要优化,所以位置pi的维度为2维,按下式随机生成蜜源的位置pi=(pi1,pi2),置初始迭代次数iter=0;Step 1: Initialize the parameters of the artificial bee colony algorithm, set the number of honey sources P, the maximum iteration number iter max , the minimum and maximum values of the initial search space L d and U d ; the position of the honey source represents the feasible solution of the problem, since the model has two Each parameter needs to be optimized, so the dimension of the position p i is 2 dimensions, the position p i of the nectar source is randomly generated according to the following formula = (p i1 , p i2 ), and the initial iteration number iter = 0;

pij=Ld+rand()*(Ud-Ld)(i=1,2,...,P,j=1,2)p ij =L d +rand()*(U d -L d )(i=1,2,...,P,j=1,2)

步骤2:为蜜源pi分配一只引领蜂,按下式进行搜索,产生新蜜源ViStep 2: assign a leading bee to the nectar source p i , search according to the formula, and generate a new nectar source V i ;

步骤3:计算Vi的适应度值,根据贪婪选择的方法确定保留的蜜源;Step 3: Calculate the fitness value of V i , and determine the retained honey source according to the method of greedy selection;

步骤4:计算引领蜂找到的蜜源被更随的概率;Step 4: Calculate the probability that the nectar source that leads the bees to find is replaced;

步骤5:跟随蜂采用与引领蜂相同的方式进行搜索,根据贪婪选择的方法确定保留的蜜源;Step 5: follow the bees to search in the same way as the lead bees, and determine the nectar source to keep according to the method of greedy selection;

步骤6:判断蜜源Vi是否满足被放弃的条件,如满足,对应的引领蜂角色变为侦察蜂,否则直接转到步骤8;Step 6: Determine whether the nectar source V i satisfies the condition of being abandoned, if so, the corresponding role of the leading bee becomes a scout bee, otherwise go directly to step 8;

步骤7:侦察蜂随机产生新蜜源;Step 7: Scout bees randomly generate new honey sources;

步骤8:iter=iter+1,判断是否已经达到最大迭代次数,若满足则输出最优参数,否则转到步骤2。Step 8: iter=iter+1, judge whether the maximum number of iterations has been reached, if so, output the optimal parameters, otherwise go to step 2.

其中,蜜源数为100,初始搜索空间的最小值和最大值0和100,最大迭代次数100。Among them, the number of nectar sources is 100, the minimum and maximum values of the initial search space are 0 and 100, and the maximum number of iterations is 100.

目标检测模块7,用以进行目标检测,采用如下过程完成:The target detection module 7 is used for target detection, which is completed by the following process:

1)在采样时刻t采集D个海杂波回波信号幅值得到TX=[xt-D+1,…,xt],xt-D+1表示第t-D+1采样时刻的海杂波回波信号幅值,xt表示第t采样时刻的海杂波回波信号幅值;1) Collect D sea clutter echo signal amplitudes at sampling time t to obtain TX=[x t-D+1 ,...,x t ], where x t-D+1 represents the Sea clutter echo signal amplitude, x t represents the sea clutter echo signal amplitude at the tth sampling moment;

2)进行归一化处理;2) Carry out normalization processing;

3)代入鲁棒预报模型建模模块得到的函数f(x)得到采样时刻(t+1)的海杂波预报值;3) Substituting the function f(x) obtained by the robust prediction model modeling module to obtain the sea clutter forecast value at the sampling time (t+1);

4)计算海杂波预报值与雷达回波实测值的差值e,计算控制限Qα4) Calculate the difference e between the predicted value of sea clutter and the measured value of radar echo, and calculate the control limit Q α :

其中,α是置信度,θ123,h0是中间变量,λj i表示协方差矩阵的第j个特征值的i次方,k是样本维数,Cα是正态分布置信度为α的统计;Among them, α is the confidence level, θ 1 , θ 2 , θ 3 , and h 0 are intermediate variables, λ j i represents the i-th power of the jth eigenvalue of the covariance matrix, k is the sample dimension, and C α is the positive Statistical distribution reliability is α;

5)进行检测判断:当e2差值大于控制限Qα时,该点存在目标,否则没有目标。5) Detection and judgment: when the e 2 difference is greater than the control limit Q α , there is a target at this point, otherwise there is no target.

模型更新模块8,用以按设定的采样时间间隔采集数据,将得到的实测数据与模型预报值比较,如果相对误差大于10%,则将新数据加入训练样本数据,更新预报模型。The model update module 8 is used to collect data according to the set sampling time interval, compare the obtained measured data with the model forecast value, and if the relative error is greater than 10%, add new data to the training sample data and update the forecast model.

结果显示模块9,用以将目标检测模块的检测结果在上位机显示。The result display module 9 is used to display the detection result of the target detection module on the host computer.

所述上位机3的硬件部分包括:I/O元件,用于数据的采集和信息的传递;数据存储器,存储运行所需的数据样本和运行参数等;程序存储器,存储实现功能模块的软件程序;运算器,执行程序,实现指定的功能;显示模块,显示设置的参数和检测结果。The hardware part of described upper computer 3 comprises: I/O element, is used for the acquisition of data and the transmission of information; Data memory, stores the required data sample of operation and operating parameter etc.; Program memory, stores the software program that realizes function module ; Calculator, to execute the program, to realize the specified function; display module, to display the set parameters and test results.

实施例2Example 2

参照图1、图2,一种基于人工蜂群算法的智能雷达海上目标检测方法,所述的方法包括以下步骤:With reference to Fig. 1, Fig. 2, a kind of intelligent radar sea target detection method based on artificial bee colony algorithm, described method comprises the following steps:

(1)雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库;(1) The radar irradiates the detected sea area, and stores the radar sea clutter data into the database;

(2)从数据库中采集N个雷达海杂波回波信号幅值xi作为训练样本,i=1,...,N;(2) Collect N radar sea clutter echo signal amplitudes x i from the database as training samples, i=1,...,N;

(3)对训练样本进行归一化处理,得到归一化幅值 (3) Normalize the training samples to obtain the normalized amplitude

其中,minx表示训练样本中的最小值,maxx表示训练样本中的最大值;Among them, minx represents the minimum value in the training sample, and maxx represents the maximum value in the training sample;

(4)将归一化后的训练样本重构,分别得到输入矩阵X和对应的输出矩阵Y:(4) Reconstruct the normalized training samples to obtain the input matrix X and the corresponding output matrix Y respectively:

其中,D表示重构维数,D为自然数,且D<N,D的取值范围为50-70;Among them, D represents the reconstruction dimension, D is a natural number, and D<N, and the value range of D is 50-70;

(5)将得到的X、Y代入如下线性方程:(5) Substitute the obtained X and Y into the following linear equation:

其中 in

权重因子vi由下式计算:The weight factor v i is calculated by the following formula:

其中是误差变量ξi标准差的估计,c1,c2为常量;in is the estimate of the standard deviation of the error variable ξ i , c 1 and c 2 are constants;

求解得待估计函数f(x):Solve the estimated function f(x):

其中,M是支持向量的数目,1v=[1,...,1]T,上标T表示矩阵的转置,是拉格朗日乘子,b*是偏置量,K=exp(-||xi-xj||/θ2),其中i=1,…,M,j=1,…,M,和exp(-||x-xi||/θ2)均为支持向量机的核函数,xj为第j个雷达海杂波回波信号幅值,θ是核参数,x表示输入变量,γ是惩罚系数;Among them, M is the number of support vectors, 1 v =[1,...,1] T , The superscript T denotes the transpose of the matrix, is the Lagrangian multiplier, b * is the bias, K=exp(-||x i -x j ||/θ 2 ), where i=1,...,M, j=1,...,M , and exp(-||xx i ||/θ 2 ) are the kernel functions of the support vector machine, x j is the amplitude of the jth radar sea clutter echo signal, θ is the kernel parameter, x is the input variable, γ is the penalty coefficient;

(6)用人工蜂群算法对步骤(5)的核参数θ和惩罚系数γ进行优化,采用如下过程完成:(6) Use the artificial bee colony algorithm to optimize the kernel parameter θ and the penalty coefficient γ of step (5), and use the following process to complete:

(6.1)初始化人工蜂群算法的参数,设蜜源数P,最大迭代数itermax,初始搜索空间的最小值和最大值Ld和Ud;蜜源的位置表示问题的可行解,由于模型有两个参数需要优化,所以位置pi的维度为2维,按下式随机生成蜜源的位置pi=(pi1,pi2),置初始迭代次数iter=0;(6.1) Initialize the parameters of the artificial bee colony algorithm, set the number of honey sources P, the maximum iteration number iter max , the minimum and maximum values L d and U d of the initial search space; the position of the honey source represents the feasible solution of the problem, because the model has two Each parameter needs to be optimized, so the dimension of the position p i is 2 dimensions, the position p i of the nectar source is randomly generated according to the following formula = (p i1 , p i2 ), and the initial iteration number iter = 0;

pij=Ld+rand()*(Ud-Ld)(i=1,2,...,P,j=1,2)p ij =L d +rand()*(U d -L d )(i=1,2,...,P,j=1,2)

(6.2)为蜜源pi分配一只引领蜂,按下式进行搜索,产生新蜜源Vi(6.2) Assign a leading bee to the honey source p i , search according to the formula, and generate a new honey source V i ;

(6.3)计算Vi的适应度值,根据贪婪选择的方法确定保留的蜜源;(6.3) Calculate the fitness value of Vi , and determine the nectar source to keep according to the method of greedy selection;

(6.4)计算引领蜂找到的蜜源被更随的概率;(6.4) Calculate the probability that the nectar source that leads the bee to find is more followed;

(6.5)跟随蜂采用与引领蜂相同的方式进行搜索,根据贪婪选择的方法确定保留的蜜源;(6.5) Follower bees search in the same way as lead bees, and determine the nectar source to keep according to the method of greedy selection;

(6.6)判断蜜源Vi是否满足被放弃的条件,如满足,对应的引领蜂角色变为侦察蜂,否则直接转到步骤(6.8);(6.6) Determine whether the nectar source V i satisfies the condition of being abandoned, if so, the corresponding role of the leading bee becomes a scout bee, otherwise directly go to step (6.8);

(6.7)侦察蜂随机产生新蜜源;(6.7) Scout bees randomly generate new honey sources;

(6.8)iter=iter+1,判断是否已经达到最大迭代次数,若满足则输出最优参数,否则转到步骤(6.2)。(6.8) iter=iter+1, judging whether the maximum number of iterations has been reached, if satisfied, then output the optimal parameters, otherwise go to step (6.2).

其中,蜜源数为100,初始搜索空间的最小值和最大值0和100,最大迭代次数100。Among them, the number of nectar sources is 100, the minimum and maximum values of the initial search space are 0 and 100, and the maximum number of iterations is 100.

(7)在采样时刻t采集D个海杂波回波信号幅值得到TX=[xt-D+1,…,xt],xt-D+1表示第t-D+1采样时刻的海杂波回波信号幅值,xt表示第t采样时刻的海杂波回波信号幅值;(7) Collect D sea clutter echo signal amplitudes at sampling time t to obtain TX=[x t-D+1 ,...,x t ], where x t-D+1 represents the t-D+1th sampling time The amplitude of the sea clutter echo signal, x t represents the amplitude of the sea clutter echo signal at the tth sampling moment;

(8)进行归一化处理;(8) Carry out normalization processing;

(9)代入步骤(5)得到的待估计函数f(x)计算得到采样时刻(t+1)的海杂波预报值。(9) Substituting the estimated function f(x) obtained in step (5) to calculate the predicted value of sea clutter at the sampling time (t+1).

(10)计算海杂波预报值与雷达回波实测值的差值e,计算控制限Qα(10) Calculate the difference e between the predicted value of sea clutter and the measured value of radar echo, and calculate the control limit Q α :

其中,α是置信度,θ123,h0是中间变量,λj i表示协方差矩阵的第j个特征值的i次方,k是样本维数,Cα是正态分布置信度为α的统计;Among them, α is the confidence level, θ 1 , θ 2 , θ 3 , and h 0 are intermediate variables, λ j i represents the i-th power of the jth eigenvalue of the covariance matrix, k is the sample dimension, and C α is the positive Statistical distribution reliability is α;

(11)进行检测判断:当e2差值大于控制限Qα时,该点存在目标,否则没有目标。(11) Detection and judgment: when the e 2 difference is greater than the control limit Q α , there is a target at this point, otherwise there is no target.

(12)按设定的采样时间间隔采集数据,将得到的实测数据与模型预报值比较,如果相对误差大于10%,则将新数据加入训练样本数据,更新预报模型。(12) Collect data according to the set sampling time interval, compare the obtained measured data with the model forecast value, if the relative error is greater than 10%, add new data to the training sample data, and update the forecast model.

由以上实施例可见,本发明建立了智能雷达海上目标检测系统和方法,可以在线检测雷达目标;且所用的检测方法只需较少样本即可;另外,减少了人为因素的影响,智能性高,鲁棒性强。As can be seen from the above embodiments, the present invention has established an intelligent radar sea target detection system and method, which can detect radar targets online; and the detection method used only needs fewer samples; in addition, the influence of human factors is reduced, and the intelligence is high , strong robustness.

Claims (2)

1. a kind of Intelligent radar sea target detection system based on artificial bee colony algorithm, including radar, database and upper Machine, radar, database and host computer are sequentially connected, it is characterised in that:The radar is irradiated to detected marine site, and by thunder Up to sea clutter data storage to described database, described host computer includes data preprocessing module, robust forecasting model is built Mould module, intelligent optimizing module, module of target detection, model modification module and result display module:
The data preprocessing module, to carry out radar sea clutter data prediction, completed using following process:
(1) radar is irradiated to detected marine site, and by radar sea clutter data storage to described database;
(2) N number of radar sea clutter echo-signal amplitude x is gathered from databaseiAs training sample, i=1 ..., N;
(3) training sample is normalized, obtains normalizing amplitude
<mrow> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>min</mi> <mi> </mi> <mi>x</mi> </mrow> <mrow> <mi>max</mi> <mi> </mi> <mi>x</mi> <mo>-</mo> <mi>min</mi> <mi> </mi> <mi>x</mi> </mrow> </mfrac> </mrow>
Wherein, minx represents the minimum value in training sample, and maxx represents the maximum in training sample;
(4) training sample after normalization is reconstructed, respectively obtains input matrix X and corresponding output matrix Y:
<mrow> <mi>Y</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>D</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>D</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mi>N</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein, D represents reconstruct dimension, and D is natural number, and D < N, D span are 50-70;
The robust forecasting model modeling module is completed to establish forecasting model using following process:
X, Y that data preprocessing module is obtained substitute into following linear equation:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mn>1</mn> <mi>v</mi> <mi>T</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msub> <mn>1</mn> <mi>v</mi> </msub> </mtd> <mtd> <mrow> <mi>K</mi> <mo>+</mo> <msub> <mi>V</mi> <mi>&amp;gamma;</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mi>b</mi> <mo>*</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&amp;alpha;</mi> <mo>*</mo> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>Y</mi> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein
Weight factor viCalculated by following formula:
WhereinIt is error variance ξiThe estimation of standard deviation, c1,c2For constant;
Solve to obtain function f (x) to be estimated:
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msup> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <mo>*</mo> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>|</mo> <mo>/</mo> <msup> <mi>&amp;theta;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>b</mi> <mo>*</mo> </msup> </mrow>
Wherein, M is the number of supporting vector, 1v=[1 ..., 1]T,The transposition of subscript T representing matrixs,It is Lagrange multiplier, b*It is amount of bias, K=exp (- | | xi-xj||/θ2), wherein i=1 ..., M, j=1 ..., M,With exp (- | | x-xi||/θ2) be SVMs kernel function, xjFor j-th of radar sea clutter Echo-signal amplitude, θ are nuclear parameters, and x represents input variable, and γ is penalty coefficient;
The intelligent optimizing module, to the nuclear parameter θ and penalty coefficient γ using artificial bee colony algorithm to robust forecasting model Optimize, completed using following process:
(A) parameter of artificial bee colony algorithm is initialized, if nectar source number P, greatest iteration number itermax, the minimum in initial ranging space Value and maximum LdAnd Ud;The feasible solution of the positional representation problem in nectar source, because model has two parameters to need to optimize, so position Put piDimension for 2 dimension, as the following formula at random generation nectar source position pi=(pi1,pi2), put primary iteration number iter=0;
pij=Ld+rand()*(Ud-Ld) (i=1,2 ..., P, j=1,2)
(B) it is nectar source piDistribution one leads honeybee, scans for as the following formula, produces new nectar source Vi
(C) V is calculatediFitness value, according to greediness selection method determine retain nectar source;
(D) calculate lead the nectar source that honeybee is found by more with probability;
(E) honeybee is followed to use with leading honeybee identical mode to scan for, the nectar source for determining to retain according to the method for greediness selection;
(F) nectar source V is judgediWhether the condition that satisfaction is abandoned, such as meet, it is corresponding to lead honeybee role to be changed into search bee, otherwise directly It is switched to (H)
(G) search bee randomly generates new nectar source;
(H) iter=iter+1, judge whether to have been maxed out iterations, export optimized parameter if meeting, otherwise turn To step (B).
Wherein, nectar source number is 100, the minimum value and maximum 0 and 100 in initial ranging space, maximum iteration 100.
The module of target detection, to carry out target detection, completed using following process:
(a) gather D sea clutter echo-signal amplitude in sampling instant t and obtain TX=[xt-D+1,...,xt], xt-D+1Represent t- The sea clutter echo-signal amplitude of D+1 sampling instants, xtThe sea clutter echo-signal amplitude of t sampling instants is represented, TX is represented Signal amplitude matrix of the sea clutter from t-D+1 sampling instants to t sampling instants;
(b) it is normalized;
<mrow> <mover> <mrow> <mi>T</mi> <mi>X</mi> </mrow> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mi>T</mi> <mi>X</mi> <mo>-</mo> <mi>min</mi> <mi> </mi> <mi>x</mi> </mrow> <mrow> <mi>max</mi> <mi> </mi> <mi>x</mi> <mo>-</mo> <mi>min</mi> <mi> </mi> <mi>x</mi> </mrow> </mfrac> </mrow>
(c) sea that sampling instant (t+1) is calculated in the function f (x) to be estimated that robust forecasting model modeling module obtains is substituted into Clutter predicted value.
(d) difference e of sea clutter predicted value and radar return measured value is calculated, calculates control limit Qα
<mrow> <msub> <mi>Q</mi> <mi>&amp;alpha;</mi> </msub> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mi>&amp;alpha;</mi> </msub> <msub> <mi>h</mi> <mn>0</mn> </msub> <msqrt> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> </mrow> </msqrt> </mrow> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <msub> <mi>h</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <msub> <mi>h</mi> <mn>0</mn> </msub> </mfrac> </msup> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>&amp;lambda;</mi> <mi>j</mi> <mi>i</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow>
<mrow> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>3</mn> </msub> </mrow> <mrow> <mn>3</mn> <msubsup> <mi>&amp;theta;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow>
Wherein, α is confidence level, θ123,h0It is intermediate variable, λj iThe i powers of j-th of characteristic value of covariance matrix are represented, K is sample dimension, CαIt is the statistics that normal distribution confidence level is α;
(e) detection judgement is carried out:Work as e2Difference is more than control limit QαWhen, there is target in the point, otherwise without target.
The model modification module, to by the sampling time interval gathered data of setting, by obtained measured data and model Predicted value compares, if relative error is more than 10%, new data is added into training sample data, updates forecasting model.
The result display module, the testing result of module of target detection to be shown in host computer.
2. thunder used in the Intelligent radar sea target detection system based on artificial bee colony algorithm described in a kind of claim 1 Up to method for detecting targets at sea, it is characterised in that:Described method comprises the following steps:
(1) radar is irradiated to detected marine site, and by radar sea clutter data storage to described database;
(2) N number of radar sea clutter echo-signal amplitude x is gathered from databaseiAs training sample, i=1 ..., N;
(3) training sample is normalized, obtains normalizing amplitude
<mrow> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>min</mi> <mi> </mi> <mi>x</mi> </mrow> <mrow> <mi>max</mi> <mi> </mi> <mi>x</mi> <mo>-</mo> <mi>min</mi> <mi> </mi> <mi>x</mi> </mrow> </mfrac> </mrow>
Wherein, minx represents the minimum value in training sample, and maxx represents the maximum in training sample;
(4) training sample after normalization is reconstructed, respectively obtains input matrix X and corresponding output matrix Y:
<mrow> <mi>Y</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>D</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>D</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mi>N</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein, D represents reconstruct dimension, and D is natural number, and D < N, D span are 50-70;
(5) obtained X, Y are substituted into following linear equation:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mn>1</mn> <mi>v</mi> <mi>T</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msub> <mn>1</mn> <mi>v</mi> </msub> </mtd> <mtd> <mrow> <mi>K</mi> <mo>+</mo> <msub> <mi>V</mi> <mi>&amp;gamma;</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mi>b</mi> <mo>*</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&amp;alpha;</mi> <mo>*</mo> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>Y</mi> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein
Weight factor viCalculated by following formula:
WhereinIt is error variance ξiThe estimation of standard deviation, c1,c2For constant;
Solve to obtain function f (x) to be estimated:
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msup> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <mo>*</mo> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>|</mo> <mo>/</mo> <msup> <mi>&amp;theta;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>b</mi> <mo>*</mo> </msup> </mrow>
Wherein, M is the number of supporting vector, 1v=[1 ..., 1]T,The transposition of subscript T representing matrixs,It is Lagrange multiplier, b*It is amount of bias, K=exp (- | | xi-xj||/θ2), wherein i=1 ..., M, j=1 ..., M,With exp (- | | x-xi||/θ2) be SVMs kernel function, xjFor j-th of radar sea clutter Echo-signal amplitude, θ are nuclear parameters, and x represents input variable, and γ is penalty coefficient;
(6) manually ant colony algorithm optimizes to the nuclear parameter θ and penalty coefficient γ of step (5), is completed using following process:
(6.1) parameter of artificial bee colony algorithm is initialized, if nectar source number P, greatest iteration number itermax, initial ranging space is most Small value and maximum LdAnd Ud;The feasible solution of the positional representation problem in nectar source, because model has two parameters to need to optimize, so Position piDimension for 2 dimension, as the following formula at random generation nectar source position pi=(pi1,pi2), put primary iteration number iter=0;
pij=Ld+rand()*(Ud-Ld) (i=1,2 ..., P, j=1,2)
(6.2) it is nectar source piDistribution one leads honeybee, scans for as the following formula, produces new nectar source Vi
(6.3) V is calculatediFitness value, according to greediness selection method determine retain nectar source;
(6.4) calculate lead the nectar source that honeybee is found by more with probability;
(6.5) honeybee is followed to use with leading honeybee identical mode to scan for, the honey for determining to retain according to the method for greediness selection Source;
(6.6) nectar source V is judgediWhether the condition that satisfaction is abandoned, such as meet, it is corresponding to lead honeybee role to be changed into search bee, otherwise Pass directly to step (6.8);
(6.7) search bee randomly generates new nectar source;
(6.8) iter=iter+1, judge whether to have been maxed out iterations, export optimized parameter if meeting, otherwise Go to step (6.2).
Wherein, nectar source number is 100, the minimum value and maximum 0 and 100 in initial ranging space, maximum iteration 100.
(7) gather D sea clutter echo-signal amplitude in sampling instant t and obtain TX=[xt-D+1,...,xt], xt-D+1Represent t- The sea clutter echo-signal amplitude of D+1 sampling instants, xtRepresent the sea clutter echo-signal amplitude of t sampling instants;
(8) it is normalized;
<mrow> <mover> <mrow> <mi>T</mi> <mi>X</mi> </mrow> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mi>T</mi> <mi>X</mi> <mo>-</mo> <mi>min</mi> <mi> </mi> <mi>x</mi> </mrow> <mrow> <mi>max</mi> <mi> </mi> <mi>x</mi> <mo>-</mo> <mi>min</mi> <mi> </mi> <mi>x</mi> </mrow> </mfrac> </mrow>
(9) the sea clutter predicted value that sampling instant (t+1) is calculated in the function f (x) to be estimated that step (5) obtains is substituted into.
(10) difference e of sea clutter predicted value and radar return measured value is calculated, calculates control limit Qα
<mrow> <msub> <mi>Q</mi> <mi>&amp;alpha;</mi> </msub> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mi>&amp;alpha;</mi> </msub> <msub> <mi>h</mi> <mn>0</mn> </msub> <msqrt> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> </mrow> </msqrt> </mrow> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <msub> <mi>h</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <msub> <mi>h</mi> <mn>0</mn> </msub> </mfrac> </msup> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>&amp;lambda;</mi> <mi>j</mi> <mi>i</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow>
<mrow> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>3</mn> </msub> </mrow> <mrow> <mn>3</mn> <msubsup> <mi>&amp;theta;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow>
Wherein, α is confidence level, θ123,h0It is intermediate variable, λj iThe i powers of j-th of characteristic value of covariance matrix are represented, K is sample dimension, CαIt is the statistics that normal distribution confidence level is α;
(11) detection judgement is carried out:Work as e2Difference is more than control limit QαWhen, there is target in the point, otherwise without target.
(12) by the sampling time interval gathered data of setting, by obtained measured data compared with model prediction value, if phase 10% is more than to error, then new data is added into training sample data, updates forecasting model.
CN201711116260.5A 2017-11-13 2017-11-13 A kind of Intelligent radar sea target detection system and method based on artificial bee colony algorithm Pending CN107656250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711116260.5A CN107656250A (en) 2017-11-13 2017-11-13 A kind of Intelligent radar sea target detection system and method based on artificial bee colony algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711116260.5A CN107656250A (en) 2017-11-13 2017-11-13 A kind of Intelligent radar sea target detection system and method based on artificial bee colony algorithm

Publications (1)

Publication Number Publication Date
CN107656250A true CN107656250A (en) 2018-02-02

Family

ID=61121111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711116260.5A Pending CN107656250A (en) 2017-11-13 2017-11-13 A kind of Intelligent radar sea target detection system and method based on artificial bee colony algorithm

Country Status (1)

Country Link
CN (1) CN107656250A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108921871A (en) * 2018-07-27 2018-11-30 福建农林大学 A kind of robust Model approximating method based on global greedy search
CN109669169A (en) * 2018-12-05 2019-04-23 南京信息工程大学 A kind of weak target signal detection method under sea clutter background
CN110940970A (en) * 2019-11-06 2020-03-31 河海大学 A MIMO radar target detection method and system for oil slick sea surface
CN112162286A (en) * 2020-09-29 2021-01-01 中国船舶重工集团公司第七二四研究所 Radar detection environment estimation method based on artificial intelligence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007450A1 (en) * 2006-07-07 2008-01-10 Jonathan Yedidia Method and system for determining unwrapped phases from noisy two-dimensional wrapped-phase images
CN102147465A (en) * 2011-03-03 2011-08-10 浙江大学 System and method for detecting sea target by chaos optimizing radar
CN102147464A (en) * 2011-03-03 2011-08-10 浙江大学 Intelligent system and method for forecasting robust radar sea clutter
CN102147463A (en) * 2011-03-03 2011-08-10 浙江大学 System and method for forecasting Qunzhi radar sea clutters
CN102183749A (en) * 2011-03-03 2011-09-14 浙江大学 Sea target detecting system of adaptive radar and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007450A1 (en) * 2006-07-07 2008-01-10 Jonathan Yedidia Method and system for determining unwrapped phases from noisy two-dimensional wrapped-phase images
CN102147465A (en) * 2011-03-03 2011-08-10 浙江大学 System and method for detecting sea target by chaos optimizing radar
CN102147464A (en) * 2011-03-03 2011-08-10 浙江大学 Intelligent system and method for forecasting robust radar sea clutter
CN102147463A (en) * 2011-03-03 2011-08-10 浙江大学 System and method for forecasting Qunzhi radar sea clutters
CN102183749A (en) * 2011-03-03 2011-09-14 浙江大学 Sea target detecting system of adaptive radar and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张鹏: "多蜂群协同进化算法及其应用研究", 《中国硕士学位论文全文数据库 信息科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108921871A (en) * 2018-07-27 2018-11-30 福建农林大学 A kind of robust Model approximating method based on global greedy search
CN108921871B (en) * 2018-07-27 2022-02-01 福建农林大学 Robust model fitting method based on global greedy search
CN109669169A (en) * 2018-12-05 2019-04-23 南京信息工程大学 A kind of weak target signal detection method under sea clutter background
CN109669169B (en) * 2018-12-05 2022-11-08 南京信息工程大学 A weak target signal detection method under the background of sea clutter
CN110940970A (en) * 2019-11-06 2020-03-31 河海大学 A MIMO radar target detection method and system for oil slick sea surface
CN112162286A (en) * 2020-09-29 2021-01-01 中国船舶重工集团公司第七二四研究所 Radar detection environment estimation method based on artificial intelligence
CN112162286B (en) * 2020-09-29 2023-08-01 中国船舶集团有限公司第七二四研究所 Radar detection environment estimation method based on artificial intelligence

Similar Documents

Publication Publication Date Title
CN102183749B (en) Sea target detecting system of adaptive radar and method thereof
CN102147465B (en) A chaotic optimization radar sea target detection system and method
CN107942312A (en) A kind of Intelligent radar sea target detection system and method based on differential evolution invasive weed optimization algorithm
CN102147463B (en) System and method for forecasting Qunzhi radar sea clutters
Leung et al. Detection of small objects in clutter using a GA-RBF neural network
CN107656250A (en) A kind of Intelligent radar sea target detection system and method based on artificial bee colony algorithm
CN108983179A (en) A kind of radar marine target detection system of colony intelligence agility
CN108983177A (en) A kind of radar sea clutter forecast system that parameter is optimal and method
CN108646249A (en) A kind of parametrization leakage object detection method being suitable for the uniform Reverberation in part
Wang et al. A multivariable hybrid prediction model of offshore wind power based on multi-stage optimization and reconstruction prediction
CN108983178A (en) A kind of Intelligent radar sea target detection system that agility is adaptive
CN107942300A (en) A kind of Intelligent radar sea target detection system and method based on improvement artificial bee colony algorithm
CN107656251A (en) A kind of Intelligent radar sea clutter forecast system and method based on improvement invasive weed optimized algorithm
Wang et al. An ensemble model for water temperature prediction in intensive aquaculture
Huang et al. Study on prediction of ocean effective wave height based on hybrid artificial intelligence model
CN102183751B (en) Intelligent radar sea target detection system and method
CN102183746A (en) Radar marine target detection system and method
CN108983181A (en) A kind of radar marine target detection system of gunz optimizing
CN113126086A (en) Life detection radar weak target detection method based on state prediction accumulation
CN107976662A (en) An intelligent radar maritime target detection system and method based on an invasive weed optimization algorithm
CN107942299A (en) A kind of Intelligent radar sea target detection system and method based on improvement shuffled frog leaping algorithm
CN107942303A (en) A kind of Intelligent radar sea clutter forecast system and method based on improvement artificial bee colony algorithm
CN102183752B (en) Self-adaptive radar marine clutter prediction system and method
Zhang et al. Using improved YOLOX for underwater object recognition
CN107894584A (en) A kind of Intelligent radar sea target detection system and method based on mixing artificial bee colony algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180202

RJ01 Rejection of invention patent application after publication