CN107632959A - A kind of multi-model self calibration kalman filter method - Google Patents
A kind of multi-model self calibration kalman filter method Download PDFInfo
- Publication number
- CN107632959A CN107632959A CN201710832541.4A CN201710832541A CN107632959A CN 107632959 A CN107632959 A CN 107632959A CN 201710832541 A CN201710832541 A CN 201710832541A CN 107632959 A CN107632959 A CN 107632959A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- msubsup
- mover
- msup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims (1)
- A kind of 1. multi-model self calibration kalman filter method, it is characterised in that:It includes following six step:Step 1:Establish system fundamental equationMulti-model self calibration Kalman filtering is transported using two methods of self calibration Kalman filtering and standard Kalman filtering Calculate, therefore system includes two state equations, first is self calibration state equation, and second state equation for standard, it has Body expression formula is<mrow> <msubsup> <mi>X</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>W</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>...</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow><mrow> <msubsup> <mi>X</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>W</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>...</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>Zk=HkXk+Vk·············(3)In formula, XkThe state vector of expression system,WithCorresponding kinetic model and standard containing Unknown worm is dynamic respectively Mechanical model, ZkRepresent system measurements vector, ΦkAnd HkRespectively state-transition matrix and measurement matrix, bkRepresent unknown defeated Enter, WkWith VkRespectively system noise vector sum measures noise vector, and its variance matrix is respectively QkAnd Rk, and meet<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&lsqb;</mo> <msub> <mi>W</mi> <mi>k</mi> </msub> <mo>&rsqb;</mo> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>C</mi> <mi>o</mi> <mi>v</mi> <mo>&lsqb;</mo> <msub> <mi>W</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>W</mi> <mi>j</mi> </msub> <mo>&rsqb;</mo> <mo>=</mo> <mi>E</mi> <mo>&lsqb;</mo> <msub> <mi>W</mi> <mi>k</mi> </msub> <msubsup> <mi>W</mi> <mi>j</mi> <mi>T</mi> </msubsup> <mo>&rsqb;</mo> <mo>=</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <msub> <mi>&delta;</mi> <mrow> <mi>k</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&lsqb;</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> <mo>&rsqb;</mo> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>C</mi> <mi>o</mi> <mi>v</mi> <mo>&lsqb;</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>V</mi> <mi>j</mi> </msub> <mo>&rsqb;</mo> <mo>=</mo> <mi>E</mi> <mo>&lsqb;</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> <msubsup> <mi>V</mi> <mi>j</mi> <mi>T</mi> </msubsup> <mo>&rsqb;</mo> <mo>=</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> <msub> <mi>&delta;</mi> <mrow> <mi>k</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>C</mi> <mi>o</mi> <mi>v</mi> <mo>&lsqb;</mo> <msub> <mi>W</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>V</mi> <mi>j</mi> </msub> <mo>&rsqb;</mo> <mo>=</mo> <mi>E</mi> <mo>&lsqb;</mo> <msub> <mi>W</mi> <mi>k</mi> </msub> <msubsup> <mi>V</mi> <mi>j</mi> <mi>T</mi> </msubsup> <mo>&rsqb;</mo> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mn>...</mn> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>In formula, Cov [] is covariance, and E [] is mathematic expectaion, δkjFor δ functions, as k=j, δkj=1, as k ≠ j, δkj=0;Step 2:Initialization is filtered to the system being made up of formula (1), formula (2) and formula (3)Set the initial value of state estimation and estimation error variance matrix as<mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>=</mo> <mi>E</mi> <mo>&lsqb;</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>&rsqb;</mo> <mn>...</mn> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow><mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>E</mi> <mo>&lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&rsqb;</mo> <mn>...</mn> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>Meanwhile in order to complete the fusion of two model estimated results, it is also necessary to set the probability initial value of two kinds of modelsPr(1|Z3)=Pr (2 | Z3)=0.5 (7)And the probability initial value Pr for iterative calculationmaxAnd Prmin;Initialize PrmaxAnd PrminThe reason for it is as follows:In multiple-model estimator calculating process, some models can be eliminated due to the gradual convergence of corresponding probability for zero, therefore be joined Model quantity N with computing is constantly reducing, and this can reduce adaptability of the system to complex environment;Only chosen for the present invention Two kinetic models and use maximum probability method selection priori estimates, therefore only need the probability of two kinds of models of qualitative analysis big It is small without accurate the characteristics of calculating probable value, multi-model self calibration kalman filter method does not use the bar being calculated Part probable value is iterated, but sets the probability initial value Pr of two determinationsminAnd Prmax=1-Prmin;Filtered in each step Before, it is assigned to two models respectively by comparing the size of previous step probability results, and worked as using them as initial value renewal The model probability at preceding moment;Due to PrminIt is not minimum as probability lower limit, therefore the speed that guarantee probability recovers, from And the real-time of Kalman filtering is set to be guaranteed;Step 3:Time renewal is carried out to systemWork as k=1, when 2, state one-step prediction value<mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mn>1</mn> <mo>/</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mn>0</mn> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mn>...</mn> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow><mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mn>2</mn> <mo>/</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mn>...</mn> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>One-step prediction varivance matrix<mrow> <msub> <mi>P</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mn>0</mn> </msub> <msub> <mi>P</mi> <mn>0</mn> </msub> <msubsup> <mi>&Phi;</mi> <mn>0</mn> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mn>0</mn> </msub> <mn>...</mn> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>P2/1=Φ1P1Φ1 T+Q1············(11)As k > 2, state one-step prediction value<mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>J</mi> </msubsup> <mn>...</mn> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>One-step prediction varivance matrix<mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>J</mi> </msubsup> <mn>...</mn> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>In formulaJ=argmaxjPr(j|Zk)···········(14)<mrow> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mn>1</mn> </msubsup> <mn>...</mn> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow><mrow> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mn>...</mn> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow><mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mn>1</mn> </msubsup> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <msubsup> <mi>S</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>K</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msub> <mi>H</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>K</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msub> <mi>H</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow><mrow> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <msup> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>...</mn> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>Wherein, function argmax [f (x)] returns to the value of the x when f (x) is maximum, and<mrow> <mi>Pr</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>|</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>p</mi> <mi>d</mi> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>|</mo> <mi>j</mi> <mo>)</mo> </mrow> <mi>Pr</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>|</mo> <msub> <mi>Z</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mi>p</mi> <mi>d</mi> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>|</mo> <mi>i</mi> <mo>)</mo> </mrow> <mi>Pr</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>|</mo> <msub> <mi>Z</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mn>...</mn> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow><mrow> <mi>p</mi> <mi>d</mi> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>|</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&ap;</mo> <mfrac> <mrow> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msubsup> <mi>T</mi> <mi>k</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>)</mo> </mrow> <mrow> <mi>q</mi> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>|</mo> <msub> <mi>T</mi> <mi>k</mi> </msub> <msup> <mo>|</mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> <mn>...</mn> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow><mrow> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>K</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msub> <mi>H</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&lsqb;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>3</mn> </mrow> </msub> <msubsup> <mi>S</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>3</mn> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>K</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mn>1</mn> </msubsup> <msub> <mi>H</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&rsqb;</mo> <mn>....</mn> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>S1=P1··············(22)<mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>j</mi> </msubsup> <mn>...</mn> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow><mrow> <msub> <mi>T</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>j</mi> </msubsup> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> <mn>...</mn> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>In above-mentioned calculating process, formula (15) provides the one-step prediction result of self calibration state equation, and formula (16) provides standard shape The one-step prediction result that state equation calculates, then by the comparison of probability size in formula (12), final one is completed by formula (14) Walk predicted value screening;The conditional probability of two kinds of models, as shown in formula (19) and formula (20);Step 4:Iteration variable updatesThere are many intermediate variables to need real-time update in step (3), it is therefore necessary to their recurrence formula is obtained, and then Ensure being smoothed out for whole filtering;These iteration variables include:Each model measurement renewal<mrow> <msubsup> <mi>K</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>j</mi> </msubsup> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>j</mi> </msubsup> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mn>...</mn> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow><mrow> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>j</mi> </msubsup> <mo>+</mo> <msubsup> <mi>K</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msubsup> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow><mrow> <msubsup> <mi>P</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>K</mi> <mi>k</mi> <mi>j</mi> </msubsup> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>j</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>K</mi> <mi>k</mi> <mi>j</mi> </msubsup> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msubsup> <mi>K</mi> <mi>k</mi> <mi>j</mi> </msubsup> <msub> <mi>R</mi> <mi>k</mi> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>K</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mn>......</mn> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>Each Model Condition probability is resetPr(J|Zk)=Prmax············(28)Pr[(3-J)|Zk]=Prmin···········(29);Step 5:Measure renewalFiltering gain matrix<mrow> <msub> <mi>K</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mn>...</mn> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow>State estimation<mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow>The calculation formula of this step due to not being related to the basic assumption of self-calibration technique and the related content of Multiple model estimation theory, So calculating process and the Posterior estimator formula of standard Kalman filtering method are consistent;It should be noted simultaneously that due to Multi-model self calibration kalman filter method is obtained by the fusion calculation of two model results, therefore in calculating process And transmission of the estimation error variance matrix between adjacent moment is not needed, so not providing P in calculation procedurekCalculating it is public Formula;Step 6:Iterative calculationThe state estimation respectively obtained according to the two of the k moment modelsWith varivance matrix Pk, repeat step (three), (4) and (five), and then the state estimation at k+1 moment is obtained, reciprocal iteration, until filtering terminates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710832541.4A CN107632959A (en) | 2017-09-15 | 2017-09-15 | A kind of multi-model self calibration kalman filter method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710832541.4A CN107632959A (en) | 2017-09-15 | 2017-09-15 | A kind of multi-model self calibration kalman filter method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107632959A true CN107632959A (en) | 2018-01-26 |
Family
ID=61102249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710832541.4A Pending CN107632959A (en) | 2017-09-15 | 2017-09-15 | A kind of multi-model self calibration kalman filter method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107632959A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108537360A (en) * | 2018-03-01 | 2018-09-14 | 长安大学 | One kind taking polyfactorial adaptable Kalman filter slide prediction method into account |
CN110110711A (en) * | 2019-06-06 | 2019-08-09 | 郑州轻工业学院 | A kind of iterative learning control systems input signal estimation method under noisy communication channel |
CN117909850A (en) * | 2024-03-18 | 2024-04-19 | 中铁电气化局集团有限公司 | Carrier cable supporting device vibration signal processing method based on fusion algorithm |
-
2017
- 2017-09-15 CN CN201710832541.4A patent/CN107632959A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108537360A (en) * | 2018-03-01 | 2018-09-14 | 长安大学 | One kind taking polyfactorial adaptable Kalman filter slide prediction method into account |
CN110110711A (en) * | 2019-06-06 | 2019-08-09 | 郑州轻工业学院 | A kind of iterative learning control systems input signal estimation method under noisy communication channel |
CN110110711B (en) * | 2019-06-06 | 2021-06-04 | 郑州轻工业学院 | Iterative learning control system input signal estimation method under noise channel |
CN117909850A (en) * | 2024-03-18 | 2024-04-19 | 中铁电气化局集团有限公司 | Carrier cable supporting device vibration signal processing method based on fusion algorithm |
CN117909850B (en) * | 2024-03-18 | 2024-06-04 | 中铁电气化局集团有限公司 | Carrier cable supporting device vibration signal processing method based on fusion algorithm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107783944A (en) | A kind of multi-model self calibration Unscented kalman filtering method | |
CN107547067A (en) | A kind of multi-model self calibration EKF method | |
CN111798491B (en) | Maneuvering target tracking method based on Elman neural network | |
de Visser | Global Nonlinear Model Identification with Multivariate Splines. | |
Dang et al. | Cubature Kalman filter under minimum error entropy with fiducial points for INS/GPS integration | |
CN106683122A (en) | Particle filtering method based on Gaussian mixture model and variational Bayes | |
CN106291645A (en) | Be suitable to the volume kalman filter method that higher-dimension GNSS/INS couples deeply | |
CN106441300B (en) | It is a kind of with adaptive collaborative navigation filtering method | |
Fernández-Prades et al. | Bayesian nonlinear filtering using quadrature and cubature rules applied to sensor data fusion for positioning | |
CN105205313A (en) | Fuzzy Gaussian sum particle filtering method and device as well as target tracking method and device | |
CN107632959A (en) | A kind of multi-model self calibration kalman filter method | |
CN103217175A (en) | Self-adaptive volume Kalman filtering method | |
CN109341690B (en) | Robust and efficient combined navigation self-adaptive data fusion method | |
CN107727097B (en) | Information fusion method and device based on airborne distributed position and attitude measurement system | |
CN107807906A (en) | A kind of multi-model self calibration order filtering method | |
CN110132287A (en) | A kind of satellite high-precision joint method for determining posture based on extreme learning machine network building out | |
CN114367990B (en) | Mechanical arm touch external force estimation method based on mechanism data hybrid model | |
Sinha et al. | Nonlinear and linear unstable aircraft parameter estimations using neural partial differentiation | |
Chauhan et al. | Review of aerodynamic parameter estimation techniques | |
Nie et al. | A robust unscented Kalman filter for intermittent and featureless aircraft sensor faults | |
CN111798494A (en) | Maneuvering target robust tracking method under generalized correlation entropy criterion | |
Beutler et al. | Gaussian filtering using state decomposition methods | |
CN107886058B (en) | Noise-related two-stage volume Kalman filtering estimation method and system | |
CN104467742A (en) | Sensor network distribution type consistency particle filter based on Gaussian mixture model | |
CN114061592A (en) | Adaptive robust AUV navigation method based on multiple models |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Yang Haifeng Inventor after: Fu Huimin Inventor after: Wang Zhihua Inventor after: Zhang Yongbo Inventor before: Fu Huimin Inventor before: Yang Haifeng Inventor before: Zhang Yongbo Inventor before: Wang Zhihua Inventor before: Xiao Mengli Inventor before: Cui Die |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180126 |