CN107633136A - 一种基于botdr技术的热力耦合解耦方法 - Google Patents

一种基于botdr技术的热力耦合解耦方法 Download PDF

Info

Publication number
CN107633136A
CN107633136A CN201710858571.2A CN201710858571A CN107633136A CN 107633136 A CN107633136 A CN 107633136A CN 201710858571 A CN201710858571 A CN 201710858571A CN 107633136 A CN107633136 A CN 107633136A
Authority
CN
China
Prior art keywords
strain
thermal
stress
mechanical coupling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710858571.2A
Other languages
English (en)
Inventor
胡燕祝
王松
艾新波
孟臻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201710858571.2A priority Critical patent/CN107633136A/zh
Publication of CN107633136A publication Critical patent/CN107633136A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

本发明公开了一种基于BOTDR技术的热力耦合解耦方法。在工程应用中,热力耦合过程是应力场与温度场两个物理场之间相互影响的过程,即温度对受力变形有影响,同时受力变形对温度变化也有影响。因为热力耦合影响,光纤本身随温度变化,应变和应力对应的关系会发生微小的变化,而本发明就是解耦这种微小变化,使应变和应力关系更加准确。为了克服上述热力耦合现象所导致的现有技术不足,本发明提供了一种基于BOTDR技术的热力耦合解耦方法,符合温度变化下的BOTDR技术的“应变‑应力”测量。分为如下步骤:步骤一、光纤标定;步骤二、温度和应变关系的分离;步骤三、应变和应力的关系建立;步骤四、热力耦合的解耦。

Description

一种基于BOTDR技术的热力耦合解耦方法
技术领域
本发明涉及一种基于BOTDR技术的未知环境液体密度计算方法,属于机器分布式光纤 检测领域中的工程问题。
背景技术
光纤传感技术是20世纪70年代伴随着光纤技术和光纤通信技术的发展而兴起的一种新 型传感技术。它以光波为传感信号,以光纤为传输介质,感知和探测外界被测信号,在传感 方式、传感原理以及信号的探测与处理等方面都与传统的电学传感器有很大差异。光纤本身 不带电、体积小、质量轻、易弯曲、抗电磁干扰、抗辐射性好,特别适合在易燃、易爆、空 间受严格限制及强电磁干扰等恶劣环境下使用。因此,光纤传感技术一经问世就受到了极大 重视,在各个重要领域得到了研究和应用。
光纤传感技术的种类繁多,有多种分类方法。往往同一种被测参量可以用不同类型的传 感器测量,而同一原理的传感器又可以测量多种物理量。按照光纤的感知范围分,光纤传感 种类可以分为单点式光纤传感器、多点式光纤传感器和全分布式光纤传感器。有些研究对象 往往不是一个点或者几个点,而是呈现一定空间分布的场,如温度场、应力场、振动场等, 这一类被测对象不仅涉及距离长、范围广,而且呈三维空间连续性分布,此时单点式甚至多 点准分布式传感已经无法胜任传感检测,全分布式光纤传感系统应运而生。
热力耦合过程是应力场与温度场两个物理场之间相互影响的过程,即温度对受力变形有 影响,同时受力变形对温度变化也有影响。因为热力耦合影响,光纤本身随温度变化,应变 和应力对应的关系会发生微小的变化,而本发明就是解耦这种微小变化,使应变和应力关系 更加准确。
发明内容
为了克服上述热力耦合现象所导致的现有技术不足,本发明提供了一种基于BOTDR技 术的热力耦合解耦方法,符合温度变化下的BOTDR技术的“应变-应力”测量。
在全分布式光纤传感系统中,光纤既作为信号传输介质,又是传感单元。即它将整根光 纤作为传感单元,传感点是连续分布的,也有人称其为海量传感头,因此该传感方法可以测 量光纤沿线任意位置处的信息。根据被测光信号的不同,全分布式光纤传感技术可以分为基 于光纤中的瑞利散射、拉曼散射和布里渊散射三种类型;根据信号分析方法,可以分为基于 时域和基于频域的全分布式光纤传感技术。截至目前,在应变/温度检测中比较成熟的技术是BOTDR技术,BOTDR技术的全称是“Brillouin Optical Time DomainReflection”,其中文名 称是“布里渊光时域反射”,它是通过布里渊散射的方法检测时域上的光信号,最终达到检测 应变/温度的目的。
本发明提供一种基于BOTDR技术的热力耦合解耦方法,主要包括如下几个步骤:
步骤一、光纤标定;
步骤二、温度和应变关系的分离;
步骤三、应变和应力的关系建立;
步骤四、热力耦合的解耦。
本发明的优点在于:
1.本发明利用BOTDR技术具有良好的适应性,可以分离光纤温度和应变的关系。
2.本发明在BOTDR技术的基础上,不仅建立了中心频率和温度/应变之间的关系,同时 还建立了应变和应力之间的关系。
3.本发明为了力求应力计算的准确,引入了热力耦合解耦的方法,使应力求解更加准确。
附图说明
图1为本发明中算法系统框图;
图2为本发明中应力/应变曲线模型;
图3为本发明中RBF神经网络拓扑结构图;
图4为本发明中光纤实物图;
图5为本发明中7020设备实物图;
图6为本发明中不同温度下拉力和应变的关系图。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
本发明提供的一种基于BOTDR技术的未知环境液体密度计算方法,系统框图如图1所 示,具体包括步骤如下:
步骤一、光纤标定;
根据BOTDR技术的原理,可以很容易得出如下公式:
Δf布里渊=a11·ΔT+a12·Δε
其中Δf布里渊是指布里渊散射光中心频率的偏移,ΔT是指温度的变化,Δε是指应变的变 化,a11是指温度变化对应的中心频率的变化,a12是指应变变化对应的中心频率的变化。
在实际使用过程中,辅助有温度计、应变表等设备,需要对使用的光纤进行标定,使a11和a12两个系数更加准确。
步骤二、温度和应变关系的分离;
因为在BOTDR技术中,布里渊中心频率的偏移是伴随着温度和应变同时变化的,如果 只需要应变关系的话,需要对温度和应变两个指标进行一下分离。本发明采用同一根光纤中, 利用不同的方法进行处理,从而达到最终分离的效果。
在第一步布里渊检测的基础上,利用瑞利的方法进行测量,公式如下:
Δf瑞利=a21·ΔT+a22·Δε
其中Δf瑞利是指瑞利散射光频率的偏移,瑞利散光的频率与入射光的频率相等,ΔT是指 温度的变化,Δε是指应变的变化,a11是指温度变化对应的频率的变化,a12是指应变变化对 应的频率的变化。
根据布里渊和瑞利的检测方法,可以求解二元一次方程组,从而达到温度和应变分离的 效果。
步骤三、应变和应力的关系建立;
现行的分布式光纤传感技术,可以测量的应变范围在-3000με至+4000με以内。因此本发 明只取0~4000με微应变进行研究。采用应变表和拉力计同时作用,每100个微应变记录一次 拉力数据,数据点如图2所示。根据图2的数据点,拟合曲线等到公式如下:
F=a·Δε1.2
步骤四、温度和应变之间的相互耦合作用。
因为温度的变化,导致光纤本身分子结构间作用力会产生微小的变化,因此会导致不同 温度下,同样的应变发生的作用力会有变化。本发明称这种现象为热力耦合现象,记做 ΔΓ=f(ΔT,Δε),这种关系并没有典型的数学公式,因此采用RBF神经网络作为训练模型进行 处理。
RBF网络的结构与多层前向网络类似,它是一种三层前向网络。输入层由信号源结点组 成;第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数是RBF径向基 函数,它是对中心点径向对称且衰减的非负非线性函数;第三层为输出层,它对输入模式的 作用作出响应。从输人空间到隐含层空间的变换是非线性的,而从隐含层空间到输出层空间 变换是线性的。RBF神经网络的拓扑结构如图3所示。
实施例一
步骤一、光纤标定;
选取光纤型号为双芯单模的光纤,如图4所示。采用日本光纳株式社的NBX-7020设备, 如图5所示。
通过标定可以知道,基于布里渊散射原理的光纤的“中心频率-应变/温度”系数。如下所 示:
a11=1.07MHz/℃,a12=0.0497MHz/με
步骤二、温度和应变关系的分离;
通过标定可以知道,基于瑞利散射原理的光纤的“光频率-应变/温度”系数。如下所示:
a21=-1.379GHz/℃,a22=-0.1542GHz/με
根据布里渊和瑞利的原理联立组成方程,如下所示:
在光纤末端挂上重物前后,如图3所示,浸入液体前后分别检测一回,在这里温度可以 认为是不变的,应变换算公式如下,求解方程组得到,浸入液体前的应变为Δε1=495με,浸 入液体后的应变为Δε2=378με。
步骤三、应变和应力的关系建立;
取1米长的光纤在25℃下,固定光纤的一端,在另一端从小到大施加拉力,分别用拉力 计和应变表记录数据,得到的数据表格如下:
表1应变和应力关系对应表
对上表的40个点进行描点绘图如图2所示,进行曲线拟合后,得到每个单位长度光纤上 应变与应力的曲线方程为:
F′=0.38·Δε1.2
受应变整个范围内,单位光纤的应力得出后,计算出总的受力。
F=F′·l
步骤四、温度和应变之间的相互耦合作用。
根据表1数据格式,利用恒温箱环境,分别在20℃,25℃,30℃,35℃,40℃,绘制“应变/应力”曲线如图6所示。根据图上证明,当温度越高时光纤发生同样的应变,所受到的应力越小。经过多次试验统计热力耦合参数如下表所示:
表2

Claims (2)

1.本发明提供一种基于BOTDR技术的热力耦合解耦方法,主要包括如下几个步骤:
步骤一、光纤标定;
步骤二、温度和应变关系的分离;
步骤三、应变和应力的关系建立;
步骤四、热力耦合的解耦。
2.根据权利要求1所述的优化构建方法,其特征在于:在步骤四中热力耦合的解耦。因为温度的变化,导致光纤本身分子结构间作用力会产生微小的变化,因此会导致不同温度下,同样的应变发生的作用力会有变化。本发明称这种现象为热力耦合现象,记做ΔΓ=f(ΔT,Δε),这种关系并没有典型的数学公式,因此采用RBF神经网络作为训练模型进行处理。热力耦合会带来应变和应力之间换算的扰动,本发明通过RBF神经网络去拟合这种扰动。
CN201710858571.2A 2017-09-20 2017-09-20 一种基于botdr技术的热力耦合解耦方法 Pending CN107633136A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710858571.2A CN107633136A (zh) 2017-09-20 2017-09-20 一种基于botdr技术的热力耦合解耦方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710858571.2A CN107633136A (zh) 2017-09-20 2017-09-20 一种基于botdr技术的热力耦合解耦方法

Publications (1)

Publication Number Publication Date
CN107633136A true CN107633136A (zh) 2018-01-26

Family

ID=61102306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710858571.2A Pending CN107633136A (zh) 2017-09-20 2017-09-20 一种基于botdr技术的热力耦合解耦方法

Country Status (1)

Country Link
CN (1) CN107633136A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112052629A (zh) * 2020-09-16 2020-12-08 北京邮电大学 一种基于adlasso-sempso-rbf的分布式光纤信号听觉信息解耦方法
CN112781634A (zh) * 2021-04-12 2021-05-11 南京信息工程大学 一种基于YOLOv4卷积神经网络的BOTDR分布式光纤传感系统
CN114417747A (zh) * 2022-01-19 2022-04-29 中山大学 一种水上飞机的水面起降状态预测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084292A (ja) * 2004-09-15 2006-03-30 Kansai Electric Power Co Inc:The 回転体物理量計測方法および回転体物理量計測装置
CN103196584A (zh) * 2013-03-12 2013-07-10 重庆大学 测量光纤中温度和应力的方法、以及布里渊光时域反射仪
CN103697828A (zh) * 2013-12-11 2014-04-02 中国科学院国家天文台 一种支持解耦温度和应变的光纤光栅应变传感器
CN103900491A (zh) * 2014-03-20 2014-07-02 哈尔滨工业大学 基于受激布里渊原理的三芯光纤空间形状测量装置及方法
CN104180833A (zh) * 2014-07-18 2014-12-03 中国科学院上海光学精密机械研究所 温度和应变同时传感的光时域反射计
CN104406616A (zh) * 2014-11-24 2015-03-11 哈尔滨工业大学 高温光纤传感器热力耦合实验测试装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084292A (ja) * 2004-09-15 2006-03-30 Kansai Electric Power Co Inc:The 回転体物理量計測方法および回転体物理量計測装置
CN103196584A (zh) * 2013-03-12 2013-07-10 重庆大学 测量光纤中温度和应力的方法、以及布里渊光时域反射仪
CN103697828A (zh) * 2013-12-11 2014-04-02 中国科学院国家天文台 一种支持解耦温度和应变的光纤光栅应变传感器
CN103900491A (zh) * 2014-03-20 2014-07-02 哈尔滨工业大学 基于受激布里渊原理的三芯光纤空间形状测量装置及方法
CN104180833A (zh) * 2014-07-18 2014-12-03 中国科学院上海光学精密机械研究所 温度和应变同时传感的光时域反射计
CN104406616A (zh) * 2014-11-24 2015-03-11 哈尔滨工业大学 高温光纤传感器热力耦合实验测试装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
帅词俊等: "光纤器件流变制造过程数值分析与试验", 《机械工程学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112052629A (zh) * 2020-09-16 2020-12-08 北京邮电大学 一种基于adlasso-sempso-rbf的分布式光纤信号听觉信息解耦方法
CN112781634A (zh) * 2021-04-12 2021-05-11 南京信息工程大学 一种基于YOLOv4卷积神经网络的BOTDR分布式光纤传感系统
CN114417747A (zh) * 2022-01-19 2022-04-29 中山大学 一种水上飞机的水面起降状态预测方法及装置
CN114417747B (zh) * 2022-01-19 2022-12-20 中山大学 一种水上飞机的水面起降状态预测方法及装置

Similar Documents

Publication Publication Date Title
Farahani et al. Accurate estimation of Brillouin frequency shift in Brillouin optical time domain analysis sensors using cross correlation
Liu et al. Fast-response fiber-optic anemometer with temperature self-compensation
Liang et al. Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring
CN107633136A (zh) 一种基于botdr技术的热力耦合解耦方法
CN101278177A (zh) 传感器及使用该传感器的干扰测定方法
CN103499300B (zh) 基于opgw光纤的导线覆冰在线监测装置和方法
CN104101447A (zh) 分布式光纤温度传感器及消除该传感器非线性误差的方法
Zhao et al. On-line monitoring system of 110 kV submarine cable based on BOTDR
CN107894245A (zh) 一种应变与温度同时测量的保偏光纤干涉仪
Liehr et al. Incoherent optical frequency domain reflectometry and distributed strain detection in polymer optical fibers
Garcia-Ruiz et al. Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR
CN103033285A (zh) 一种已敷设光电复合缆的温度和应变同时测量方法
CN107014519B (zh) 一种智能电网覆冰监测中botdr温度、应变快速分离方法
Yucel et al. Real-time monitoring of railroad track tension using a fiber Bragg grating-based strain sensor
CN203657934U (zh) 基于Sagnac环的反射型长周期光纤光栅温度和折射率双参数传感装置
Liu et al. High resolution and large sensing range liquid level measurement using phase-sensitive optic distributed sensor
Zhang et al. Wavelet phase extracting demodulation algorithm based on scale factor for optical fiber Fabry-Perot sensing
CN102313141A (zh) 一种管道泄露检测用光纤振动传感系统
CN107782696A (zh) 利用拉锥光纤测量分布式液体折射率的传感系统及方法
Zhao et al. Shipborne expendable all-optical fiber ocean temperature-depth profile sensor
CN103245490B (zh) 保偏光纤中偏振模耦合分布的测量方法
CN104866708B (zh) 一种botdr光纤应变分布曲线拼接方法
CN104568383B (zh) 一种评估多模声波导光纤温度与应变灵敏度的方法
CN101329203A (zh) 一种交直流避雷器温度测量装置
CN202690034U (zh) 井下温度与压力的光纤监测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180126

WD01 Invention patent application deemed withdrawn after publication