CN107646162A - 使用场改变电路的无线功率传送 - Google Patents

使用场改变电路的无线功率传送 Download PDF

Info

Publication number
CN107646162A
CN107646162A CN201680029676.0A CN201680029676A CN107646162A CN 107646162 A CN107646162 A CN 107646162A CN 201680029676 A CN201680029676 A CN 201680029676A CN 107646162 A CN107646162 A CN 107646162A
Authority
CN
China
Prior art keywords
magnetic field
circuit
distribution
field
charging zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680029676.0A
Other languages
English (en)
Inventor
W·H·冯诺瓦克三世
E·K·卡拉尔
C·B·惠兰德
郑胜宪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN107646162A publication Critical patent/CN107646162A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

无线功率发射器包括:功率发射线圈,被配置为生成用于将充电功率无线耦合至一个或多个接收设备的磁场,该磁场在限定充电区的区域上方具有磁场分布;电路,被配置为改变由功率发射线圈生成的磁场,以改变磁场分布;以及控制器,操作性地耦合至电路,控制器被配置为控制电路以响应于一个或多个接收设备的检测特性改变磁场分布。

Description

使用场改变电路的无线功率传送
相关申请
本申请要求2015年5月27日提交的标题为“Wireless Power Transfer Using AField Altering Circuit”的美国临时专利申请第62/166,819号的权益,其全部内容作为参考结合在本文中。
技术领域
本公开总体上涉及无线供电。更具体地,本公开涉及一种场改变线圈。
背景技术
越多越多数量和种类的电子设备经由可充电电池来供电。这种设备包括移动电话、便携式音乐播放器、膝上型计算机、平板电脑、计算机外围设备、通信设备(例如,蓝牙设备)、数码相机、助听器等。虽然电池技术得到了改进,但电池供电电子设备越来越多地要求并消耗更大量的电能,从而总是要求再充电。可充电设备通常经由有线连接来充电,这要求物理地连接至电源的电缆或其他类似连接器。电缆和类似电连接器有时会不方便或笨重,并且具有其他缺点。能够在自由空间中传送电能的被用于对可充电电子设备进行充电的无线充电系统可以克服有线充电解决方案的一些缺陷。如此,期待有效且安全地传送用于为可充电电子设备进行充电的无线充电系统和方法。
发明内容
所附权利要求范围内的系统、方法和设备的各种实施方式均具有多个方面,并不是其中的单个方面仅负责本文描述的期望属性。在不限制所附权利要求的范围的情况下,本文描述一些显著特征。
本说明书中描述的主题的一个或多个实施方式的细节在以下附图和说明书中进行阐述。其他特征、方面和优势将从说明书、附图和权利要求中变得明显。应注意,以下附图的相对尺寸不按比例绘制。
本公开的一个方面提供了一种无线功率发射器,包括:功率发射线圈,被配置为生成用于将充电功率无线地耦合至一个或多个接收设备的磁场,磁场在限定充电区的区域之上具有磁场分布;电路,被配置为改变由功率发射线圈生成的磁场,以改变磁场分布;以及控制器,操作性地耦合至电路,控制器被配置为响应一个或多个接收设备的检测特性控制电路以改变磁场分布。
本公开的另一方面提供了一种用于生成磁场的设备,其中磁场在限定充电区的区域之上具有磁场分布,该磁场用于为一个或多个接收设备无线地充电或供电,其包括:用于检测一个或多个接收设备的特性的装置,其中特性表示经由通过无线功率发射装置生成的磁场来无线地耦合充电功率的量或效率;以及用于响应于检测装置改变磁场以改变充电区内的磁场分布的装置。
本公开的另一方面提供了一种操作无线功率发射装置的方法,该无线功率发射装置被配置为生成在限定充电区的区域之上具有磁场分布的磁场,用于为一个或多个接收设备无线地充电或供电,该方法包括:检测一个或多个接收设备的特性,该特性表示经由通过无线功率发射装置生成的磁场来无线地耦合充电功率的量或效率;以及响应于检测特性,改变磁场以改变充电区内的磁场分布。
本公开的另一方面提供了一种用于无线功率传送的装置,包括:壳体,具有被配置用于一个或多个接收设备的直接或间接放置的表面,表面限定用于为一个或多个接收设备进行无线充电的充电区;功率发射线圈,被配置为在充电区内生成磁场,用于将充电功率无线地耦合至一个或多个接收设备,磁场在充电区内具有磁场分布;以及电路,被配置为改变由功率发射线圈生成的磁场,以改变充电区内的磁场分布。
附图说明
在附图中,类似的参考标号在各个附图中表示类似的部分,除非另有指定。对于诸如指定为“102a”或“102b”的字母符号的参考标号,字母符号指定可以区分同一幅图中的两个类似部分或元件。当参考标号包括所有附图中的具有相同参考符号的所有部分时,可以省略用于参考符号的指定。
图1是根据本发明的示例性实施例的示例性无线功率传送系统的功能框图。
图2是根据本发明的各个示例性实施例的可用于图1的无线功率传送系统的示例性部件的功能框图。
图3是根据本发明的示例性实施例的包括发射或接收天线的图2的发射电路或接收电路的一部分的示意图。
图4是根据本发明的示例性实施例的可用于图1的无线功率传送系统的发射器的功能框图。
图5是根据本发明的示例性实施例的可用于图1的无线功率传送系统的接收器的功能框图。
图6是可用于图4的发射电路的部分发射电路的示意图。
图7A是示出具有平坦H场(even H-field)的发射天线的磁场分布的示图。
图7B是示出具有H场的发射天线的磁场分布的示图,其中该H场具有峰值。
图8是示出定位在无线充电表面上的示例性接收器的示意图。
图9A、图9B、图9C和图9D是示出结合场改变电路的无线功率传送天线的实施例的示图,其中场改变电路是场集中电路。
图10A、图10B、图10C和图10D是示出结合场改变电路的无线功率传送天线的实施例的示图,其中场改变电路是场衰减电路。
图11A、图11B、图11C、图11D和图11E是示出结合场改变电路的无线功率传送天线的备选实施例的示图,其中场改变电路可以是场集中电路或场衰减电路。
图12A、图12B、图12C和图12D是示出结合场改变电路的无线功率传送天线的备选实施例的示图,其中场改变电路可以是场集中电路。
图13A、图13B、图13C和图13D是示出结合场改变电路的无线功率传送天线的备选实施例的示图,其中场改变电路可以是场衰减电路。
图14是示出用于改变无线充电磁场的方法的示例性实施例的流程图。
图15是用于改变无线充电磁场的装置的功能框图。
附图中所示的各个特征可以不按比例绘制。因此,各个特征的尺寸可以为了清楚而任意扩大或减小。此外,一些附图可以不示出给定系统、方法或设备的所有部件。最后,类似的参考标号可用于表示说明书和附图中的类似特征。
具体实施方式
以下结合附图阐述的详细描述用作本发明的示例性实施例的描述,并且不用于仅表示可以实践本发明的实施例。说明书中使用的术语“示例性”表示“用作示例、实例或示意”,并且不是必须构造为相对于其他示例性实施例是优选或有利的。详细描述包括用于提供对本发明的示例性实施例的完整理解的具体细节。在一些示例中,以框图形式示出一些设备。
在该说明书中,术语“应用程序”还可以包括具有可执行内容的文件,诸如目标代码、脚本、字节代码、标记语言文件和补丁。此外,本文所指的“应用程序”还可以包括本质上不可执行的文件,诸如需要打开的文档或者需要被访问的其他数据文件。
如本文所使用的,术语“部件”、“数据库”、“模块”、“系统”等用于表示计算机相关实体,可以是硬件、固件、硬件和软件的组合、软件或者执行软件。例如,部件可以是但不限于在处理器上运行的处理、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过示例,在计算设备上运行的应用程序和计算设备可以是部件。一个或多个部件可以驻留在处理和/或执行线程内,并且部件可以位于一个计算机上和/或分布在两个或多个计算机之间。此外,这些部件可以从其上存储各种数据结构的各种计算机可读介质中执行。部件可以通过本地和/或远程处理器进行通信,诸如根据具有一个或多个数据包的信号(例如,来自一个部件的数据与本地系统、分布式系统中的另一部件交互,和/或横跨诸如因特网的网络通过信号与其他系统交互)。
无线地传送功率可以表示从发射器向接收器传送任何形式的能量(与电场、磁场、电磁场或其他形式相关联),而不使用物理电导体(例如,可以通过自由空间传送功率)。输出进入无线场(例如,磁场)的功率可以被“接收天线”接收、捕获或耦合,以实现功率传送。
期望具有无线充电器,其可以无线地为各种设备充电,其可以具有使一种类型的充电场分布相对于另一种类型的充电场分布更加优选的属性。例如,一个设备可以更好地适应于无线地从平坦充电场分布无线地接收功率,而另一设备可以更好地适用于从峰值充电场分布无线地接收功率。
图1是根据本发明的示例性实施例的示例性无线功率传送系统100的功能框图。输入功率102可以从电源(未示出)提供给发射器104,用于生成场105(例如,磁性或电磁类),以提供能量传送。接收器108可以耦合至场105,并且生成输出功率110,用于存储或者被耦合至输出功率110的设备(未示出)消耗。发射器104和接收器108两者被距离112分离。在一个示例性实施例中,发射器104和接收器108根据相互谐振关系来进行配置。当接收器108的谐振频率和发射器104的谐振频率基本相同或者非常接近时,发射器104和接收器108之间的传输损失降低。如此,与要求大线圈非常接近(例如,毫米)的纯电感解决方案相比,可以在较大的距离上提供无线功率传送。谐振电感耦合技术由此可以允许提高效率并且在各种距离上进行功率传送,并且具有各种电感线圈配置。
当接收器108位于由发射器104产生的能量场105中时,接收器108可以接收功率。场105对应于由发射器104输出的能量可以被接收器108捕获的区域。在一些情况下,场105可以对应于发射器104的“近场”,这将在下面进一步描述。发射器104可以包括用于输出能量传输的发射天线114(其在这里还可以被称为线圈)。接收器108进一步包括用于接收或捕获来自能量传输的能量的接收天线118(其在这里还可以被称为线圈)。近场可以对应于由于发射天线114中的电流和电荷引起的强反应场的区域,其中发射天线114最低限度地辐射功率远离发射天线114。在一些情况下,近场可以对应于发射天线114的大约1个波长(或者其一小部分)内的区域。
因此,根据上述内容,根据更多个具体实施例,发射器104可以被配置为输出时变磁场105,其具有与发射天线114的谐振频率相对应的频率。当接收器在场105内时,时变磁场可以在接收天线118中诱发电压,这使得电流流过接收天线118。如上所述,如果接收天线118被配置为在发射天线114的频率处谐振,则能量可以被有效传送。在接收天线118中诱发的AC信号可以如上所述进行整流,以产生可提供用于充电或者为负载供电的DC信号。
图2是根据本发明的各个示例性实施例的包括可用于图1的无线功率传送系统100的示例性部件的无线功率传送系统200的功能框图。发射器204可以包括发射电路206,其可以包括振荡器222、驱动电路224以及滤波器和匹配电路226。振荡器222可以被配置为生成期望频率的信号(诸如468.75KHz、6.78MHz或13.56MHz),并且可以响应于频率控制信号223来调整。振荡器信号可以被提供给驱动电路224,驱动电路224被配置为例如在发射天线214的谐振频率处驱动发射天线214。驱动电路224可以是切换放大器,其被配置为接收来自振荡器222的方波并输出正弦波。例如,驱动电路224可以是E类放大器。还可以包括滤波器和匹配电路226来过滤掉谐波和其他不想要的频率,并且使发射器204的阻抗与发射天线214的阻抗相匹配。作为驱动发射天线214的结果,发射器204可以在足以为电子设备充电或供电的电平下无线地输出功率。作为一个示例,所提供的功率例如可以为300毫瓦特或者5瓦特至40瓦特的电平,从而针对不同的功率要求为不同的设备供电或充电。还可以提供更高或更低的功率电平。
接收器208可以包括接收电路210,其可以包括匹配电路232以及整流和切换电路234,以生成从AC功率输出的DC功率,从而如图2所示为电池236充电或者为耦合至接收器208的设备(未示出)供电。可以包括匹配电路232,以使接收电路210的阻抗与接收天线218的阻抗相匹配。接收器208和发射器204可以附加地在独立的通信通道219上通信(例如,蓝牙、zigbee、蜂窝等)。接收器208和发射器204可以使用无线场205的特性经由带内信令选择性地通信。
接收器208可以初始地具有选择性禁用关联负载(例如,电池236),并且可以被配置为确定由发射器204发射且被接收器208接收的功率的量是否适合于为电池236充电。此外,接收器208可以被配置为在确定功率的量适当的情况下使能负载(例如,电池236)。
图3是根据本发明的示例性实施例的包括发射或接收天线352的图2的发射电路206或接收电路210的一部分的示意图。如图3所示,包括下述内容的用于示例性实施例的发射或接收电路350可以包括天线352。天线352还可以被称为或者被配置为“环路”天线352。天线352在本文还可以称为或者配置为“磁性”天线或电感线圈。术语“天线”一般是指可无线地输出或接收能量的、用于耦合至另一“天线”的部件。天线还可以称为线圈类型,其被配置为无线地输出或接收功率。如本文所使用的,天线352是“功率传送部件”类型的示例,其被配置为无线地输出和/或接收功率。天线352可以被配置为包括空气磁心(air core)或者物理磁心,诸如铁氧体磁心(未示出)。
天线352可以形成谐振电路的一部分,谐振电路被配置为在谐振频率处谐振。环路或磁性天线352的谐振频率基于电感和电容。电感可以仅仅是由天线352创建的电感,而电容可以被添加以在期望谐振频率处创建谐振结构(例如,电容器可以串联或并联地电连接至天线352)。作为非限制性示例,电容器354和电容器356可以被添加至发射或接收电路350,以创建在操作的期望频率处谐振的谐振电路。对于较大尺寸的天线,需要保持谐振的电容尺寸可以随着环路的尺寸或电感的增加而减小。随着天线尺寸的增加,近场的有效能量传送面积可以增加。使用其他部件形成的其他谐振电路也是可以的。作为另一非限制性示例,电容器(未示出)可以被并联放置在天线352的两个端子之间。对于发射天线,具有与天线352的谐振频率基本对应的频率的信号358可以被输入至天线352。对于接收天线,信号358可以被输出,其可以被整流并用于为负载供电或充电。
图4是根据本发明的示例性实施例的可用于图1的无线功率传送系统的发射器404的功能框图。发射器404可以包括发射电路406和发射天线414。发射天线414可以是如图3所示的天线352。发射天线414可以被配置为上面参照图2所述的发射天线214。在一些实施方式中,发射天线414可以是功率发射线圈(例如,电感线圈)。在一些实施方式中,发射天线414可以与较大结构(诸如衬垫、桌子、垫、灯或其他静态配置)相关联。发射电路406可以通过提供振荡信号向发射天线414提供功率,使得在发射天线414周围生成能量(例如,磁通量)。发射器404可以在任何适当的频率处进行操作。通过示例,发射器404可以在6.78MHzISM带处进行操作。
发射电路406可以包括:固定阻抗匹配电路409,用于使发射电路406的阻抗(例如,50欧姆)与发射天线414相匹配;以及低通滤波器(LPF)408,被配置为将谐振发射降低到防止耦合至接收器108(图1)的设备的自干扰的水平。其他示例性实施例可以包括不同的滤波器拓扑,包括但不限于陷波滤波器,其衰减特定频率但使其他频率通过,并且可以包括自适应阻抗匹配,其可以基于可测量发射度量而改变(诸如输出功率至天线414或者由驱动电路424牵引DC电流)。发射电路406进一步包括被配置为驱动由振荡器423确定的信号的驱动电路424。发射电路406可以包括分立设备或电路,或者备选地可以包括集成组件。
发射电路406可进一步包括控制器415,用于在针对特定接收器的发射阶段(或占空比)期间选择性地使能振荡器423,用于调整振荡器423的频率或相位,并且用于调整用于通过它们的附接接收器实施与相邻设备的交互的通信协议的输出功率电平。应注意,控制器415还可以在这里被称为处理器。控制器415可以耦合至存储器470。振荡器相位和发射路径中的相关电路的调整可以允许降低带外发射,尤其在从一个频率转变到另一个频率时。
发射电路406可进一步包括负载感测电路416,用于检测由发射天线414生成的近场附近中的有效接收器的存在或不存在。通过示例,负载感测电路416监控流入驱动电路424的电流,该电流可以被发射天线414生成的场附近的有效接收器的存在或不存在所影响,这将在下面进一步进行描述。通过控制器415监控驱动电路424上加载的改变的检测,用于确定是否使能振荡器423来用于发射能量并与有效接收器通信。
发射天线414可以利用绞合线来实施或者实施为具有被选择为保持电阻损失较低的厚度、宽度和金属类型的天线带。
发射器404可以收集和追踪关于与发射器404相关联的接收设备的行踪和状态的信息。因此,发射电路406可以包括连接至控制器415(这里也称为处理器)的存在检测器480和封闭检测器460或它们的组合。控制器415可以响应于来自存在检测器480和封闭检测器460的存在信号调整由驱动电路424传送的功率的量。发射器404可以通过多个功率源(诸如AC-DC转换器(未示出))接收功率,以转换建筑物中存在的传统的AC功率,通过DC-DC转换器(未示出)接收功率,以将传统的DC功率源转换为适合于发射器404的电压,或者直接地从传统的DC功率源(未示出)接收功率。
作为非限制性示例,存在检测器480可以是运动检测器,其用于感测插入到发射器404的覆盖区中的将被充电的设备的初始存在。在检测之后,发射器404可以被接通,并且被设备接收的功率可用于以预定方式拨动接收设备上的开关,这又导致发射器404的驱动点阻抗的改变。
作为另一非限制性示例,存在检测器480可以是能够检测人类的检测器,例如通过红外检测、运动检测或其他适当的方式。在一些示例性实施例中,可以具有限制发射天线414可在特定频率处发射的功率的量的规则。在一些情况下,这些规则意味着保护人类不受电磁辐射的影响。然而,可以存在发射天线414被放置在没有被人类占据或者不频繁地被人类占据的区域(诸如车库、工厂地面、商店等)中的环境。如果这些环境中没有人,则可以允许将发射天线414的功率输出增加到额定的功率限制标准以上。换句话说,控制器415可以响应于人类存在将发射天线414的功率输出调整到标准电平或较低电平,或者在人类与发射天线414的电磁场的距离在规则距离以上时将发射天线414的功率输出调整到标准电平之上。
作为非限制性示例,封闭检测器460(其在本文还可以称为封闭隔室检测器或封闭空间检测器)可以是诸如用于确定何时壳体为封闭或打开状态的感测开关的设备。当发射器位于处于封闭状态的壳体中时,可以增加发射器的功率电平。
在示例性实施例中,可以使用发射器404不会不确定地保持的方法。在这种情况下,发射器404可以被编程以在用于确定的时间量之后关闭。该特征防止发射器404(尤其是驱动电路424)在其周边的无线设备被完全充满电之后长时间运行。该事件可以是由于检测从中继器或接收天线218发送的信号来确定设备被完全充满电的电路故障而引起。为了防止在另一设备被放置在其周边的情况下发射器404自动地关闭,发射器404自动关闭特征可以仅在其周边检测到缺乏运动的设置周期之后被启动。用户能够确定静止时间间隔,并且根据期望而改变该间隔。作为非限制性示例,该时间间隔可以长于需要完全充满特定类型的无线设备所需的时间间隔(假设该设备初始时完全放电)。
图5是根据本发明示例性实施例的可用于图1的无线功率传送系统的接收器508的功能框图。接收器508包括接收电路510,其可以包括接收天线518。接收器508进一步耦合至设备550,用于为其提供接收到的功率。应该注意,接收器508被示为在设备550外,但是可以集成到设备550中。能量可以无线地传播至接收天线518,然后通过剩余接收电路510耦合至设备550。通过示例,充电设备可以包括诸如移动电话、音乐播放器、膝上型计算机、平板电脑、计算机外围设备、通信设备(例如,蓝牙设备)、数码相机、助听器(和其他医疗设备)、可佩戴设备等的设备。
接收天线518可以被调谐以在与发射天线414(图4)相同的频率处谐振,或者在指定频率范围内谐振。接收天线518的尺寸可以与发射天线414类似,或者可以基于相关设备550的尺寸而具有不同大小。通过示例,设备550可以是便携式电子设备,其具有小于发射天线414的尺寸或长度的直径或长度尺寸。在这种示例中,接收天线518可以实施为多匝线圈,以减小调谐电容器(未示出)的电容值并增加接收线圈的阻抗。通过示例,接收天线518可以被放置在设备550的大致圆周周围,从而使得天线直径最大化并且减小接收天线518的环路匝数(即,绕组)以及绕组间电容。
接收电路510可以向接收天线518提供阻抗匹配。接收电路510包括功率转换电路506,其用于将接收到的能量转换为设备550所使用的充电功率。功率转换电路506包括AC-DC转换器520,并且还包括DC-DC转换器522。AC-DC转换器520将接收天线518处接收到的能量信号整流为具有输出电压的非交流功率。DC-DC转换器522(或其他功率调节器)将整流的RF电能信号转换为能量电位(例如,电压),输出电压和输出电流与设备550兼容。预期各种AC-DC转换器,包括部分和全整流器、调节器、桥、倍压器以及线性和切换转换器。
接收电路510可以进一步包括RX匹配和切换电路512,其用于将接收天线518连接至功率转换电路506或者备选地用于断开功率转换电路506。使接收天线518与功率转换电路506断开不仅暂停设备550的充电,而且还改变“负载”被发射器404(图2)“看到”。
当在发射器的近场中存在多个接收器508时,可以期望时分复用一个或多个接收器的加载和卸载,从而能够使其他接收器更加有效地耦合至发射器。接收器508还可以被遮蔽(cloak),以消除耦合至其他附近的接收器或者减少附近发射器上的加载。这里,接收器的这种“卸载”也已知为“遮蔽”。此外,由接收器508控制且被发射器404检测的卸载和加载之间的这种切换可以提供从接收器508到发射器404的通信机制。此外,协议可以与能够将消息从接收器508发送到发射器404的切换相关联。通过示例,切换速度可以为100μsec级别。
在示例性实施例中,发射器404和接收器508之间的通信可以经由“带外”分离通信通道/天线或者经由“带内”通信(可经由用于功率传送的场的调制发生)来进行。
接收电路510可以进一步包括信令检测器和信标(beacon)电路514,用于识别接收到的能量波动,该能量波动可对应于从发射器到接收器的信息信令。此外,信令和信标电路514还可用于检测减少的RF信号能量(即,信标信号)的传输,并且将减少的信号能量整流为用于唤醒接收电路510内的未供电或功率耗尽电路的额定功率,从而配置接收电路510用于无线充电。
接收电路510还包括控制器516,用于协调本文所述接收器508的处理,包括本文所述切换电路512的控制。应注意,控制器516在这里还可以称为处理器。接收器508的遮蔽还可以发生在其他事件的发生时,包括为设备550提供充电功率的外围有线充电源(例如,墙壁/USB功率)的检测。除了控制接收器的遮蔽之外,处理器516还可以监控信标电路514以确定信标状态和从发射器404发送的额外消息。处理器516还可以调整DC-DC转换器522用于提高性能。
图6是可用于图4的发射电路406的发射电路600的一部分的示意图。发射电路600可以包括如上面图4所述的驱动电路624。如上所述,驱动电路624可以是切换放大器,其可以被配置为接收方波并输出正弦波,其被提供给发射电路650。在一些情况下,驱动电路624可以被称为放大电路。驱动电路624被示为E类放大器,然而,可以根据本发明的实施例使用任何适当的驱动电路624。驱动电路624可以通过来自图4所示振荡器423的输入信号602来驱动。驱动电路624还可以设置有驱动电压VD,其被配置为控制可通过发射电路650传送的最大功率。为了消除或减少谐波,发射电路600可以包括滤波电路626。滤波电路626可以是三极(电容器634、电感器632和电容器636)低通滤波电路626。
由滤波电路626输出的信号可以被提供给包括天线614的发射电路650。发射电路650可以包括一系列谐振电路,其具有电容620和电感(例如,可由天线的电感或电容或者附加电容器部件而引起),其可以在由驱动电路624提供的滤波信号的频率处谐振。发射电路650的负载可以由可变电阻器622来表示。负载可以是无线功率接收器508(其被定位为接收来自发射电路650的功率)的函数。
无线充电系统产生具有不同H场分布的磁性充电场。“平坦的”H场是在其充电区上方具有相对恒定的场分布的场。“平坦的”H场分布可以更好地适合于小充电接收设备以及在接收谐振器附近不具有大金属板的充电接收设备。“波峰”H场是在其充电区上方具有可变场分布的场,其中,H场“峰值”通常位于天线或线圈(黑可以是谐振器)的中心处。“波峰”H场分布可以更好地适合于较大的充电接收设备,其可以在接收天线附近具有相对较小的天线和大金属板。对于大多数充电接收设备来说,平坦H场可以提供各种优势。对于这些设备,平坦H场提供恒定的开路电压,这允许将充电接收设备放置在充电垫上的任何地方,由此简化充电接收设备中的功率接收单元(PRU)的设计。然而,对于具有相对较小天线的充电接收设备或者具有大金属板或衬背的线圈,“波峰”H场可以提供各种优势,其中H场的最高部分位于充电垫的中心。以这种方式,当较大PRU被放置在充电垫的中心时,场的“峰值”补偿由相对场引起的耦合减少,耦合减少起因于H场耦合至大金属板或者接收器的谐振器或线圈附近的盖。不幸的是,由于大多数充电接收设备将最可能放置在充电垫的中心,所以难以为所有设备提供适当的充电功率,它们中的一些更好地适合于“平坦”H场电荷分布,而另一些更好地适合于“波峰”H场电荷分布。因此,期望具有为可适合于所有类型的充电接收设备的无线充电系统提供H场分布的能力。
图7A是示出具有平坦H场的发射天线的场分布的示图。曲线图700示出了相对H场强度与面积的关系。垂直轴702示出了由功率发射天线产生的H场的相对幅度,并且水平轴704示出了横跨功率发射天线的距离x。迹线705示出了横跨功率发射天线的H场的相对幅度。迹线705的形状产生“充电区”706,其覆盖无线功率发射垫的表面。在任何位置处在充电区中产生的H场是具有幅度和相位的复3D向量。为了简化描述,H场将在这里被称为具有相对幅度,同时识别了在3D向量中还存在的相位。
发射垫707的平行阴影区示出了充电区,其用于为具有小谐振线圈和金属板或盖的相对较大设备进行充电,诸如被配置为在接近10和20瓦特之间牵引的设备,诸如平板计算设备。当具有小谐振线圈和金属板或盖的相对较大的设备被放置在充电垫707的表面上时,金属板或盖降低了充电能量从发射垫707到设备的电磁耦合,从而朝向发射垫707的中心创建零充电(charging null)。这会由于耦合至“反向”场的金属板存在于充电区之外而发生。这一般在两种不同的情况下发生。在第一种情况下,具有相对较大金属板和相对较小接收线圈的相对较大的接收器被定位在充电器或充电表面(其大于接收器中的金属板)上。在这种情况下,在金属板中创建的涡流反抗由接收线圈接收的场,并且接收器处的耦合和电压降低。这潜在地产生接收设备不能接收到足够的电压来正常操作的覆盖盲区。在第二种情况下,具有相对较大金属板和相对较小的接收线圈的相对较大的接收器被定位在充电器或充电表面(其小于接收器中的金属板)上。在这种情况下,充电器外存在的反向场耦合至较小的接收线圈,并且迫使那里的H场使得接收器处的耦合和电压增加,可能会导致接收器由于过充电而损坏。本公开总体上解决第一种情况,其中在金属板中创建的涡流反抗由接收线圈接收的场,并且接收器处的耦合和电压下降。这种不想要的耦合使得由迹线705示出的能量耦合减少或者在充电垫707的中心708中变得衰减。
发射垫709的平行阴影区示出了用于为相对较小设备充电的充电区,其具有少量或没有金属板或盖,诸如被配置为在近似几毫瓦特和10瓦特之间牵引的设备,诸如无线耳机或智能手机。当相对较小的设备被放置在充电垫709的表面上时,通常横跨发射垫709的整个表面保持平坦H场,并且允许相对较小的设备被放置在发射垫709的表面上的任何位置,并且仍然接收足够的充电能量。
图7B是示出峰值的H场的发射天线的场分布的示图。曲线730示出了区域上的相对H场强度。垂直轴732示出了由功率发射天线产生的H场的相对幅度,并且水平轴734示出了横跨功率发射天线的距离x。迹线735示出了横跨发射天线的H场的相对幅度,并且包括“峰值”731。迹线735的形状也给了“充电区”736一个上升,其覆盖无线功率发射垫的表面。
发射垫737的平行阴影区示出了用于为具有小谐振线圈和金属板或盖的相对较大的设备进行充电的充电区。H场中的峰值731一般位于发射垫737的中心,并且允许具有小谐振线圈和金属板或盖的相对较大的设备被放置在发射垫737的表面上的任何位置,并且接收足够的充电能量,这是因为峰值731克服了由悬置的金属板或盖引起的电磁耦合的任何下降。
发射垫739的平行阴影区示出了用于使用迹线735中示出的波峰H场为相对较小设备(其具有少量或者不具有金属板或盖)进行充电的充电区。当相对较小的设备被放置在充电垫739的表面上时,波峰H场可以使得小设备接收朝向充电垫739中心的过强的场,这会由于小设备的过压保护特征而导致小设备的过充电或充电器关闭。这使得在区域738中朝向发射垫739的中心放置小设备并且仍然接收足够电荷变得不实际。
在示例性实施例中,期望具有修改或调整功率发射天线的发射H场的能力,使得单个充电天线系统可用于为各种设备充电。
图8是示出位于无线充电表面802上的示例性接收器508的示意图800。无线充电表面802可以包括垫、桌子、衬垫、灯或其他结构,并且可以包括一些或所有在图4的发射器404中描述的元件。在图8所示实施例中,接收器508的面积小于无线充电表面802。在图8所示实施例中,接收器508包括主接收天线518,其与接收器508的尺寸相比相对较小。如本文所使用的,术语“天线”与术语“线圈”可交换使用,并且当利用电容器实施时,可以包括谐振结构并且被称为“谐振器”。如图8所示,接收器508包括壳体或其他金属结构804,其相对于主接收天线518的尺寸可以较大。在这种情况下,金属结构804的大金属板引起大谐振偏移,并且还引起耦合降低,从而在金属结构804中诱发的通量(称为涡流IE)在主接收天线518中生成电流ICE,其反抗主接收天线518中的充电电流IRX。电流ICE是指在主接收天线518中由涡流IE诱发的逆向涡流。这意味着从发射器404到接收器508的电磁耦合在接收器508位于无线充电表面802的中心时最小,由于金属结构804覆盖发射天线的最大面积(在图8中未示出)并由此在金属结构804中生成最大涡流IE,因此在主接收天线518中生成的反抗充电电流IRX的最大电流ICE
当使用具有相对较小主接收天线的大金属接收器时,具有均匀场的发射天线(未示出)将示出比电磁耦合的期望范围更大的范围。这使得接收器和接收天线设计由于宽电压范围难以实现,和/或接收器在无线充电表面802上的许多位置处不能接收电荷或者可以接收减少的电荷。结果,发射天线(未示出)和主接收天线518之间的总体电磁耦合降低,导致接收器508处可用的电压降低(这会导致电压太低而不能使用)以及针对接收器508中的整流器之后的负载的有效源阻抗的增加,由此可能降低可用功率。
图9A、图9B、图9C和图9D是示出结合场改变电路的无线功率传送天线的实施例的示图,其中场改变电路是场集中电路。
图9A是示出示例性发射垫902的示图。在示例性实施例中,发射垫902包括发射天线903,其包括天线线圈904、906和908。天线线圈904、906和908可以是单独的天线线圈,或者可以是同一天线线圈的天线线圈部分(例如,线圈的匝)并且可以以各种形状和配置来进行配置。在示例性实施例中,发射天线903以及天线线圈904、906和908可以包括发射天线614(图6)的实施例,其被配置为无线地发射功率。在示例性实施例中,发射天线903以及天线线圈904、906和908可以接收来自图4的发射电路406的功率传送信号。在示例性实施例中,天线线圈904可以被配置为接收1安培(1A)的电流,天线线圈906可以被配置为接收4A的电流,并且天线线圈908可以被配置为接收9A的电流。传送至天线线圈904、906和908的电流与每个线圈封闭的面积成比例,使得在该示例中,分别向天线线圈904、906和908提供1A、4A和9A在发射垫902的表面上方产生相对平坦的H场(也称为无线充电场),诸如图7A所示的H场。在特定情况下,当天线线圈904、906和908被配置为线圈结构的不同匝时,平坦H场可以是线圈的形状和配置/定位的函数。例如,虽然利用相同的电流来驱动,但匝之间的间隔和其他定位可以实现期望的场分布,诸如基本平坦的场或者具有一个或多个波峰或波谷。
在示例性实施例中,发射垫902包括附加电路910。在示例性实施例中,电路910可以称为场改变电路或场改变线圈,并且在示例性实施例中,可以是场集中电路。尽管电路910被示为大体位于天线线圈904和天线线圈906之间,但电路910和本文描述的场改变电路的各个实施例可以相对于天线线圈904、906和908定位在其他位置。在示例性实施例中,电路910可以至少部分地被发射天线903封闭。一般地,电路910定位在发射垫902的期望改变由发射垫902产生的H场的区域中。
图9B是进一步详细示出图9A的集中电路910的示图。在示例性实施例中,集中电路910包括线圈912、电容器914和开关916。在示例性实施例中,开关916可以由来自发射电路406的信号来控制。集中电路910可以用于选择性地改变由发射垫902产生的H场,以同时允许小设备被充电以及允许具有小谐振器(其具有金属板或盖)的大设备被充电。虽然示意性示出为具有单个环路线圈,但集中电路910还可以包括多匝形状的谐振器。
图9C是示出当集中电路910断开或打开时的发射垫902的H场的示图。垂直轴922示出了由与发射垫902相关联的功率发射天线产生的H场的相对幅度,以及水平轴924示出了横跨发射垫902的距离x。迹线925示出了由发射垫902产生的H场的相对幅度。迹线925的形状给了“充电区”926一个上升,其覆盖发射垫902的表面。当开关916打开时,集中电路910打开,并且对于H场“不可见”,使得在这种状态下,H场不被集中电路910影响并且保持一致。在该状态中,小的不太强健的设备可以位于发射垫902的表面上的任何地方,并且接收电荷而不过加载设备。
图9D是示出当集中电路910接通或者处于谐振状态时的发射垫902的H场的示图。集中电路910的谐振频率可以通过电容器914的值来限定,该值可以基于期望的操作特性来选择。垂直轴932示出了由与发射垫902相关联的功率发射天线产生的H场的相对幅度,以及水平轴934示出了横跨发射垫902的距离x。迹线935示出了由发射垫902产生的H场的相对幅度,并且包括峰值937。迹线935的形状给了“充电区”936一个上升,其覆盖发射垫902的表面。当开关916闭合时,电容器914使得集中电路910变得谐振,放大通过其的场,并且在迹线935中生成峰值937。在该状态下,具有小谐振线圈和大金属板或盖的设备可以位于发射垫902的表面上的任何位置,并且接收足够的电荷。
集中电路910可以实施为谐振环路、可被设计为在其中心提供附加H场强度的独立供电的环路、或者可被配置为放大H场且还使得谐振负载更具反应性的封闭-谐振环路(由驱动电路424(图4)看出)。这可以补偿使得谐振负载更具电容性的大金属板的通用问题。
由于通常期望发射谐振器在大多数时间产生均匀的场,所以集中电路910将通常在发射电路406的控制下断开。集中电路910可以在大金属支持或金属包覆设备被放置在发射垫902上时接通。集中电路910以及本文所述场改变电路的其他实施例的激活可以作为将被充电的设备识别其自身相对于发射器404作为大设备的结果而发生。备选地,集中电路910可以作为充电接收设备不能达到足够的电压来用于充电(并且没有其他设备在垫上)的结果而被激活,或者上述两种情况的组合。如此,根据示例性实施例,发射电路406可以被配置为检测经由场改变电路(例如,集中电路910)改变充电区的场分布的需要。当集中电路910没有被激活时,发射电路406响应于检测到从基本均匀的磁场分布(图9C)到与该磁场分布相比不太均匀的磁场分布(图9D)的改变场分布的需要而激活或者去激活场改变电路的操作。例如,如刚刚所述,发射电路406可以经由接收用于该设备的信息或者检测不充足的功率传送来检测可充电设备(例如,大设备或者具有特定金属量的设备)的类型。响应发射电路406控制场改变电路的操作,从而朝向充电区936的中心修改场分布。
图10A、图10B、图20C和图10D是示出结合场改变电路的无线功率传送天线的实施例的示图,其中,场改变电路是场衰减线圈。
图10A是示出示例性发射垫1002的示图。在示例性实施例中,发射垫1002包括发射天线1003,其包括天线线圈1004、1006和1008。天线线圈1004、1006和1008可以是单独的天线线圈,或者可以是同一天线线圈的天线线圈部分。在示例性实施例中,发射天线1003以及天线线圈1004、1006和1008可以包括发射天线614(图6)的实施例,其被配置为无线地发射功率。在示例性实施例中,发射天线1003以及天线线圈1004、1006和1008可以接收来自图4的发射电路406的功率传送信号。在示例性实施例中,天线线圈1004可以被配置为接收2安培(2A)的电流,天线线圈1006可被配置为接收4A的电流,以及天线线圈1008可以被配置为接收9A的电流。传送至每个天线线圈1004、1006和1008的电流与被每个线圈封闭的面积成比例,使得在该示例中,分别向天线线圈1004、1006和1008提供2A、4A和9A在天线线圈1004的附近在发射垫902的表面上方产生具有峰值的H场,诸如图7B所示的H场。
在示例性实施例中,发射垫1002包括电路1010。在示例性实施例中,电路1010可以被称为场改变电路或场改变线圈,并且在示例性实施例中,可以被称为场衰减电路。尽管电路1010被示为总体上位于天线线圈1004和天线线圈1006之间,但电路1010和本文所述场改变电路的各个实施例可以相对于天线线圈1004、1006和1008定位在其他地方。一般地,电路1010被定位在发射垫1002的期望改变由发射垫1002产生的H场的区域中。
图10B是进一步详细示出图10A的衰减电路1010的示图。在示例性实施例中,衰减电路1010包括线圈1012和开关1016。在示例性实施例中,开关1016可以由来自发射电路406的信号来控制。衰减电路1010可以用于选择性地改变由发射垫1002产生的H场,以同时允许小设备被充电以及允许具有小谐振器(其具有金属板或盖)的大设备被充电。虽然示意性示为具有单个环路,但衰减电路1010还可以包括多匝形状的谐振器。
图10C是示出当衰减电路1010断开或打开时的发射垫1002的H场的示图。垂直轴1022示出了由与发射垫1002相关联的功率发射天线产生的H场的相对幅度,以及水平轴1024示出了横跨发射垫1002的距离x。迹线1025示出了由发射垫1002产生的H场的相对幅度并且包括峰值1027。迹线1025的形状给了“充电区”1026一个上升,其覆盖发射垫1002的表面。当开关1016打开时,衰减电路1010打开,并且对于H场“不可见”,使得在这种状态下,H场中的峰值1027保留。在该状态中,具有小谐振线圈和大金属板或壳体的设备可以位于发射垫1002的表面上的任何地方,并且接收足够的电荷。
图10D是示出当衰减电路1010接通或者处于短路状态时的发射垫1002的H场的示图。垂直轴1032示出了由与发射垫1002相关联的功率发射天线产生的H场的相对幅度,以及水平轴1034示出了横跨发射垫1002的距离x。迹线1035示出了由发射垫1002产生的H场的相对幅度,并且包括区域1037,其中峰值1027(图10C)作为衰减电路1010的短路的结果而衰减。迹线1035的形状给了“充电区”1036一个上升,其覆盖发射垫1002的表面。当开关1016闭合时,衰减电路1010变得短路,由此衰减通过其的场,并且基本消除迹线1035中的峰值1027(图10C)。区域1037虽然不是完全平坦,但其与迹线1025相比显著地更加平坦,由此允许小的不太强健的设备被定位在发射垫1002的表面上的任何位置,并且接收电荷而不过加载设备。衰减电路1010可以被实施为短路线圈,其“短路”一部分H场,由此衰减该区域中的H场。当衰减电路1010不被激活时,发射电路406响应于检测到从基本不均匀的磁场分布(图10C)到与该磁场分布相比更加均匀的磁场分布(图10D)的改变场分布的需要而激活或者去激活场改变电路的操作。
在期望发射谐振器在大多数时间产生不均匀的场的实施例中,衰减电路1010在发射电路406的控制下通常断开。衰减电路1010可以在小设备被放置在发射垫1002上时接通。衰减电路1010的激活可以作为将被充电的设备识别其自身相对于发射器404为小设备的结果而发生。备选地,衰减电路1010通常可以接通,产生H场的相对平坦的分布。这允许大多数小设备被正常充电。衰减电路1010可以在具有小谐振线圈和大金属板的设备被放置在发射垫1002上时断开。这使得设备在垫上的任何地方接收正常电荷。
图11A、图11B、图11C、图11D和图11E是示出结合场改变电路的无线功率传送天线的备选实施例的示图,其中场改变电路可以是场集中电路或场衰减电路。
图11A是示出示例性发射垫1102的示图。在示例性实施例中,发射垫1102包括发射天线1103,其包括天线线圈1104、1106和1108。天线线圈1104、1106和1108可以是独立的天线线圈,或者可以是同一天线线圈的天线线圈部分。在示例性实施例中,发射天线1103以及天线线圈1104、1106和1108可以包括发射天线614(图6)的实施例,其被配置为无线地发射功率。在示例性实施例中,发射天线1103以及天线线圈1104、1106和1108可以接收来自图4的发射电路406的功率传送信号。在示例性实施例中,天线线圈1104可以被配置为接收1.5安培(1.5A)的电流,天线线圈1106可以被配置为接收4A的电流,以及天线线圈1108可以被配置为接收9A的电流。传送至每个天线线圈1104、1106和1108的电流与被每个线圈封闭的面积成比例,使得在该示例中,分别向天线线圈1104、1106和1108提供1.5A、4A和9A在发射垫1102的表面上方产生具有不太大的峰值的H场,其中峰值小于图7B或图10C的H场所示的峰值。
在示例性实施例中,发射垫1102包括电路1110。在示例性实施例中,电路1110可以被称为场改变电路,并且在示例性实施例中,可以被称为组合场改变电路,其中其可以被配置为操作为场集中电路或场衰减电路。尽管电路1110被示为总体上位于天线线圈1104和天线线圈1106之间,但电路1110和本文所述场改变电路的各个实施例可以相对于天线线圈1004、1006和1008定位在其他位置。一般地,电路1110被定位在发射垫1002的期望改变由发射垫1102产生的H场的区域中。
图11B是进一步详细示出图11A的组合电路1110的示图。在示例性实施例中,组合场改变电路1110包括线圈1112、电容器1114、开关1116和开关1118。在示例性实施例中,开关1116和开关1118可以由来自发射电路406的对应控制信号来控制。组合场改变电路1110可以用于选择性地改变由发射垫1102产生的H场,以同时允许小设备被充电以及允许具有小谐振器和金属板或盖的大设备被充电。虽然示意性示为单个环路,但组合场改变电路1110还可以包括多匝形状的谐振器。在示例性实施例中,当开关1116和开关1118均打开时,组合场改变电路1110打开并且不对发射垫1112产生的H场具有影响。当开关1116闭合且开关1118打开时,组合场改变电路1110以谐振状态被放置,并且可用于在组合场改变电路1110附近放大或增强由发射垫1102生成的H场。组合场改变电路1110的谐振频率可以通过电容器1114的值来限定,可以基于期望的操作特性来选择该值。当开关1116闭合且开关1118闭合时,组合场改变电路1110短路并且可以被配置为在组合场改变电路1110的附近衰减由发射垫1102生成的H场。
图11C是示出当组合场改变电路1110断开或打开时的发射垫1102的H场的示图。垂直轴1122示出了由与发射垫1102相关联的功率发射天线产生的H场的相对幅度,以及水平轴1124示出了横跨发射垫1102的距离x。迹线1125示出了由发射垫1102产生的H场的相对幅度,并且包括峰值1127。峰值1127通过提供给天线线圈1104、1106和1108的电流以及通过被天线线圈1104、1106和1108封闭的面积量来限定。迹线1125的形状给了“充电区”1126一个提升,其覆盖发射垫1102的表面。当开关1116打开且开关1118打开时,组合场改变电路1110打开,并且对于H场“不可见”,使得在这种状态下,如图11C所示,H场保持稍稍突出。在该状态中,相对强健的小设备或者具有小谐振器和小金属板或壳体的设备可以位于发射垫1102的表面上的任何位置,并且接收足够的电荷。
图11D是示出当组合场改变电路1110切换为谐振状态时的发射垫1102的H场的示图。垂直轴1132示出了由与发射垫1102相关联的功率发射天线产生的H场的相对幅度,以及水平轴1134示出了横跨发射垫1102的距离x。迹线1135示出了由发射垫1102产生的H场的相对幅度,并且包括峰值1137。迹线1135的形状给了“充电区”1136一个提升,其覆盖发射垫1102的表面。当开关1116闭合且开关1118打开时,组合场改变电路1110处于谐振状态,并且会影响H场,使得在该状态下,H场中的峰值1127(图11C)增强或放大,使得峰值1137大于峰值1127(图11C)。在这种状态下,具有小谐振线圈和大金属板或壳体的设备可以被定位在发射垫1120的表面上的任何位置,并且接收足够的电荷。
图11E是示出当组合场改变电路1110被切换为短路状态时的发射垫110的H场的示图。垂直轴1142示出了由与发射垫1102相关联的功率发射天线产生的H场的相对幅度,以及水平轴1144示出了横跨发射垫1102的距离x。迹线1145示出了由发射垫1102产生的H场的相对幅度,并且包括区域1147,其中峰值1127(图11C)由于场改变电路1110的短路而衰减。迹线1145的形状给了“充电区”1146一个提升,其覆盖发射垫1102的表面。当开关1116闭合且开关1118闭合时,组合场改变电路1110被短路并且会影响H场,使得在该状态下,H场中的峰值1127(图11C)被衰减,导致相对平坦的H场。在该状态下,小的不太强健的设备可以定位在发射垫1102的表面上的任何位置,并且接收电荷而不过加载设备。
图12A、图12B、图12C和图12D是示出结合场改变电路的无线功率传送天线的备选实施例的示图,其中场改变电路可以是场集中电路。
图12A是示出具有示例性发射垫1202的无线功率传送系统1200的示图。在示例性实施例中,发射垫1202包括发射天线1203,其包括天线线圈部分1204、1206和1208的三个绕组(例如,匝)。在示例性实施例中,发射天线1203以及天线线圈部分1204、1206和1208可以包括发射天线(图6)的实施例,其被配置为无线地发射功率。此外,线圈部分1204、1206和1208的配置/位置进一步提供图9A、图10A和图11A所示线圈部分的可能配置/位置的一个示出的示例。在示例性实施例中,发射天线1203可以接收来自图4的发射电路406的功率传送信号。在示例性实施例中,天线线圈部分1204、1206和1208可以被配置为在发射垫1202的表面上方开发相对平坦的H场,诸如图7A和图12B所示的H场。在该实施例中,天线线圈部分1204、1206和1208通过使在发射垫1202的边缘或外围附近的两个天线线圈部分1206和1208成簇并且使第三天线线圈部分1204朝向发射垫1202的中心与它们隔开较大距离来创建均匀场。与在最外的谐振器中具有较大电流的均匀隔开的谐振器相比,这具有在谐振器的边缘中增加电流浓度的效果,即使所有部分都承载相同的电流。
发射天线1203还包括与最内的线圈部分1204相关联的电路1210。在示例性实施例中,电路1210包括电容器1214和开关1216。在示例性实施例中,开关1216可以被来自发射电路406的信号所控制。电路1210可以被控制为使得最内的线圈部分1204在谐振状态下操作,从而操作为集中线圈,其可用于选择性地改变由发射垫1202产生的H场,以同时允许小设备被充电以及允许具有小谐振器和金属板的大设备被充电。电路1210的谐振频率可以通过电容器1214的值来限定,可以基于期望的操作特性来选择该值。尽管被示为与最内的天线线圈部分1204相关联,但电路1210和本文描述的场改变电路和线圈部分的各个实施例可以相对于天线线圈部分1204、1206和1208定位在其他地方。总体上,电路1210与位于发射垫1202的期望改变由发射垫1202产生的H场的区域中的天线线圈或天线线圈部分相关联。
图12B是示出当电路1210断开或打开时发射垫1202的H场的示图。垂直轴1222示出了由与发射垫1202相关联的发射天线1203产生的H场的相对幅度,以及水平轴1224示出了横跨发射垫1202的距离x。迹线1225示出了由发射垫1202产生的H场的相对幅度。迹线1225的形状给了“充电区”1226一个提升,其覆盖发射垫1202的表面。当开关1216打开时,最内的线圈部分1204正常操作(不处于谐振状态),使得在这种状态下,H场如图12B所示保持均匀。在该状态中,小设备可以位于发射垫1202的表面上的任何位置,并且接收电荷而不过加载设备。
图12C是示出具有示例性发射垫1232的无线功率传送系统1230的示图。在示例性实施例中,发射垫1232包括发射天线1233,其包括天线线圈部分1234、1236和1238的三个绕组。在示例性实施例中,发射天线1233以及天线线圈部分1234、1236和1238可以包括发射天线614(图6)的实施例,其被配置为无线地发射功率。在示例性实施例中,发射天线1233可以接收来自图4的发射电路406的功率传送信号。
在图12C所示实施例中,电路1210的开关1216闭合,从而使得最内的线圈部分1234在谐振状态下操作,从而使得最内的线圈部分1234操作为集中线圈,其可用于选择性地改变由发射垫1232产生的H场,以允许具有小谐振器和金属板或盖的大设备被充电。
图12D是示出当电路1210接通或闭合时发射垫1232的H场的示图。垂直轴1242示出了由与发射垫1232相关联的发射天线1233产生的H场的相对幅度,以及水平轴1244示出了横跨发射垫1232的距离x。迹线1245给出由发射垫1232产生的H场的相对幅度。迹线1245的形状给了“充电区”1246一个提升,其覆盖发射垫1232的表面。迹线1245包括峰值1247,其通过最内的线圈部分1234在谐振状态下操作并且在最内的线圈部分1234的附近放大发射天线1233的H场来引起。当开关1216闭合时,最内的线圈部分1234在谐振状态下操作,使得在该谐振状态下,最内的线圈部分1234附近的H场被放大,由迹线1245中的峰值1247证实。这使得具有小谐振线圈和大金属板或壳体的设备被定位在发射垫1232的表面上的任何位置,并且接收足够的电荷。
图13A、图13B、图13C和图13D是示出结合场改变电路的无线功率传送天线的备选实施例的示图,其中场改变电路可以是场衰减电路。
图13A是示出具有示例性发射垫1302的无线功率传送系统1300的示图。在示例性实施例中,发射垫1302包括发射天线1303,其包括天线线圈部分1304、1306和1308的三个绕组。在示例性实施例中,发射天线1303以及天线线圈部分1304、1306和1308可以包括发射天线614(图6)的实施例,其被配置为无线地发射功率。在示例性实施例中,发射天线1303可以接收来自图4的发射电路406的功率传送信号。在示例性实施例中,天线线圈部分1304、1306和1308可以被配置为在发射垫1302的表面上方产生具有峰值的H场,诸如图7B和图13B所示的H场。在该实施例中,天线线圈部分1304、1306和1308通过使发射垫1302的边缘附近的两个天线线圈部分1306和1308成簇并且使第三个天线线圈部分1304在发射垫1302的中心与它们隔开较大距离来创建平坦场。与在最外的谐振器中具有较大电流的均匀隔开的谐振器相比,这具有增加谐振器的边缘中的电流浓度的效果,即使所有部分都承载相同的电流。
发射天线1303还包括与最内的线圈部分1304相关联的电路1310。在示例性实施例中,电路1310包括开关1316。在示例性实施例中,开关1316可以被来自发射电路406的信号所控制。电路1310可以被控制为选择性地使最内的线圈部分1304在短路状态下操作,从而操作为衰减电路,其可用于选择性地改变由发射垫1302产生的H场,以同时允许小设备被充电以及允许具有小谐振器和金属板的大设备被充电。尽管被示为与最内的天线线圈部分1304相关联,但电路1310和本文描述的场改变电路的各个实施例可以相对于天线线圈部分1304、1306和1308定位在其他位置。总体上,电路1310与位于发射垫1302的期望改变由发射垫1302产生的H场的区域中的天线线圈或天线线圈部分相关联。
图13B是示出当电路1310断开或打开时发射垫1302的H场的示图。垂直轴1322示出了由与发射垫1302相关联的发射天线1303产生的H场的相对幅度,以及水平轴1324示出了横跨发射垫1302的距离x。迹线1325示出了由发射垫1302产生的H场的相对幅度,并且包括峰值1327。迹线1325的形状给了“充电区”1326一个提升,其覆盖发射垫1302的表面。当开关1316打开时,最内的线圈部分1304正常操作(不处于短路状态),使得在这种状态下,H场如图13B所示保持。在该状态中,具有小谐振线圈和大金属板或盖的小设备可以位于发射垫1302的表面上的任何位置,并且接收足够的电荷。
图13C是示出示例性发射垫1332的示图。在示例性实施例中,发射垫1332包括发射天线1333,其包括天线线圈部分1334、1336和1338的三个绕组。在示例性实施例中,发射天线1333以及天线线圈部分1334、1336和1338可以包括发射天线614(图6)的实施例,其被配置为无线地发射功率。在示例性实施例中,发射天线1333可以接收来自图4的发射电路406的功率传送信号。
在图13C所示实施例中,电路1310的开关1316闭合,从而使得最内的线圈部分1334在短路状态下操作,从而操作为衰减电路,其可用于选择性地改变由发射垫1332产生的H场,以允许小的不太强健的设备被定位在发射垫1332的表面上的任何位置,并且接收电荷而不过加载设备。
图13D是示出当电路1310接通或闭合时发射垫1332的H场的示图。垂直轴1342示出了由与发射垫1332相关联的发射天线1333产生的H场的相对幅度,以及水平轴1344示出了横跨发射垫1332的距离x。迹线1345给出由发射垫1332产生的H场的相对幅度,并且包括具有衰减轮廓的区域1347,其中峰值1327(图13B)由于最内的线圈部分1334的短路而衰减。迹线1345的形状给出“充电区”1346,其覆盖发射垫1332的表面。当开关1316闭合时,最内的线圈部分1334在短路状态下操作,使得在该短路状态下,最内的线圈部分1334附近的H场被衰减,这由迹线1345中的区域1347证实。这使得小的不太强健的设备被定位在发射垫1332的表面上的任何位置,并且接收电荷而不过加载设备。
在示例性实施例中,控制器415(图4)可操作地耦合至本文描述的任何场改变电路,并且可以被配置为检测一个或多个接收设备的特性,并且操作性地激活或去激活场改变电路以改变磁场,从而改变磁场分布,以及响应于检测到的特性控制场改变电路以改变磁场分布。
在另一示例性实施例中,控制器415(图4)可以操作性地耦合至本文描述的任何场改变电路,并且可以被配置为检测一个或多个接收设备的特性(表示经由发射器生成的磁场无线地耦合充电功率的量或效率),并且响应于检测到特性改变磁场以改变充电区域内的磁场分布。
在另一示例性实施例中,控制器415(图4)可以操作性地耦合至本文描述的任何场改变电路,并且可以被配置为控制场改变电路以在第一模式中进行操作,从而改变与第一磁场分布相对应的磁场,以及在与不同的第二磁场分布相对应的第二模式中进行操作,控制器进一步被配置为基于一个或多个接收设备的检测特性在第一模式和第二模式之间控制场改变电路。
在示例性实施例中,检测接收设备的特性例如可以包括:检测由接收设备引起的发射天线处的电抗偏移。例如,控制器415可以监控电抗参数,诸如发射天线414处的电抗。发射天线414处的电抗偏移可以表示充电表面(诸如接收器)上的金属或金属对象的存在。检测发射天线414处的改变可以包括检测阻抗的变化,这可以用于检测电阻和/或电抗的改变。电阻和电抗可直接被测量。电阻还可以间接地通过测量电压来测量。例如,在纯电流源驱动发射天线414的情况下,将观察到发射天线414处的电压改变。
在示例性实施例中,将被检测的特性可以包括在给定时间点检测充电区中存在的接收设备的数量、或者由一个或多个接收设备接收的功率的量、或者发射器和一个或多个接收设备之间的耦合量、或者一个或多个接收设备的功率要求、或者一个或多个接收设备内的金属的量、或者一个或多个接收设备的尺寸、或者它们的任何组合中的至少一个。
在示例性实施例中,改变磁场以改变磁场分布可以包括:改变与第一磁场分布对应的磁场或者改变与第二磁场分布对应的磁场,其中第二磁场分布可以不同于第一磁场分布。在示例性实施例中,第一磁场分布可以对应于充电区之上的基本均匀的场分布,而第二磁场分布可以对应于充电区的中心部分的磁场幅度高于中心部分外的外部的磁场幅度的磁场分布。
在另一示例性实施例中,本文描述的发射垫的实施例可以具有外壳或者作为外壳的一部分,其具有被配置用于直接或间接放置一个或多个接收设备的表面,该表面限定用于对一个或多个接收设备进行无线充电的充电区域。
图14是示出用于改变无线充电场的方法的示例性实施例的流程图。可以按照或者不按照所示顺序执行方法1400中的框。方法1400的描述将关于本文描述的所有实施例。
在框1402中,调整功率发射天线的H场。
在框1404中,通过选择性地将电路切换为谐振状态来集中或放大功率发射天线的H场。
在框1406中,通过选择性地将电路切换为短路状态来减小或衰减功率发射天线的H场。在一些实施例中,可以期望执行框1404中的操作或者框1406中的操作,但不是二者都必须。
图15是用于改变无线充电场的装置1500的功能框图。装置1500包括用于调整功率发射天线的H场的装置1502。在特定实施例中,用于调整功率发射天线的H场的装置1502可以被配置为执行方法1500(图15)的操作框1402中描述的一个或多个功能。在示例性实施例中,用于调整功率发射天线的H场的装置1502可以包括图9A、图9B、图9C、图9D、图10A、图10B、图10C、图10D、图11A、图11B、图11C、图11D、图11E、图12A、图12B、图12C、图12D、图13A、图13B、图13C和图13D中的一个或多个示出的结构。装置1500还包括用于集中或放大功率发射天线的H场的装置1504。在特定实施例中,用于集中或放大功率发射天线的H场的装置1504可以被配置为执行方法1400(图14)的操作框1404中描述的一个或多个功能。在示例性实施例中,用于集中或放大功率发射天线的H场的装置1504可以包括图9A、图9B、图9C、图9D、图10A、图10B、图10C、图10D、图11A、图11B、图11C、图11D、图11E、图12A、图12B、图12C、图12D、图13A、图13B、图13C和图13D中的一个或多个示出的结构。装置1500还包括用于减小或衰减功率发射天线的H场的装置1506。在特定实施例中,用于减小或衰减功率发射天线的H场的装置1506可以被配置为执行方法1400(图14)的操作框1406中描述的一个或多个功能。在示例性实施例中,用于减小或衰减功率发射天线的H场的装置1506可以包括图9A、图9B、图9C、图9D、图10A、图10B、图10C、图10D、图11A、图11B、图11C、图11D、图11E、图12A、图12B、图12C、图12D、图13A、图13B、图13C和图13D中的一个或多个示出的结构。在一些实施例中,可以期望其仅具有框1504中的装置或者框1506中的装置,但不是二者都必须。
上面所述方法的各种操作可以通过能够执行操作的任何适当的装置来执行,诸如各种硬件和/或软件部件、电路和/或模块。一般地,图中所示的任何操作可以通过能够执行操作的对应功能装置来执行。
参照上面所述,编程领域的技术人员能够写入计算机代码或者识别适当的硬件和/或电路来实施公开的本发明而不会难以基于例如流程图和说明书中的相关描述。因此,程序代码指令的特定集合或详细硬件设备的公开不被认为是如何制造和使用本发明的充分理解所必须的。在上面的描述中并且结合示出各种处理流程的附图更加详细地解释所要求的计算机实施处理的发明功能。
在一个或多个示例性方面中,所描述的功能可以以硬件、软件、固件或任何它们的组合来实施。如果以软件实施,则功能可以存储在计算机可读介质上或者在计算机可读介质上传输为一个或多个指令或代码。计算机可读介质包括计算机存储介质和通信介质,包括利于计算机程序从一个地方到另一个地方的传送的任何介质。存储介质可以是可被计算机访问的任何可用介质。通过示例但不限制地,这种计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储器、磁盘存储器或其他磁性存储设备,或者可用于以指令或数据结构的形式承载或存储期望的程序代码并且可以被计算机访问的任何其他介质。
此外,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆、光纤电缆、双绞线、数字用户线(“DSL”)或无线技术(诸如红外、无线电和微波)从网站、服务器或其他远程源传输软件,则同轴电缆、光纤电缆、双绞线、DSL或无线技术(诸如红外、无线电和微波)包括在介质定义中。
如本文所使用的,盘和光盘包括压缩盘(“CD”)、激光盘、光盘、数字通用盘(“DVD”)、软盘和蓝光盘,其中,盘通常磁性地重现数据,而光盘利用激光光学地重现数据。上述盘的组合也应该包括在计算机可读介质的范围内。
尽管详细示出和描述了所选方面,但应该理解,在不背离由以下权利要求限定的本发明的精神和范围的情况下可以进行各种替换和修改。

Claims (32)

1.一种无线功率发射器,包括:
功率发射线圈,被配置为生成用于将充电功率无线地耦合至一个或多个接收设备的磁场,所述磁场在限定充电区的区域之上具有磁场分布;
电路,被配置为改变由所述功率发射线圈生成的所述磁场,以改变所述磁场分布;以及
控制器,可操作地耦合至所述电路,所述控制器被配置为响应于所述一个或多个接收设备的检测特性控制所述电路以改变所述磁场分布。
2.根据权利要求1所述的无线功率发射器,其中所述控制器被配置为控制所述电路以响应于所述检测特性选择性地放大所述磁场,以改变所述充电区的至少一部分内的所述磁场分布,使得所述磁场分布与在所述电路没有被激活时的磁场分布相比不太均匀。
3.根据权利要求2所述的无线功率发射器,其中所述电路被配置以作为谐振电路进行操作。
4.根据权利要求1所述的无线功率发射器,其中所述控制器被配置为控制所述电路以响应于所述检测特性选择性地衰减所述磁场,以改变所述充电区的至少一部分内的所述磁场分布,使得所述磁场分布与在所述电路没有被激活时的磁场分布相比更加均匀。
5.根据权利要求4所述的无线功率发射器,其中所述电路被配置以作为短路进行操作。
6.根据权利要求1所述的无线功率发射器,其中所述磁场分布在所述充电区之上基本恒定,并且其中所述控制器被配置为控制所述电路,以响应于所述检测特性选择性地放大所述磁场或者选择性地衰减所述磁场,以改变所述磁场分布。
7.根据权利要求1所述的无线功率发射器,其中所述功率发射线圈包括多个线圈部分,并且所述电路被定位为与所述功率发射线圈的所述多个线圈部分中的一个相邻。
8.根据权利要求1所述的无线功率发射器,其中所述功率发射线圈包括多个线圈部分,并且所述电路被连接至所述功率发射线圈的所述多个线圈部分中的一个。
9.根据权利要求1所述的无线功率发射器,其中所述功率发射线圈包括多个天线线圈部分,所述多个天线线圈部分具有被布置在所述功率发射线圈的外围处的第一天线线圈部分和第二天线线圈部分以及被布置在所述功率发射线圈的中心处的第三天线线圈部分,并且所述电路连接至所述第三天线线圈部分。
10.根据权利要求9所述的无线功率发射器,其中连接至所述第三天线线圈部分的所述电路被配置为选择性地放大朝向所述功率发射线圈的中心的所述磁场。
11.根据权利要求9所述的无线功率发射器,其中连接至所述第三天线线圈部分的所述电路被配置为选择性地衰减朝向所述功率发射线圈的中心的所述磁场。
12.一种用于生成磁场的设备,所述磁场在限定充电区的区域之上具有磁场分布,所述磁场用于为一个或多个接收设备无线地充电或供电,所述设备包括:
用于检测一个或多个接收设备的特性的装置,所述特性表示经由通过所述设备生成的所述磁场来无线地耦合充电功率的量或效率;以及
用于响应于检测装置改变所述磁场以改变所述充电区内的所述磁场分布的装置。
13.根据权利要求12所述的设备,其中用于改变所述磁场的装置还包括:用于选择性地放大所述充电区的至少一部分内的所述磁场的装置,使得所述磁场分布与在用于改变所述磁场的装置没有被激活时的磁场分布相比不太均匀。
14.根据权利要求13所述的设备,还包括:用于在所述磁场附近操作谐振电路的装置。
15.根据权利要求12所述的设备,其中用于改变所述磁场的装置还包括:用于选择性地衰减所述充电区的至少一部分内的所述磁场的装置,使得所述磁场分布与在用于改变所述磁场的装置没有被激活时的磁场分布相比更加均匀。
16.根据权利要求15所述的设备,还包括:用于在所述磁场附近操作短路的装置。
17.一种用于操作无线功率发射装置的方法,所述无线功率发射装置被配置为生成在限定充电区的区域之上具有磁场分布的磁场,所述磁场用于为一个或多个接收设备无线地充电或供电,所述方法包括:
检测一个或多个接收设备的特性,所述特性表示经由通过所述无线功率发射装置生成的所述磁场来无线地耦合充电功率的量或效率;以及
响应于检测到所述特性,改变所述磁场以改变所述充电区内的所述磁场分布。
18.根据权利要求17所述的方法,其中所述方法还包括:响应于所述一个或多个接收设备的所述特性,选择性地放大所述充电区的至少一部分内的所述磁场,使得所述磁场分布与在所述磁场没有被改变时的磁场分布相比不太均匀。
19.根据权利要求18所述的方法,其中改变所述磁场还包括:在所述磁场的附近操作谐振电路。
20.根据权利要求17所述的方法,其中所述方法还包括:响应于所述一个或多个接收设备的所述特性,选择性地衰减所述充电区的至少一部分内的所述磁场,使得所述磁场分布与在所述磁场没有被改变时的磁场分布相比更加均匀。
21.根据权利要求20所述的方法,其中改变所述磁场还包括:在所述磁场附近操作短路。
22.根据权利要求17所述的方法,其中所述方法还包括:响应于所述一个或多个接收设备的特性,选择性地放大所述充电区的至少一部分内的所述磁场或者选择性地衰减所述充电区的至少一部分内的所述磁场,使得所述磁场分布不同于所述磁场没有被改变时的磁场分布。
23.根据权利要求17所述的方法,其中改变所述磁场以改变所述磁场分布包括:改变与第一磁场分布对应的磁场或者改变与第二磁场分布对应的磁场,所述第二磁场分布不同于所述第一磁场分布。
24.根据权利要求23所述的方法,其中所述第一磁场分布对应于所述充电区之上的基本均匀的场分布。
25.根据权利要求24所述的方法,其中所述第二磁场分布包括所述充电区的中心部分的磁场幅度高于所述中心部分外的外部部分的磁场幅度的分布。
26.根据权利要求17所述的方法,其中检测所述特性包括:接收来自所述一个或多个接收设备的消息。
27.根据权利要求17所述的方法,其中将被检测的特性包括:在给定时间点处在所述充电区中存在的所述一个或多个接收设备的数量、或者被所述一个或多个接收设备接收的功率的量、或者在所述发射装置与所述一个或多个接收设备之间的耦合量、或者所述一个或多个接收设备的功率要求、或者所述一个或多个接收设备内的金属的量、或者所述一个或多个接收设备的尺寸、或者它们的任何组合中的至少一个。
28.一种用于无线功率传送的装置,包括:
壳体,具有被配置用于一个或多个接收设备的直接或间接放置的表面,所述表面限定用于为所述一个或多个接收设备进行无线充电的充电区;
功率发射线圈,被配置为在所述充电区内生成磁场,所述磁场用于将充电功率无线地耦合至所述一个或多个接收设备,所述磁场在所述充电区内具有磁场分布;以及
电路,被配置为改变由所述功率发射线圈生成的所述磁场,以改变所述充电区内的所述磁场分布。
29.根据权利要求28所述的装置,其中所述电路包括场改变线圈并且至少部分地被所述功率发射线圈封闭。
30.根据权利要求29所述的装置,其中所述电路被配置为选择性地改变两个不同的场分布之间的磁场分布。
31.根据权利要求30所述的装置,其中所述两个不同的场分布中的第一场分布在所述充电区上方基本均匀,并且其中所述两个不同的场分布中的第二场分布在所述充电区上方基本上不均匀。
32.根据权利要求31所述的设备,其中基本上不均匀的所述第二场分布在所述充电区的中心部分中具有峰值。
CN201680029676.0A 2015-05-27 2016-04-28 使用场改变电路的无线功率传送 Pending CN107646162A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562166819P 2015-05-27 2015-05-27
US62/166,819 2015-05-27
US15/075,344 2016-03-21
US15/075,344 US10224753B2 (en) 2015-05-27 2016-03-21 Wireless power transfer using a field altering circuit
PCT/US2016/029672 WO2016191022A1 (en) 2015-05-27 2016-04-28 Wireless power transfer using a field altering circuit

Publications (1)

Publication Number Publication Date
CN107646162A true CN107646162A (zh) 2018-01-30

Family

ID=55969479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680029676.0A Pending CN107646162A (zh) 2015-05-27 2016-04-28 使用场改变电路的无线功率传送

Country Status (5)

Country Link
US (1) US10224753B2 (zh)
EP (1) EP3304681B1 (zh)
JP (1) JP2018519776A (zh)
CN (1) CN107646162A (zh)
WO (1) WO2016191022A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879987A (zh) * 2018-08-06 2018-11-23 佛山市苔藓云链科技有限公司 一种电子设备及其无线充电操作方法
CN108988512A (zh) * 2018-08-06 2018-12-11 佛山市苔藓云链科技有限公司 一种电子设备中无线充电电池及其充电控制方法
CN111614169A (zh) * 2019-02-25 2020-09-01 艾迪悌科技有限公司 线圈选择的q因子确定

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683465B2 (ja) * 2015-12-07 2020-04-22 ラピスセミコンダクタ株式会社 送電装置及び電力伝送システム
US10873221B1 (en) * 2017-01-31 2020-12-22 Apple Inc. Wireless power control system
JP6855878B2 (ja) * 2017-03-29 2021-04-07 富士通株式会社 受電器、電力伝送システム、及び、受電器の制御方法
US10483895B2 (en) * 2017-08-25 2019-11-19 Rockwell Automation Technologies, Inc. Method and apparatus for wireless power transfer to an independent moving cart
US10608469B2 (en) 2017-09-28 2020-03-31 Rockwell Automation Technologies, Inc. Method and apparatus for power transfer to an independent moving cart during travel along a track
EP3861620A4 (en) * 2018-11-06 2022-11-09 Humavox Ltd. BIFUNCTIONAL RECEIVE/TRANSMITTER FOR WIRELESS CHARGING
US11557911B2 (en) 2019-05-17 2023-01-17 Daniel Santana Recharging pad having wireless charging capabilities and modular recharging compartments
EP4000162A1 (en) * 2019-09-06 2022-05-25 Google LLC Wireless charging using time-division multiplexing
US20230238830A1 (en) * 2022-01-25 2023-07-27 Aira, Inc. Automotive key fob interference prevention in wireless chargers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100033021A1 (en) * 2008-08-05 2010-02-11 Broadcom Corporation Phased array wireless resonant power delivery system
US20120293005A1 (en) * 2011-05-16 2012-11-22 Young Ho Ryu Apparatus and method for wireless power transmission
CN103270672A (zh) * 2010-12-23 2013-08-28 三星电子株式会社 用于使用带内通信的无线电力发送和接收的系统
US20140125275A1 (en) * 2012-11-05 2014-05-08 Qualcomm Incorporated Systems and methods for forward link communication in wireless power systems
US20150042429A1 (en) * 2013-08-12 2015-02-12 Hyundai Motor Company Magnetic field distribution control apparatus
WO2015027128A1 (en) * 2013-08-22 2015-02-26 Speculative Product Design, Llc Wireless battery charger
US20150115727A1 (en) * 2013-10-31 2015-04-30 Qualcomm Incorporated Systems, apparatus, and method for a dual mode wireless power receiver
CN104620461A (zh) * 2012-09-11 2015-05-13 高通股份有限公司 无线电力传递系统线圈布置及操作方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040072581A (ko) 2004-07-29 2004-08-18 (주)제이씨 프로텍 전자기파 증폭중계기 및 이를 이용한 무선전력변환장치
US20120119698A1 (en) 2008-09-27 2012-05-17 Aristeidis Karalis Wireless energy transfer for vehicles
CN102362408B (zh) * 2009-03-30 2015-01-21 富士通株式会社 无线供电系统、无线送电装置及无线受电装置
JP5365306B2 (ja) * 2009-03-31 2013-12-11 富士通株式会社 無線電力供給システム
WO2010118191A1 (en) 2009-04-08 2010-10-14 Access Business Group International Llc Selectable coil array
KR20110062841A (ko) * 2009-12-04 2011-06-10 한국전자통신연구원 무선 전력 전송 장치
US8934857B2 (en) 2010-05-14 2015-01-13 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
US8361588B2 (en) * 2010-12-17 2013-01-29 D Amario Nina Rotating device
JP5702696B2 (ja) * 2011-09-28 2015-04-15 株式会社アドバンテスト ワイヤレス受電装置、ワイヤレス給電装置およびワイヤレス給電システム
JP6071655B2 (ja) 2013-03-06 2017-02-01 株式会社東芝 無線電力伝送装置
US9431169B2 (en) * 2013-06-07 2016-08-30 Qualcomm Incorporated Primary power supply tuning network for two coil device and method of operation
US10320234B2 (en) * 2013-08-02 2019-06-11 Integrated Device Technology, Inc. Multimode wireless power receivers and related methods
US9620986B2 (en) 2015-02-13 2017-04-11 Qualcomm Incorporated Method and apparatus for wireless power transfer utilizing transmit coils driven by phase-shifted currents
US10033226B2 (en) 2015-05-04 2018-07-24 Qualcomm Incorporated Methods and apparatus for out of phase field mitigation
US10651657B2 (en) * 2015-06-08 2020-05-12 Qualcomm Incorporated Dynamic adjustment of power for wireless power transmission
US10084321B2 (en) 2015-07-02 2018-09-25 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100033021A1 (en) * 2008-08-05 2010-02-11 Broadcom Corporation Phased array wireless resonant power delivery system
CN103270672A (zh) * 2010-12-23 2013-08-28 三星电子株式会社 用于使用带内通信的无线电力发送和接收的系统
US20120293005A1 (en) * 2011-05-16 2012-11-22 Young Ho Ryu Apparatus and method for wireless power transmission
CN104620461A (zh) * 2012-09-11 2015-05-13 高通股份有限公司 无线电力传递系统线圈布置及操作方法
US20140125275A1 (en) * 2012-11-05 2014-05-08 Qualcomm Incorporated Systems and methods for forward link communication in wireless power systems
US20150042429A1 (en) * 2013-08-12 2015-02-12 Hyundai Motor Company Magnetic field distribution control apparatus
WO2015027128A1 (en) * 2013-08-22 2015-02-26 Speculative Product Design, Llc Wireless battery charger
US20150115727A1 (en) * 2013-10-31 2015-04-30 Qualcomm Incorporated Systems, apparatus, and method for a dual mode wireless power receiver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEONG-MIN KIM ETAL.: "130W power transmitter for wireless power charging using magnetic resonance", 《2014 IEEE 36TH INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE (INTELEC)》 *
廖承林等: "无线电能传输技术在电动汽车无线充电中的应用", 《现代物理知识》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879987A (zh) * 2018-08-06 2018-11-23 佛山市苔藓云链科技有限公司 一种电子设备及其无线充电操作方法
CN108988512A (zh) * 2018-08-06 2018-12-11 佛山市苔藓云链科技有限公司 一种电子设备中无线充电电池及其充电控制方法
CN108988512B (zh) * 2018-08-06 2020-10-09 深圳市倍力奇科技有限公司 一种电子设备中无线充电电池及其充电控制方法
CN111614169A (zh) * 2019-02-25 2020-09-01 艾迪悌科技有限公司 线圈选择的q因子确定

Also Published As

Publication number Publication date
EP3304681A1 (en) 2018-04-11
JP2018519776A (ja) 2018-07-19
US10224753B2 (en) 2019-03-05
WO2016191022A1 (en) 2016-12-01
EP3304681B1 (en) 2019-12-04
US20160352147A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
CN107646162A (zh) 使用场改变电路的无线功率传送
CN105827281B (zh) 用于检测和识别无线电力装置的系统和方法
CN105993105B (zh) 通过动态阻抗变化测量的设备检测
CN104541455B (zh) 基于电容式接近度感测的无线电力系统、方法和设备
CN105515220B (zh) 无线电力装置的低电力检测
CN104685797B (zh) 用于检测无线充电发射特性的系统和方法
CN105075135B (zh) 用于改进的驱动器电路性能的阻抗变换网络
CN105745810B (zh) 无线电力正交极化天线阵列
JP5759388B2 (ja) 多次元無線充電に関するシステムおよび方法
CN103733535B (zh) 具有多个接收器线圈的无线电力接收器
CN103931075B (zh) 用于使用闭合磁性回路的感应充电的系统及方法
CN104205549B (zh) 用于使用蓝牙低能量进行无线电力控制通信的系统和方法
CN105337384B (zh) 可变无线功率发射
JP6030305B2 (ja) 可搬エンクロージャ用の無線電力伝達
CN105844189B (zh) 用于对电池进行充电的无线电力装置的优化
CN108028121A (zh) 具有分离屏蔽件的无线功率传输天线
CN102792546B (zh) 对无线电力系统内的装置的检测和保护
CN105493374B (zh) 高效数据通信和无线电力传送共存的系统和方法
CN105474504B (zh) 用于量化由于无线电力接收器中的感应加热而产生的电力损耗的系统、设备及方法
CN104283330B (zh) 控制无线电力发射器的场分布
CN105914800B (zh) 用于产生磁场的方法和装置
CN105556795B (zh) 无线电力装置的低电力检测
CN104981957B (zh) 用于无线电力系统的主动及自适应场抵消
CN107852036A (zh) 控制无线电力发射器的场分布
CN108028541A (zh) 用于检测和表征用于无线充电的物体的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180130

WD01 Invention patent application deemed withdrawn after publication