CN102183746A - Radar marine target detection system and method - Google Patents
Radar marine target detection system and method Download PDFInfo
- Publication number
- CN102183746A CN102183746A CN 201110051096 CN201110051096A CN102183746A CN 102183746 A CN102183746 A CN 102183746A CN 201110051096 CN201110051096 CN 201110051096 CN 201110051096 A CN201110051096 A CN 201110051096A CN 102183746 A CN102183746 A CN 102183746A
- Authority
- CN
- China
- Prior art keywords
- overbar
- theta
- radar
- training sample
- extra large
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 36
- 238000012549 training Methods 0.000 claims description 36
- 238000005070 sampling Methods 0.000 claims description 28
- 238000010606 normalization Methods 0.000 claims description 12
- 238000006467 substitution reaction Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000012706 support-vector machine Methods 0.000 claims description 6
- 230000017105 transposition Effects 0.000 claims description 6
- 230000003760 hair shine Effects 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
The invention discloses a radar marine target detection system which comprises a radar, a database and an upper computer, wherein the radar, the database and the upper computer are sequentially connected; the radar is used for irradiating a marine area to be detected and storing radar marine clutter data to the database; and the upper computer comprises a data preprocessing module, a least square prediction model modeling module, a target detection module, a model updating module and a result displaying module. The invention provides a radar marine target detection method. The radar marine target detection system and method provided by the invention have the advantages of high response speed and high online detection efficiency.
Description
Technical field
The present invention relates to the radar data process field, especially, relate to object detection system and method on a kind of Radar Sea.
Background technology
The sea clutter promptly comes from the radar backscattering echo on sea.In recent decades, along with going deep into to extra large clutter understanding, countries such as Germany, Norway attempt utilizing radar observation sea clutter to obtain radar wave image coming inverting wave information in succession, to obtain real-time information about sea state, as wave height, direction and the cycle etc. of wave, thereby further marine small objects is detected, this has crucial meaning to marine activity.
The naval target detection technique has consequence, and it is one of vital task to extra large radar work that the accurate target judgement is provided.The radar automatic checkout system is made judgement according to decision rule under given detection threshold, and strong extra large clutter often becomes the main interference of weak target signal.How to handle extra large clutter and will directly have influence on the detectability of radar under marine environment: the 1) ice of navigation by recognition buoy, small pieces, swim in the greasy dirt on sea, these may bring potential crisis to navigation; 2) the monitoring illegal fishing is an important task of environmental monitoring.
When traditional target detection, extra large clutter is considered to disturb a kind of noise of navigation to be removed.Yet during to extra large observed object, faint moving target echo usually is buried in the extra large clutter at radar, signal to noise ratio is lower, radar is difficult for detecting target, and a large amount of spikes of extra large clutter also can cause serious false-alarm simultaneously, to the detection performance generation considerable influence of radar.For sea police's ring and early warning radar, the main target of research is to improve the detectability of target under the extra large clutter background for various.Therefore, not only have important significance for theories and practical significance, and be difficult point and focus that domestic and international naval target detects.
Summary of the invention
In order to overcome the low deficiency of slow, the online detection efficiency of present radar method for detecting targets at sea response speed, the invention provides object detection system and method on the high Radar Sea of fast, the online detection efficiency of a kind of response speed.
The technical solution adopted for the present invention to solve the technical problems is:
Object detection system on a kind of Radar Sea, comprise radar, database and host computer, radar, database and host computer link to each other successively, and described radar shines the detection marine site, and with Radar Sea clutter data storing to described database, described host computer comprises:
Described data preprocessing module, in order to carry out the pre-service of Radar Sea clutter data, adopt following process to finish:
1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
Least square forecasting model MBM, in order to set up forecasting model, adopt following process to finish:
With X, the following linear equation of Y substitution that obtains:
Find the solution and obtain treating estimation function f (x):
Wherein, M is the number of support vector, 1
v=[1 ..., 1]
T,
K=exp (‖ x
i-x
j‖/θ
2), I is a unit matrix, subscript-1 representing matrix contrary, and the transposition of subscript T representing matrix,
Be Lagrange multiplier, b
*Be amount of bias, i=1 ..., M, j=1 ..., M,
And exp (‖ x-x
i‖/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
Module of target detection, in order to carry out target detection, adopt following process to finish:
1) gathers D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
2) carry out normalized;
3) the estimation function f (x) that treats that substitution least square forecasting model MBM obtains obtains the extra large clutter predicted value of sampling instant (t+1);
4) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable,
The i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
5) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
As preferred a kind of scheme: described host computer also comprises: the discrimination model update module, in order to sampling time interval image data by setting, the measured data and the model prediction value that obtain are compared, if relative error is greater than 10%, then new data is added the training sample data, upgrade forecasting model.
As preferred another kind of scheme: described host computer also comprises: display module as a result shows at host computer in order to the testing result with module of target detection.
The employed radar method for detecting targets at sea of object detection system on a kind of Radar Sea, described method may further comprise the steps:
(1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
(3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
(4) X that just obtains, the following linear equation of Y substitution:
Find the solution and obtain treating estimation function f (x):
Wherein, M is the number of support vector, 1
v=[1 ..., 1]
T,
K=exp (‖ x
i-x
j‖/θ
2), I is a unit matrix, subscript-1 representing matrix contrary, and the transposition of subscript T representing matrix,
Be Lagrange multiplier, b
*Be amount of bias, i=1 ..., M, j=1 ..., M,
And exp (‖ x-x
i‖/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
(5) gather D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
(6) carry out normalized;
(7) the estimation function f (x) that treats that substitution step (4) obtains obtains the extra large clutter predicted value of sampling instant (t+1);
(8) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable,
The i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
(9) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
As preferred a kind of scheme: described method also comprises:
(9), by the sampling time interval image data of setting, with the measured data that obtains and model prediction value relatively, if relative error greater than 10%, then adds new data the training sample data, the renewal forecasting model.
As preferred another kind of scheme: in described step (8), the testing result of module of target detection is shown at host computer.
Technical conceive of the present invention is: the chaotic characteristic that the present invention is directed to the Radar Sea clutter, Radar Sea clutter data are reconstructed, and the data after the reconstruct are carried out nonlinear fitting, set up the forecasting model of Radar Sea clutter, calculate the poor of the predicted value of Radar Sea clutter and measured value, error when having target to exist can be significantly when not having target, introduce high efficiency detection method, thereby realize the high-level efficiency target detection under the extra large clutter background.
Beneficial effect of the present invention mainly shows: 1, can the online small objects that can quick and precisely detect under the clutter background of going to sea; 2, used detection method only needs less sample to get final product; 3, response speed is fast, detection efficiency is high.
Description of drawings
Fig. 1 is the hardware structure diagram of system proposed by the invention;
Fig. 2 is the functional block diagram of host computer proposed by the invention.
Embodiment
Below in conjunction with accompanying drawing the present invention is further described.The embodiment of the invention is used for the present invention that explains, rather than limits the invention, and in the protection domain of spirit of the present invention and claim, any modification and change to the present invention makes all fall into protection scope of the present invention.
Embodiment 1
With reference to Fig. 1, Fig. 2, object detection system on a kind of Radar Sea, comprise radar 1, database 2 and host computer 3, radar 1, database 2 and host computer 3 link to each other successively, 1 pair of marine site of detecting of described radar is shone, and with Radar Sea clutter data storing to described database 2, described host computer 3 comprises:
1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
Least square forecasting model MBM 5, in order to set up forecasting model, adopt following process to finish:
With X, the following linear equation of Y substitution that obtains:
Find the solution and obtain treating estimation function f (x):
Wherein, M is the number of support vector, 1
v=[1 ..., 1]
T,
K=exp (‖ x
i-x
j‖/θ
2), I is a unit matrix, subscript-1 representing matrix contrary, and the transposition of subscript T representing matrix,
Be Lagrange multiplier, b
*Be amount of bias, i=1 ..., M, j=1 ..., M,
And exp (‖ x-x
i‖/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
Module of target detection 6, in order to carry out target detection, adopt following process to finish:
1) gathers D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
2) carry out normalized;
3) the estimation function f (x) that treats that substitution forecasting model MBM obtains obtains the extra large clutter predicted value of sampling instant (t+1);
4) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable,
The i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
5) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
Described host computer 3 also comprises: model modification module 8, by the time interval image data of setting, measured data and the model prediction value that obtains compared, and if relative error greater than 10%, then adds new data the training sample data, upgrade forecasting model.
Described host computer 3 also comprises: display module 7 as a result, and the testing result of module of target detection is shown at host computer.
The hardware components of described host computer 3 comprises: the I/O element is used for the collection of data and the transmission of information; Data-carrier store, data sample that storage running is required and operational factor etc.; Program storage, storage realizes the software program of functional module; Arithmetical unit, executive routine, the function of realization appointment; Display module shows the parameter and the testing result that are provided with.
Embodiment 2
With reference to Fig. 1, Fig. 2, a kind of radar method for detecting targets at sea, described method may further comprise the steps:
(1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
(3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
(4) with the X, the following linear equation of Y substitution that obtain:
Find the solution and obtain treating estimation function f (x):
Wherein, M is the number of support vector, 1
v=[1 ..., 1]
T,
K=exp (‖ x
i-x
j‖/θ
2), I is a unit matrix, subscript-1 representing matrix contrary, and the transposition of subscript T representing matrix,
Be Lagrange multiplier, b
*Be amount of bias, i=1 ..., M, j=1 ..., M,
And exp (‖ x-x
i‖/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
(5) gather D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
(6) carry out normalized;
(7) the estimation function f (x) that treats that substitution step (4) obtains obtains the extra large clutter predicted value of sampling instant (t+1).
(8) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable,
The i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
(9) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
Described method also comprises: (9), by the time interval image data of setting, with the measured data that obtains and model prediction value relatively, if relative error greater than 10%, then adds new data the training sample data, the renewal forecasting model.
Described method also comprises: in described step (8), the testing result of module of target detection is shown at host computer.
Claims (6)
1. object detection system on the Radar Sea, comprise radar, database and host computer, radar, database and host computer link to each other successively, it is characterized in that: described radar shines the detection marine site, and with Radar Sea clutter data storing to described database, described host computer comprises:
Described data preprocessing module, in order to carry out the pre-service of Radar Sea clutter data, adopt following process to finish:
1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
Least square forecasting model MBM, in order to set up forecasting model, adopt following process to finish:
With X, the following linear equation of Y substitution that obtains:
Find the solution and obtain treating estimation function f (x):
Wherein, M is the number of support vector, 1
v=[1 ..., 1]
T,
K=exp (‖ x
i-x
j‖/θ
2), I is a unit matrix, subscript-1 representing matrix contrary, and the transposition of subscript T representing matrix,
Be Lagrange multiplier, b
*Be amount of bias, i=1 ..., M, j=1 ..., M,
And exp (‖ x-x
i‖/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
Module of target detection, in order to carry out target detection, adopt following process to finish:
1) gathers D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
2) carry out normalized;
3) the estimation function f (x) that treats that substitution least square forecasting model MBM obtains obtains the extra large clutter predicted value of sampling instant (t+1);
4) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable,
The i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
5) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
2. object detection system on the Radar Sea as claimed in claim 1, it is characterized in that: described host computer also comprises: the discrimination model update module, in order to sampling time interval image data by setting, the measured data and the model prediction value that obtain are compared, if relative error is greater than 10%, then new data is added the training sample data, upgrade forecasting model.
3. object detection system on the Radar Sea as claimed in claim 1 or 2 is characterized in that: described host computer also comprises: display module as a result shows at host computer in order to the testing result with module of target detection.
4. the employed radar method for detecting targets at sea of object detection system on the Radar Sea as claimed in claim 1, it is characterized in that: described method may further comprise the steps:
(1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
(3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
(4) X that just obtains, the following linear equation of Y substitution:
Find the solution and obtain treating estimation function f (x):
Wherein, M is the number of support vector, 1
v=[1 ..., 1]
T,
K=exp (‖ x
i-x
j‖/θ
2), I is a unit matrix, subscript-1 representing matrix contrary, and the transposition of subscript T representing matrix,
Be Lagrange multiplier, b
*Be amount of bias, i=1 ..., M, j=1 ..., M,
And exp (‖ x-x
i‖/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
(5) gather D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
(6) carry out normalized;
(7) the estimation function f (x) that treats that substitution step (4) obtains obtains the extra large clutter predicted value of sampling instant (t+1);
(8) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable,
The i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
(9) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
5. radar method for detecting targets at sea as claimed in claim 4 is characterized in that: described method also comprises:
(10), by the sampling time interval image data of setting, with the measured data that obtains and model prediction value relatively, if relative error greater than 10%, then adds new data the training sample data, the renewal forecasting model.
6. as claim 4 or 5 described radar method for detecting targets at sea, it is characterized in that: in described step (9), the testing result of module of target detection is shown at host computer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100510960A CN102183746B (en) | 2011-03-03 | 2011-03-03 | Radar marine target detection system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100510960A CN102183746B (en) | 2011-03-03 | 2011-03-03 | Radar marine target detection system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102183746A true CN102183746A (en) | 2011-09-14 |
CN102183746B CN102183746B (en) | 2012-07-25 |
Family
ID=44569946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100510960A Expired - Fee Related CN102183746B (en) | 2011-03-03 | 2011-03-03 | Radar marine target detection system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102183746B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914769A (en) * | 2012-10-19 | 2013-02-06 | 南京信息工程大学 | Joint fractal-based method for detecting small target under sea clutter background |
CN108921009A (en) * | 2018-05-14 | 2018-11-30 | 浙江大学 | A kind of SAR radar land tank target identifying system |
CN108932469A (en) * | 2018-05-14 | 2018-12-04 | 浙江大学 | Ship seakeeping system in a kind of SAR Radar Sea |
CN109212503A (en) * | 2018-09-26 | 2019-01-15 | 西安空间无线电技术研究所 | A kind of method for detecting targets at sea and device for dividing shape correlated characteristic based on AR spectrum |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101140324A (en) * | 2007-10-11 | 2008-03-12 | 上海交通大学 | Method for extracting sea area synthetic aperture radar image point target |
WO2008112361A2 (en) * | 2007-02-08 | 2008-09-18 | Raytheon Company | Methods and apparatus for log-ftc radar receivers having enhanced sea clutter model |
CN101806887A (en) * | 2010-03-19 | 2010-08-18 | 清华大学 | Space tracking filter-based sea clutter suppression and target detection method |
CN101881826A (en) * | 2009-05-06 | 2010-11-10 | 中国人民解放军海军航空工程学院 | Scanning-mode sea clutter local multi-fractal target detector |
CN101887119A (en) * | 2010-06-18 | 2010-11-17 | 西安电子科技大学 | Subband ANMF (Adaptive Normalized Matched Filter) based method for detecting moving object in sea clutter |
-
2011
- 2011-03-03 CN CN2011100510960A patent/CN102183746B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008112361A2 (en) * | 2007-02-08 | 2008-09-18 | Raytheon Company | Methods and apparatus for log-ftc radar receivers having enhanced sea clutter model |
CN101140324A (en) * | 2007-10-11 | 2008-03-12 | 上海交通大学 | Method for extracting sea area synthetic aperture radar image point target |
CN101881826A (en) * | 2009-05-06 | 2010-11-10 | 中国人民解放军海军航空工程学院 | Scanning-mode sea clutter local multi-fractal target detector |
CN101806887A (en) * | 2010-03-19 | 2010-08-18 | 清华大学 | Space tracking filter-based sea clutter suppression and target detection method |
CN101887119A (en) * | 2010-06-18 | 2010-11-17 | 西安电子科技大学 | Subband ANMF (Adaptive Normalized Matched Filter) based method for detecting moving object in sea clutter |
Non-Patent Citations (1)
Title |
---|
《舰船电子对抗》 20100430 郭锦成 对海雷达目标检测性能测试方法 第70-71,75页 1-6 第33卷, 第2期 2 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914769A (en) * | 2012-10-19 | 2013-02-06 | 南京信息工程大学 | Joint fractal-based method for detecting small target under sea clutter background |
CN108921009A (en) * | 2018-05-14 | 2018-11-30 | 浙江大学 | A kind of SAR radar land tank target identifying system |
CN108932469A (en) * | 2018-05-14 | 2018-12-04 | 浙江大学 | Ship seakeeping system in a kind of SAR Radar Sea |
CN109212503A (en) * | 2018-09-26 | 2019-01-15 | 西安空间无线电技术研究所 | A kind of method for detecting targets at sea and device for dividing shape correlated characteristic based on AR spectrum |
CN109212503B (en) * | 2018-09-26 | 2020-12-18 | 西安空间无线电技术研究所 | Offshore target detection method and device based on AR spectrum fractal correlation characteristics |
Also Published As
Publication number | Publication date |
---|---|
CN102183746B (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102147465B (en) | System and method for detecting sea target by chaos optimizing radar | |
CN102183749A (en) | Sea target detecting system of adaptive radar and method thereof | |
CN102147463B (en) | System and method for forecasting Qunzhi radar sea clutters | |
CN102147464B (en) | Intelligent system and method for forecasting robust radar sea clutter | |
CN104076355B (en) | Tracking before Dim targets detection in strong clutter environment based on dynamic programming | |
CN104714225B (en) | Dynamic programming tracking-before-detection method based on generalized likelihood ratios | |
CN102879766A (en) | Method and apparatus for detecting and tracking faint target of high frequency ground wave radar | |
CN102183746B (en) | Radar marine target detection system and method | |
CN107942312A (en) | A kind of Intelligent radar sea target detection system and method based on differential evolution invasive weed optimization algorithm | |
CN107656250A (en) | A kind of Intelligent radar sea target detection system and method based on artificial bee colony algorithm | |
CN102183751B (en) | Intelligent radar sea target detection system and method | |
CN102183745B (en) | Sea clutter forecasting system and method for intelligent radar | |
CN102147466B (en) | Agile radar data processing system and method | |
CN106353743B (en) | It is matched with the nearly optimal radar target detection method of equivalent shapes parameter | |
CN102183754B (en) | System and method for detecting sea target by using robust intelligent radar | |
CN108983181A (en) | A kind of radar marine target detection system of gunz optimizing | |
CN102183747B (en) | Agile radar target detecting system and method | |
CN102183744A (en) | Swarm-intelligence radar sea target detecting system and method | |
CN102183752B (en) | Self-adaptive radar marine clutter prediction system and method | |
CN107942300A (en) | A kind of Intelligent radar sea target detection system and method based on improvement artificial bee colony algorithm | |
CN102156278B (en) | Robust radar sea target detection system and method | |
CN202033473U (en) | Agile radar object detecting device | |
CN102183753B (en) | System and method for radar sea clutter forecast by using chaos optimization | |
CN102183748B (en) | A radar sea clutter forecast system and method | |
CN107942299A (en) | A kind of Intelligent radar sea target detection system and method based on improvement shuffled frog leaping algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120725 Termination date: 20130303 |