CN107642772A - Cogeneration cooling heating system meets workload demand progress control method simultaneously - Google Patents

Cogeneration cooling heating system meets workload demand progress control method simultaneously Download PDF

Info

Publication number
CN107642772A
CN107642772A CN201710811869.8A CN201710811869A CN107642772A CN 107642772 A CN107642772 A CN 107642772A CN 201710811869 A CN201710811869 A CN 201710811869A CN 107642772 A CN107642772 A CN 107642772A
Authority
CN
China
Prior art keywords
mrow
msub
mtr
mtd
chp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710811869.8A
Other languages
Chinese (zh)
Other versions
CN107642772B (en
Inventor
贾善杰
安勇
梁荣
赵凌汉
赵正龙
朱峰
邹斌
吴奎华
郑志杰
李勃
冯亮
杨波
杨慎全
庞怡君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
University of Shanghai for Science and Technology
Original Assignee
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd, University of Shanghai for Science and Technology filed Critical State Grid Corp of China SGCC
Priority to CN201710811869.8A priority Critical patent/CN107642772B/en
Publication of CN107642772A publication Critical patent/CN107642772A/en
Application granted granted Critical
Publication of CN107642772B publication Critical patent/CN107642772B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Meet workload demand progress control method simultaneously the invention discloses a kind of cogeneration cooling heating system, applied in cogeneration cooling heating system, by adjusting electric refrigerator and Absorption Refrigerator refrigerating capacity, realize that cold and hot electric load meets the effect just matched with generating and its waste heat recovery heat energy, so as to realize the raising of efficiency of energy utilization.

Description

Cogeneration cooling heating system meets workload demand progress control method simultaneously
Technical field
The invention belongs to the operation control technology in comprehensive utilization of energy field, more particularly to cogeneration cooling heating system.
Background technology
Distributed energy resource system (Distributed Energy System) is with close to user, cascade utilization, primary energy The features such as utilization ratio is high, environment-friendly, the energy safety of supply is reliable, by national governments, the extensive concern of business circles, green grass or young crops Look at.Distributed energy resource system has diversified forms, supply of cooling, heating and electrical powers (Combined Cooling heating and power, letter Claim CCHP) it is the highly important mode of one of which.
As shown in figure 1, be the common cold and hot electric system of existing one kind, including generating set, the suction by electric set electric supply Receipts formula refrigeration machine, reclaim generating set generating waste-heat heat reclamation device, by heat reclamation device reclaim heat to building supply The heat exchanger of heat;Also include electrical chillers, the donkey boiler of connection external electrical network in the cold and hot electric system simultaneously.Wherein make Refrigeration duty is supplied by Absorption Refrigerator or electric refrigerator.The electricity needs of deficiency from power network power purchase by completing, no The heat energy of foot is supplied by donkey boiler.
Traditional operation reserve of CCHP is to meet refrigeration duty demand with Absorption Refrigerator consumption thermal refrigerating.Heat The heat energy that demand needs plus Absorption Refrigerator forms equivalent thermic load.Then according to electric load and the ratio of equivalent thermic load It is to take " with hot fixed output quota " or " with electric fixed output quota " tactful more than or less than generating electricity with the determination of the ratio between generating waste-heat yield.
The content of the invention
The purpose of the present invention is to contribute meeting cool and thermal power by the coordination of each equipment of rational management cogeneration cooling heating system Efficiency of energy utilization is improved while load.
To achieve the above object, the present invention adopts the following technical scheme that:
A kind of cogeneration cooling heating system meets workload demand progress control method simultaneously, and its CCHP system applied at least is wrapped Include generating set, by electric set electric supply Absorption Refrigerator, reclaim generating set generating waste-heat heat reclamation device;
In period t, the relation that the generating of the CCHP systems is reclaimed with generating waste-heat is:
Wherein:PCHP(t) it is the production electric energy of CCHP systems, unit kWh;QCHP(t) it is the production heat energy of CCHP systems, Unit is kWh;FCHP(t) it is the gas consumption of CCHP systems, unit kWh;ηCHP,HFor CCHP system heat recovery efficiencies; ηCHP,EFor CCHP system generating efficiencies;PCHP,MAX, PCHP,MINIt is the maximum of CHP systems respectively, minimum generated energy, unit kWh; A, b, c are the coefficient of CCHP generating efficiencies;F is generating set PGU output ratio;
In period t, the cool and thermal power balancing the load of the CCHP systems is:
Wherein:LC(t) it is the refrigeration duty demand of CCHP systems, unit kWh;LH(t) it is thermal load demands, unit is kWh;LE(t) it is the electrical load requirement of CCHP systems, unit kWh;PGRID(t) it is for the electricity of systems buying power network, unit kWh;QEC(t) it is the production refrigerating capacity of electric refrigerator, unit kWh;COPECFor the Performance Coefficient of electric refrigerator;QABC (t) it is the production refrigerating capacity of Absorption Refrigerator, unit kWh;COPABCFor the Performance Coefficient of Absorption Refrigerator;QBL(t) it is The output heat energy of donkey boiler, unit kWh;Meet refrigeration duty demand by adjusting electric refrigerator and Absorption Refrigerator, So that the electricity of electric refrigerator consumption is just equal to generating set power generation values with electric load sum, and Absorption Refrigerator consumes Heat be just equal to generating waste-heat recovery calorie value with thermic load sum, that is, there are following two condition formulas to set up:
Wherein:k′CHP,QPIt is (L for generating set generated energyE(t)+LC(t)/COPEC) when generating waste-heat recovery coefficient; k″CHP,QPIt is L for generating set generated energyE(t) generating waste-heat recovery coefficient when;η′CHP,EIt is (L for generating set generated energyE(t) +LC(t)/COPEC) when generating efficiency;η″CHP,EIt is L for generating set generated energyE(t) generating efficiency when.
Beneficial effect:
Operation method proposed by the invention, by adjusting the refrigerating capacity of electric refrigerator and Absorption Refrigerator, reach The generating set of CCHP systems generates electricity and its waste heat recovery can meet cold and hot electrical load requirement simultaneously, can realize that cool and thermal power is born Lotus meets that relatively not high without application efficiency of energy utilization is outer just with the effect to generate electricity and its waste heat recovery heat energy matches The heat energy of power purchase net electric energy and donkey boiler, so as to obtain more preferable efficiency of energy utilization.
Brief description of the drawings
Fig. 1 is a kind of schematic diagram of common cogeneration cooling heating system in the prior art;
Fig. 2 is the flow chart of operation method of the present invention.
Embodiment
Below in conjunction with the accompanying drawings 2 and the invention will be further described by case study on implementation, following examples are descriptive , it is not limited, it is impossible to which protection scope of the present invention is limited with this.
Cogeneration cooling heating system of the present invention meets that the CCHP systems of workload demand progress control method application are at least wrapped simultaneously Include generating set, by electric set electric supply Absorption Refrigerator, reclaim generating set generating waste-heat heat reclamation device.And have Body is practiced in the central controller of CCHP systems, and the purpose of the central controller is to set the generated energy of generator PCHP(t), electric refrigerator production refrigerating capacity QEC(t), Absorption Refrigerator production refrigerating capacity QABC(t), outsourcing power grid electric PGRID(t), donkey boiler production heat QBL(t).It is as follows to implement " while meeting workload demand " operation reserve of the invention.
The parameter of equipment is obtained ahead of time:1) efficiency calculation the coefficient a, b, c of generating set.2) the efficiency system of electric refrigerator Number COPEC;3) the energy efficiency coefficient COP of Absorption RefrigeratorABC;4):CCHP system generator group maximum generating watts PCHP,MAX
In period t, the relation that the generating of the CCHP systems is reclaimed with generating waste-heat is:
Wherein:PCHP(t) it is the production electric energy of CCHP systems, unit kWh;QCHP(t) it is the production heat energy of CCHP systems, Unit is kWh;FCHP(t) it is the gas consumption of CCHP systems, unit kWh;ηCHP,HFor CCHP system heat recovery efficiencies; ηCHP,EFor CCHP system generating efficiencies;PCHP,MAX, PCHP,MINIt is the maximum of CHP systems respectively, minimum generated energy, unit kWh; A, b, c are the coefficient of CCHP generating efficiencies;F is generating set PGU output ratio;
Obtain the cold and hot electrical load requirement L of period tc(t), LH(t), LE(t);
In period t, the cool and thermal power balancing the load of the CCHP systems is:
Wherein:LC(t) it is the refrigeration duty demand of CCHP systems, unit kWh;LH(t) it is thermal load demands, unit is kWh;LE(t) it is the electrical load requirement of CCHP systems, unit kWh;PGRID(t) it is for the electricity of systems buying power network, unit kWh;QEC(t) it is the production refrigerating capacity of electric refrigerator, unit kWh;COPECFor the Performance Coefficient of electric refrigerator;QABC (t) it is the production refrigerating capacity of Absorption Refrigerator, unit kWh;COPABCFor the Performance Coefficient of Absorption Refrigerator;QBL(t) it is The output heat energy of donkey boiler, unit kWh;Meet refrigeration duty demand by adjusting electric refrigerator and Absorption Refrigerator, So that the electricity of electric refrigerator consumption is just equal to generating set power generation values with electric load sum, and Absorption Refrigerator consumes Heat be just equal to generating waste-heat recovery calorie value with thermic load sum, that is, there are following two condition formulas to set up:
Wherein:k′CHP,QPIt is (L for generating set generated energyE(t)+LC(t)/COPEC) when generating waste-heat recovery coefficient; k″CHP,QPIt is L for generating set generated energyE(t) generating waste-heat recovery coefficient when;η′CHP,EIt is (L for generating set generated energyE(t) +LC(t)/COPEC) when generating efficiency;η″CHP,EIt is L for generating set generated energyE(t) generating efficiency when.
When two condition formulas, i.e., when above-mentioned formula (3), (4) are set up, calculated in cold and hot electric system and sent out using following formula The hour generated energy P of group of motorsCHP(t):
Two condition formulas are set up, i.e., when above-mentioned formula (3), (4) are set up, using the electronic refrigeration of following formula calculating and setting Machine production refrigerating capacity QEC(t), Absorption Refrigerator production refrigerating capacity QABC(t), outsourcing power grid electric PGRID(t), donkey boiler is given birth to Quantity of heat production QBL(t):
And the equipment in CCPH systems is set to implement production according to the output set in condition formula by communicator.

Claims (5)

1. a kind of cogeneration cooling heating system meets workload demand progress control method simultaneously, its CCHP system applied comprises at least Generating set, by electric set electric supply Absorption Refrigerator, reclaim generating set generating waste-heat heat reclamation device;
In period t, the relation that the generating of the CCHP systems is reclaimed with generating waste-heat is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mi>f</mi> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>I</mi> <mi>N</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:PCHP(t) it is the production electric energy of CCHP systems, unit kWh;QCHP(t) it is the production heat energy of CCHP systems, unit For kWh;FCHP(t) it is the gas consumption of CCHP systems, unit kWh;ηCHP,HFor CCHP system heat recovery efficiencies;ηCHP,E For CCHP system generating efficiencies;PCHP,MAX, PCHP,MINIt is the maximum of CHP systems respectively, minimum generated energy, unit kWh;a,b,c For the coefficient of CCHP generating efficiencies;F is generating set PGU output ratio;
In period t, the cool and thermal power balancing the load of the CCHP systems is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>R</mi> <mi>I</mi> <mi>D</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>/</mo> <mi>C</mi> <mi>O</mi> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>H</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>/</mo> <mi>C</mi> <mi>O</mi> <msub> <mi>P</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>B</mi> <mi>L</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced>
Wherein:LC(t) it is the refrigeration duty demand of CCHP systems, unit kWh;LH(t) it is thermal load demands, unit kWh;LE (t) it is the electrical load requirement of CCHP systems, unit kWh;PGRID(t) it is the electricity of systems buying power network, unit kWh;QEC (t) it is the production refrigerating capacity of electric refrigerator, unit kWh;COPECFor the Performance Coefficient of electric refrigerator;QABC(t) it is absorption The production refrigerating capacity of formula refrigeration machine, unit kWh;COPABCFor the Performance Coefficient of Absorption Refrigerator;QBL(t) it is donkey boiler Output heat energy, unit kWh;It is characterized in that:
Meet refrigeration duty demand by adjusting electric refrigerator and Absorption Refrigerator so that electric refrigerator consumption electric energy with System electric load sum is just equal to generating set power generation values, and the heat energy and system heat load of Absorption Refrigerator consumption it Just it is equal to generating waste-heat recovery calorie value, that is, there are following two condition formulas to set up:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&gt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <msup> <mi>&amp;eta;</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> <mrow> <msub> <msup> <mi>&amp;eta;</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <msup> <mi>&amp;eta;</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> <mo>&lt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <msup> <mi>&amp;eta;</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> <mrow> <msub> <msup> <mi>&amp;eta;</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <msup> <mi>&amp;eta;</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:k′CHP,QPIt is (L for generating set generated energyE(t)+LC(t)/COPEC) when generating waste-heat recovery coefficient;k″CHP,QPFor Generating set generated energy is LE(t) generating waste-heat recovery coefficient when;η′CHP,EIt is (L for generating set generated energyE(t)+LC(t)/ COPEC) when generating efficiency;η″CHP,EIt is L for generating set generated energyE(t) generating efficiency when.
2. control method as claimed in claim 1, it is characterised in that when two condition formulas are set up, using following formula Calculate the hour generated energy P of generating set in cold and hot electric systemCHP(t):
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>k</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>k</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>E</mi> </mrow> </msub> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>E</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>E</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, LC(t) it is t period refrigeration duty demands, unit kWh;LH(t) it is t period thermal load demands, unit kWh;LE (t) it is t period electrical load requirements, unit kWh;COPECFor the energy efficiency coefficient of electric refrigerator;COPABCFor Absorption Refrigerator Energy efficiency coefficient;ηCHP,H:CCHP system heat recovery efficiencies, it is constant;ηCHP,E:CCHP system generating efficiencies, it is with generator The production electric energy P of groupCHP(t) change;PCHP(t):CCHP system t periods generating set produces electric energy, unit kWh;QCHP(t): CCHP system t periods generating waste-heat reclaims heat;PCHP,MAX:CCHP system generator group maximum generating watts, kWh;A, b, c generate electricity The efficiency calculation coefficient of unit;kCHP,QPIt is P for generating set generated energyCHP(t) generating waste-heat recovery coefficient when;ηCHP,ETo generate electricity Unit generation amount is PCHPWhen generating efficiency.
3. control method as claimed in claim 1, it is characterised in that when two condition formulas are set up, using following formula meter Calculate and set electric refrigerator to produce refrigerating capacity QEC(t), Absorption Refrigerator production refrigerating capacity QABC(t), outsourcing power grid electric PGRID (t), donkey boiler production heat QBL(t):
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>Q</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>C</mi> <mi>O</mi> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>C</mi> <mi>O</mi> <msub> <mi>P</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>L</mi> <mi>H</mi> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mrow> <mi>B</mi> <mi>L</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> <mo>;</mo> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>R</mi> <mi>I</mi> <mi>D</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced>
Wherein:COPECFor the energy efficiency coefficient of electric refrigerator;COPABCFor the energy efficiency coefficient of Absorption Refrigerator;kCHP,QPBy formula (2) define;PCHP(t):CCHP system t periods generating set produces electric energy;QCHP(t):CCHP system t periods generating waste-heat reclaims Heat;QEC(t):The refrigerating capacity that t periods electric refrigerator produces in CCHP systems, unit kWh;QABC(t):T in CCHP systems The refrigerating capacity of period Absorption Refrigerator production, unit kWh;QBL(t):T period donkey boilers quantity of heat production in CCHP systems, it is single Position is kWh;PGRID(t):The CCHP system t periods buy electric energy, unit kWh from power network.
4. control method as claimed in claim 3, it is characterised in that applied to the central controller of CCHP systems, center control The purpose of device processed is to set the generated energy P of generatorCHP(t), electric refrigerator production refrigerating capacity QEC(t), Absorption Refrigerator is given birth to Produce refrigerating capacity QABC(t), outsourcing power grid electric PGRID(t), donkey boiler production heat QBL(t)。
5. control method as claimed in claim 1, it is characterised in that if condition formula is set up, sent by communicator Instruction, makes the equipment in CCHP systems be produced according to the output set in condition formula.
CN201710811869.8A 2017-09-11 2017-09-11 Cogeneration cooling heating system meets workload demand progress control method simultaneously Active CN107642772B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710811869.8A CN107642772B (en) 2017-09-11 2017-09-11 Cogeneration cooling heating system meets workload demand progress control method simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710811869.8A CN107642772B (en) 2017-09-11 2017-09-11 Cogeneration cooling heating system meets workload demand progress control method simultaneously

Publications (2)

Publication Number Publication Date
CN107642772A true CN107642772A (en) 2018-01-30
CN107642772B CN107642772B (en) 2019-09-20

Family

ID=61110414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710811869.8A Active CN107642772B (en) 2017-09-11 2017-09-11 Cogeneration cooling heating system meets workload demand progress control method simultaneously

Country Status (1)

Country Link
CN (1) CN107642772B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110648252A (en) * 2019-09-26 2020-01-03 云南电网有限责任公司电力科学研究院 Building thermoelectric scheduling method based on flexible dynamic heat balance
CN112907147A (en) * 2021-04-01 2021-06-04 华北电力大学 Distributed energy system operation method and system based on optimal working condition points

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236202A (en) * 1993-02-10 1994-08-23 Hitachi Ltd Method and device for operating plant
CN104808489A (en) * 2015-03-09 2015-07-29 山东大学 Three-level cooperative integrative optimization method for combined cooling heating and power system
CN106055773A (en) * 2016-05-27 2016-10-26 东南大学 Establishment method of configuration model of multi-regional comprehensive energy system in combination with thermal network model
CN206004307U (en) * 2016-08-26 2017-03-08 国网上海市电力公司 Energy the Internet integrated system
US20170101900A1 (en) * 2015-10-09 2017-04-13 Kabushiki Kaisha Toshiba Exhaust heat collecting system
CN106952132A (en) * 2017-03-07 2017-07-14 国电南瑞科技股份有限公司 A kind of optimum price quotation method of cogeneration cooling heating system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236202A (en) * 1993-02-10 1994-08-23 Hitachi Ltd Method and device for operating plant
CN104808489A (en) * 2015-03-09 2015-07-29 山东大学 Three-level cooperative integrative optimization method for combined cooling heating and power system
US20170101900A1 (en) * 2015-10-09 2017-04-13 Kabushiki Kaisha Toshiba Exhaust heat collecting system
CN106055773A (en) * 2016-05-27 2016-10-26 东南大学 Establishment method of configuration model of multi-regional comprehensive energy system in combination with thermal network model
CN206004307U (en) * 2016-08-26 2017-03-08 国网上海市电力公司 Energy the Internet integrated system
CN106952132A (en) * 2017-03-07 2017-07-14 国电南瑞科技股份有限公司 A kind of optimum price quotation method of cogeneration cooling heating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110648252A (en) * 2019-09-26 2020-01-03 云南电网有限责任公司电力科学研究院 Building thermoelectric scheduling method based on flexible dynamic heat balance
CN112907147A (en) * 2021-04-01 2021-06-04 华北电力大学 Distributed energy system operation method and system based on optimal working condition points
CN112907147B (en) * 2021-04-01 2023-09-12 华北电力大学 Distributed energy system operation method and system based on optimal working condition point

Also Published As

Publication number Publication date
CN107642772B (en) 2019-09-20

Similar Documents

Publication Publication Date Title
CN104616208B (en) A kind of supply of cooling, heating and electrical powers type micro-capacitance sensor operation method based on Model Predictive Control
WO2016127698A1 (en) Energy storage type combined cooling, heating and power device suitable for active power distribution network and operation method thereof
CN106058942B (en) Energy hub optimization model considering wind power uncertainty and comprising electricity-to-gas conversion and CCHP
CN103439941B (en) A kind of gas internal-combustion engine cold, heat and power triple supply system optimizing operation method
CN108717594A (en) A kind of more micro-grid system economic optimization dispatching methods of supply of cooling, heating and electrical powers type
CN109146182A (en) The economic load dispatching method of meter and the distributed triple-generation system of a variety of energy storage
WO2019205561A1 (en) Cchp micro-grid structure including compressed air energy storage and operation method therefor
CN110361969B (en) Optimized operation method of cooling, heating and power comprehensive energy system
CN103246263A (en) General optimized dispatching strategy for combined supply of cooling, heating and power microgrid system
CN106950840A (en) Towards the integrated energy system layered distribution type control method for coordinating of power network peak clipping
CN112836882B (en) Regional comprehensive energy system operation optimization method considering equipment load rate change
CN105258384A (en) Combined cooling heating and power system integrating thermochemical process
CN106712033A (en) Wind curtailment absorption method in thermal power plant
CN115186902A (en) Regulating and controlling method, device, terminal and storage medium of greenhouse comprehensive energy system
CN206226027U (en) CCHP combines energy supplying system with source pump
CN207196936U (en) A kind of cold, heat and electricity triple supply peak regulation system
CN106487327A (en) A kind of cogeneration system based on methanol fuel cell
CN107642772A (en) Cogeneration cooling heating system meets workload demand progress control method simultaneously
CN110553308A (en) energy collaborative operation control system
CN108167076A (en) A kind of synthesis distributed energy resource system of steam Optimum utilization
CN113806952A (en) Source-load-storage-considered cooling, heating and power comprehensive energy system and optimized operation method thereof
CN111625961A (en) Comprehensive energy system collaborative optimization operation regulation and control method
CN207905934U (en) A kind of synthesis distributed energy resource system of steam Optimum utilization
CN106503914A (en) A kind of polynary economy of energy method for optimizing scheduling towards cooling heating and power generation system
CN104965984A (en) Calculation method for carbon dioxide emission reduction amount of natural gas distributed energy system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant